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ON THE GROUPS OF ISOMETRIES OF SIMPLE
PARA-HERMITIAN SYMMETRIC SPACES

By

Takuya SHiMOKAWA and Kyoji SuGiMoTO

Abstract. The main purpose in this paper is to completely deter-
mine the groups of isometries of simple para-Hermitian symmetric
spaces. That enables us to also determine the groups of affine
transformations of these spaces, with respect to the canonical affine
connections.

1. Introduction and the Main Result in This Paper

This paper reports the following:

THEOREM 1. Let G be a connected absolutely simple Lie group whose center
is trivial, and let (G/H,o0,1,q) be a para-Hermitian symmetric space of hyperbolic
orbit type. Then,

(1) the metric g is the G-invariant extension of the Killing form of Lie(G) up

to constant;

(2) when V' denotes the canonical affine connection on (G/H,q), the group
I(G/H,g) of isometries coincides with the group A(G/H,V') of affine
transformations;

(3) the quotient group 1(G/H,g)/1(G/H,g), is determined as in Table 1,
where 1(G/H,g), is the identity component of 1(G/H,g).

Since the seminal pioneering work of K. Nomizu [Nol], the theory of (affine)
symmetric spaces has evolved. As a symmetric space (G/H, o) with a G-invariant
para-complex structure / and with a G-invariant para-Hermitian metric g¢,
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S. Kaneyuki and M. Kozai have introduced the notion of para-Hermitian
symmetric space (G/H,o,1,g) in [Ka-Koz]. A para-Hermitian symmetric space is
a pseudo-Riemannian manifold. When we discuss a pseudo-Riemannian manifold
(M,g), some natural problems arise:

(1) How many such metrics exist there on the manifold M?

(2) With what kind of structure is the group I(M,g) of isometries?

For almost effective semisimple para-Hermitian symmetric spaces, we well

know the following fact contributed in [Ka-Koz]:

« For an arbitrary almost effective semisimple para-Hermitian symmetric space
(G/H,0,1,g), there exists a unique element Z € g:= Lie(G) such that
(Z) =Y and I, = ady, Z, where o is the origin of G/H and by (resp. m) is
the 1 (resp. —1) eigenspace of o, in g.

« Furthermore, set I (resp. §) as the G-invariant extension of /i ady, Z
(resp. of JaBg|ysm)s Where A1 = +1 (resp. Ay is any nonzero real number).
Then the quadruplet (G/H,o,1,§) is a para-Hermitian symmetric space,
also.

If there exists a nonzero real number A such that the metric g is the G-invariant
then I(G/H,g) coincides with I(G/H,§). As a result, it is
greatly important to determine the group I(G/H,§) of isometries in this case.

extension of ABg|, s
Thereupon, under certain conditions, we determine the group of isometries for
every para-Hermitian symmetric space.

This paper is organized as follows:

§2 Preliminaries. In this section, we provide useful notation and recollect
some definitions and facts on para-Hermitian symmetric spaces. An
important result in this section is a theorem on para-Hermitian structures,
and this is Proposition 2 and Theorem 1-(1).

§3 Relation between isometries and Lie algebra automorphisms. Next, under
the same conditions as in Theorem 1, we assert Proposition 3. From this,
we infer relation between isometries and Lie algebra automorphisms.
Using this proposition, we briefly prove the main point in the section,
namely Proposition 4. Those propositions imply Theorem 1-(2) and form
a basis of Theorem 1-(3).

§4 A way to determine every quotient group I(G/H,g)/1(G/H,g), and
Examples. The final section presents a way to determine every group
I(G/H,g)/1(G/H,g), for (G/H,o,1,g) in Theorem 1. In addition, we
consider a way to construct any space (G/H,o,l,g) in Theorem 1.
With a similar way to this, we individually determine every group
I(G/H,9)/1(G/H,g), and obtain Tables 1 and 2.
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Table 2. The unique elements corresponding to every system of nonzero roots

Type | Condition | Dynkin diagram with the coefficients of the maximal root | The element Z
1 1 1 1
ap n>1 o—0O—— -+ —0O0—>0 Ziy.. 2y
[24] (2% Qp-1 QAp
1 2 2 2
b, n>3 o—0— - —0=0 Z
a (0%} Qp-1 Ay
2 2 2 1
Cn n>2 o——0— - 40?0 Zn
a) (27} Op-1 Oy
1
1 2 2 i
Dy[ n>4 O_Oi 1 Zlyanl:Zn
03] [05) Ap-2
al‘l
2
[25]
¢ - 12 3] 2 1 21, Zs
[23] o (o7} o5 (273
3
[24]
¢7 - 2 3 4 32 1 Z;
a 0%} o4 0% a6 o

Here {Z;}, is the dual basis of {o;},.

2. Preliminaries

2.1. Notation.

We use the following notation in this paper, where M is a

manifold, G is a Lie group, and g is a Lie algebra:

X(M)
(M, g)

Vl
A(M,V)

Lie(G)
Aut(G), Aut(g)

the Lie algebra of vector fields on M,

the group of isometries of a pseudo-Riemannian manifold
(M, g),

the canonical affine connection on a symmetric space,
the group of affine transformations of an affine manifold
(M,V),

the Lie algebra of G,

the groups of automorphisms of G, g, respectively,

Aut(g, §) := { € Aut(g) [ g o) = Y 0 ¢}, for ¢ € Aut(g),

Int(g)

the group of inner automorphisms of g,
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B, the Killing form of g,
Ce(Z) :={xe G|Ad(x)Z = Z}, for Z € Lie(G),

(Z) ={Xegl||Z,X]=0}, for Zeg,

Z(G),3(g) the centers of G, g, respectively,

Gy the identity component of G,

G° the closed subgroup of G which consists of the fixed points
of an involution ¢ of G,

A, the inner automorphism of G by an element x € G,

a* the dual space of a vector space aq,

idy the identity mapping of a set 4.

2.2. Definitions and Well Known Propositions. Let us begin with a brief

review of para-Hermitian symmetric space. First of all,

Riemannian metric g, then the Levi-Civita connection induced by ¢ coincides
with the canonical affine connection V' (cf. [Nol], p. 55). Additionally, on the
compact-open topology, I(G/H,g) is a closed subgroup of A(G/H,V') (cf.

DEerFINITION 1 (cf. [Nol], p. 52, p. 53). (1) Set G as a connected Lie group,
and H as a closed subgroup of G. The pair (G/H, o) of the homogeneous
space G/H and an involution ¢ of G is said to be a symmetric space, if

the following inclusion relation is satisfied:

(G°), C HC G%

(2) A symmetric space (G/H,o) is uniquely equipped with a G-invariant
affine connection V! making an affine transformation of &, where 6(xH)
:= o(x)H for xH € G/H. We call the connection V' the canonical affine

connection on (G/H,a).

ReEMARK 1. If a symmetric space (G/H,o) admits a G-invariant pseudo-

[No2], p. 823).

is the name given to a quadruplet (G/H,o,1,g), where (G/H,o) is a symmetric
space furnished with a G-invariant para-complex structure / and with a G-

Second, we recollect the definition of para-Hermitian symmetric space:

DeriNITION 2 (cf. [Ka-Koz|, p. 86-87). A para-Hermitian symmetric space

invariant para-Hermitian metric g.
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REMARK 2. Note that a 2-form w, o(X,Y) :=g(X,IY) for X, Y € X(G/H),
becomes symplectic. In other words, g is upgraded to a para-Kdhler metric
(cf. [Ka-Koz], p. 86).

Next, to characterize para-Hermitian symmetric spaces, we prepare a term
on a Lie algebra:

DerFmiTION 3. A real Lie algebra g is called absolutely simple, if its com-
plexification g, is simple. A Lie group G and a symmetric space (G/H,o) are
equally called absolutely simple, if Lie(G) is absolutely simple.

Last, recall a well known proposition about para-Hermitian symmetric spaces:

ProrosiTION 1 (cf. [Ka-Koz], p. 89-92, and [Koh], p. 306). Let (G/H,a0,1,9)
be an absolutely simple para-Hermitian symmetric space. In addition, put g :=
Lie(G) and set by (resp. m) as the 1 (resp. —1) eigenspace of o, in g. Moreover, set
p as the —1 eigenspace in g of a Cartan involution 0 of § which commutes with o..
Then there exists a unique element Z € 3(h) Np such that

(1) C(;(Z)O CHC CG(Z),

(2) b=¢(Z) =gy, m=g_; ® gy, where g, is the A eigenspace in g of ad Z,

(3) I, =ady, Z, 0. =exp V—1nad Z,

(4) 3(b) = RZ.

Furthermore, a quadruplet (G/H,o,1,G) becomes a para-Hermitian symmetric
space for an arbitrary open subgroup H of Cg(Z), where I (resp. g) is the

G-invariant extension of Ay ady, Z (resp. of 22Bg| and 2y = +1 (resp. Ay is a

m XHI)
nonzero real number).

2.3. An Invariant Para-Hermitian Metric. As the first step in this study, we
uniformize the metrics on absolutely simple para-Hermitian symmetric spaces.
Assume that (G/H,o,1,g), g, b, m, and Z are the same symbols as in Prop-
osition 1.

PROPOSITION 2.  Any G-invariant para-Hermitian metric of G/H with respect

to I is the G-invariant extension of By| up to constant. In particular, there

mxm
exists a nonzero real number A such that g is the G-invariant extension of ABg|,, -

Proor. Take any G-invariant para-Hermitian metric § of G/H with respect
to I. Set © as the projection from G onto G/H and set Q as the pull back of
o with 7: Q :=7n*®, where @(X,Y) :=g(X,IY) for X,Y € X(G/H). Since @ is
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G-invariant symplectic, Q is a left-invariant closed 2-form on G. Let 0 be the
boundary operator of the trivial representation of g. Then, for X, Y, W eg,

QX Y, W) = —Q([X, Y], W) —Q([Y, W], X) — Q([W,X],Y)
= W(Q(X,Y)) + X(Q(Y, W) + Y(QW, X))
—Q(X, Y], W) —Q([Y, W], X) - Q([W,X],Y)
=dQ(X,Y, W) =0;

thus Q is a 2-cochain. From the Whitehead lemma (e.g. [Va] Theorem 3.12.1,
p- 220), the 1-cohomology space vanishes and the 2-cohomology space also
dose. The latter implies that Q is a 2-coboundary, and then there exists a non-
zero element o € ¢* such that Q = da. This o is unique, because of the former.
Moreover, by use of g = g* as a vector space with X «— By(X,«), there uniquely
exists an element 4 € g such that

Q(X,Y)=—By(4,[X,Y]) forall X,Y egq.

Here h = ¢4(A4); indeed, —B4(4,[X, Y]) =Q(X,Y) =o(n.X,n,Y)on for X,Y eg
and both B, and & are nondegenerate. In consequence, Proposition 1-(4) causes
that there exists a nonzero unique real number / such that 4 = 1Z. Hence, for
all X, Y em,

§3,(X,Y)=a(X,1,Y)=Q(X,,Y) = —By(4,[X,ad Z(Y)])
= ABy(X, (ad Z)*(Y)) = ABy(X, Y).

Recollecting that g is G-invariant, we obtain this proposition. ]

3. Relation between Isometries and Lie Algebra Automorphisms

3.1. An Isotropy Subgroup. In this section, (G/H,0,1,9), g, h, m, and Z
are the same symbols as in Proposition 1. Let us just consider the only case
where G/H can be realized as a hyperbolic orbit with the adjoint representation
Ad, namely hyperbolic orbit type. Suppose that G/H is of hyperbolic orbit type
(that is, H = C3(Z)) and Z(G) is trivial. In addition, set 0 € G/H as the origin of
G/H and let I(G/H,g,0) (resp. A(G/H,V!, 0)) be the isotropy subgroup at o of
the isometric transformation group 1(G/H,g) (resp. of the affine transformation
group A(G/H,V")).

Here, we confirm the following proposition to achieve the main purpose in
this paper:
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ProposiTION 3. 1(G/H,g,0) = A(G/H,V',0) = Aut(g,.) as a group. More-
over, I(G/H,g) = A(G/H,V").

This proposition comes from four lemmas. At the beginning, Aut(g,o.) is
distinguished by Z as follows:

LemMma 1. Put Aut(g,Z)™ := {¢ € Aut(q) | ¢(Z) = +Z}, and as disjoint union

Aut(g,0,) = Aut(g,Z) " UAut(g,Z2)".

Proor. Since Z is nonzero, this proof is completed if we prove Aut(g,o.)
= Aut(g, Z)" UAut(g, Z) . Assume that ¢ € Aut(g,Z)T, and then ¢goo, 0g ' =
exp V—1Inad(+Z) = o' = 0..

On the other hand, take any ¢ € Aut(g,g.). By use of ¢(3(h)) = 3(b) and of
Proposition 1-(4), there exists a nonzero real number u such that ¢(Z) = uZ.
Applying (¢o 1, 0¢™")> =id,, we obtain X = (pol,0¢ ") (X) = (pol,0¢")-
(uad Z(X)) = x>X for all X em, and consequently have u = +1. O

o

In the second place, we correlate Aut(g,a.) with A(G/H,V', o0):

LEMMA 2. For an arbitrary ¢ € Aut(g,0.), there exists a unique ® € Aut(G)
such that ®(H) = H and ®, = ¢. Put ®(xH) := ®(x)H for xH € G/H, and then
®c1(G/H,qg,0); as a result, ® € A(G/H,V",0).

Proor. G is connected, and there uniquely exists the universal covering
group (G, p) such that (1) N :=Ker(p) C Z(G) is a normal subgroup of G, (2)
G/N =~ G as a Lie group, and (3) Lie(G) = g as a Lie algebra. Since Z(G) is
trivial, we have Z(G) = N; and then G =~ G/Z(G) as a Lie group.

Take any ¢ € Aut(g,0,), and there exists a unique ¥ € Aut(G) such that
¥, =¢. Since W(N)=N, ¥ induces an automorphism of G/N: ¥(aN):=
W(a)N. Hence there exists a unique ® € Aut(G) such that @, =¢. Here
®(H) = H; because, by Lemma 1, Ad ®(x)Z =¢oAdxo¢ '(Z)=Z for all
x € H. Thus an automorphism ® of G/H is induced by ®(xH) := ®(x)H, and
then @ is an isometry. Indeed, g,(®.X,®.Y) = ABy(4(X),$(Y)) = g,(X, Y) for
all X,Y em, where A is the real number associated with g and B, (cf. Propo-
sition 2). O

Now set Fy, F>, and F as the mappings provided in Lemma 2:
F) : Aut(g,0.) — Aut(G,H), ¢— O,
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F,: Aut(G,H) — A(G/H,V',0), ®— ®,
F:=FoF : Aut(g,0.) — A(G/H,V',0),

where Aut(G, H) is the subgroup of Aut(G) maintaining H. Note that F is a
homomorphism.

To close, we prove that F, is a group isomorphism of Aut(G,H) onto
A(G/H,V' 0), and accordingly heed the following:

LemMmA 3. Put t,:aH — xaH for aH € G/H and v : x — 7, for xe€ G, and
then the mapping A(G/H,V' 0) — Aut(G,H), f+— t ' oAsot is the inverse
mapping of F;.

Proor. First of all, let us prove that G/H is effective. Take any normal
subgroup N of G contained in H. Since G is simple, N is discrete and then
N C Z(G) = {e}; thus G/H is effective. This enables us to have 75 = A(G/H, V'),
by proceeding in the similar way to that of Proposition 1.6 in [Ka], where
76 = {7« | x € G}.

Just take any f e A(G/H,V' 0), and it consequently follows that As(t,) €
A(G/H,V'), for any x e G. Thereupon put @ :=7"'oAso7, and then ®; e
Aut(G). Here ®;(H) = H; indeed, 7,(0) = fot,0 f~1(0) = f(t1(0)) = f(0) = 0
for all /e H, where y:= ®(h). As a result, an automorphism ®; of G/H is
induced as ®;(xH) := ®;(x)H. This automorphism ®; coincides with f; because
O/ (xH) = O (x)H = zH = 1.(0) = f o1, 0 f~(0) = f(xH) for all x e G, where
z:= @y (x). Therefore the mapping [+t 'oAsor is F; L. O

Applying Lemma 3, we obtain the following:

LemMMmA 4. There exists the inverse mapping of F, and this is
F': A(G/H,V',0) — Aut(g,0.), f — (z' 0 Aso1)..

Proor. If f e A(G/H,V' 0) and ®; := 77! 0 Ay o 7, then this mapping @, €
Aut(G, H) yields (@), [, € Aut(h). In consequence, (Py),|
of m.

Here (@), € Aut(g,0.), because o, o (Pf), 0 0.(X) =0, 0 (Pf), (X1 — X>) =
((Df)*(Xl) — (—((Df)*(Xz)) = ((Df)*(X) for all X = X] + Xz €g (Xl € [),Xz € m)
Thus F’ is well-defined, and we can easily confirm F o F’ =id and F'o F = id.

m 18 an isomorphism

This lemma is proved. O

Now, we are in a position to prove Proposition 3.
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PROOF OF PROPOSITION 3. For every f e A(G/H,V',0), f is an isometry of
(G/H,g). Indeed, put ®; :=7t"'0oAso7, and then f,, = (®y),|,. There exists a
nonzero real number /4 such that g is the G-invariant extension of ABg|,.,, (cf.
Proposition 2). Hence g, (/i (X), fo(¥)) = 2By((®),(X), (®)),(¥)) = 2By(X, Y)
=¢,(X,Y) for all X,Y em; thus f*g =g¢. This provides us with I(G/H,g,0) =
A(G/H,V' 0). From this relation and the lemmas stated above, I(G/H,g,0) =
A(G/H,V' 0) ~ Aut(g,0,) comes. Let us show I(G/H,g) = A(G/H,V') from
now on. Take any f € A(G/H,V'), and there exists an element x € G such that
fot.(0o) = o. Since I(G/H,g,0) = A(G/H,V',0), the mapping f = (f o1,) o,
e l(G/H,g). In consequence, I(G/H,g) = A(G/H,V"). O

3.2. The Connected Components of Transformation Groups. At last, we
obtain the following:

PROPOSITION 4. Put Int(g,Z)" := Aut(g, Z)" NInt(q), and then as a group
I(G/H,9)/(G/H.g), = A(G/H,V')/A(G/H V"),

~ (Aut(g, Z2)" U Aut(g, Z)")/Int(g,2)".

Proor. The deduction in the proof of Proposition 3 connotes I(G/H,g), =
¢ and I(G/H,g,0) Ntg =1y, where 7, = {ty|xe L} (L= G or H).

Moreover, the isomorphism F’ in Lemma 4 correlates 7, with Ad / through
Ay, for he H. Hence ty ~ Ad H as a group.

Lastly, by use of Ad G = Int(g) and H = C(Z), we have Ad H = Int(g, Z)".

Therefore, by Proposition 3 and Lemma 1,

(G/H.9)/W(G/H,g), = A(G/H,V")/A(G/H,V")y = (1(G/H.g,0) > 16)/tG
~1(G/H,g,0)/ty = Aut(g,0.)/Ad H

= (Aut(g,Z)" U Aut(g, Z)")/Int(g, Z) . O

4. A Way to Determine Every Quotient Group I(G/H,g)/1(G/H,g), and
Examples

41. A Way to Determine Every Group 1(G/H,g)/1(G/H,g), In this
subsection, we consider a way to investigate the structure of every group
I(G/H,g9)/1(G/H,g), for (G/H,o,1,g) in Theorem 1 with Proposition 4.

Let G be a connected absolutely simple Lie group whose Lie algebra is g.
Suppose that Z(G) is trivial. Now, take any Cartan involution 6 of g and take
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a maximal abelian subspace a in p, where p is the —1 eigenspace of 6 in g.
Moreover, set A as the system of nonzero restricted roots of (g,a), A" as a
half system of A, 7 as the maximal root of A*, and W :={dea|ad) >0
for all € AT}. Then the following is caused:

ProposITION 5. (1) Take any para-Hermitian symmetric space (G/H, a,1,g)
of hyperbolic orbit type. For any Cartan involution 0 of ¢ which commutes
with o,, there exists an inner automorphism ¢ of g such that
(@) Z:=g(Z) e W,

(b) 7(2) =1,

(©) 1(G/H.)/N(G/H,g), = (Aut(s, Z)* U Aut(s, Z) ) /Int(g, Z) ",

where Z is a unique element with Proposition 1 for the space (G/H,a,1,g)
and the Cartan involution 6.

(2) For any A € W with 5(A) = 1, there exists a unique absolutely simple para-
Hermitian symmetric space (G/H,G,1,§) of hyperbolic type such that
(a) the element A is a unique one satisfying the conditions (1)~(4) on

Proposition 1 for (G/H,é,1,§) and 6,
(b) 1(G/H,§)/(G/H,§), = (Aut(g, )" U Aut(g, ) ") /Int(g, 4),
where the uniqueness of metric is up to constant.

Proor. (1) The Lie algebra g is (semi)simple, and then there exists an inner
automorphism ¢, of g such that = ¢, 0 0o ¢;'. Hence 0(¢,(Z)) = ¢,(0(Z)) =
—¢,(Z); in brief Z; := ¢,(Z) € p. Take a maximal abelian subspace a; in p
containing Z;, and then the subspaces a and a; are conjugate under the action
of K, where K is a maximal compact subgroup of G whose Lie algebra is the
1 eigenspace of 6 in g. In consequence, there exists an inner automorphism ¢,
of g such that ¢,(a;) = a; thus Z, := ¢,(Z;) € a. Let M be the subgroup of G
with Lie algebra a. Then the Weyl group of A coincides with the Weyl group
Nk(a)/Zg(a) = Ng(a)/Zg(a) of (G, M), where Np(a) (resp. Z.(a)) is the nor-
malizer (resp. the centralizer) of a in L = G or K. This causes that there exists a
mapping ¢, in the Weyl group of (G, M) such that ¢;(Z) € W. As a result, we
obtain ¢ := ¢ 0 ¢, o ¢, € Int(g) with Z:=¢(Z)eW.

Notice that $(Z) > 0 is an eigenvalue of ad Z in g and is consequently one of
ad Z in g, and then $(Z) = 0 or 1. Since the element Z is nonzero and Z is also,
the map ad Z must generate a nonzero eigenvalue in g. Hence there exists a root
B e A" such that f(Z) > 0. Owing to $(Z) > B(Z), the value §(Z) is 1.

Moreover, By Proposition 4, (G/H g)/I(G/H g)o ~ (Aut(g,2)"
Aut(g,Z)")/Int(g, Z)" = (Aut(g,Z)" U Aut(g,Z)")/Int(g, Z) "
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(2) The condition A€ W with 7(4) =1 causes the decomposition g=
g, Pg,Pg,, where g, is the A eigenspace of ad 4 in g. Thereupon, put
H:=Cg(A), 6:= Aep v Trd> and m:=g_; @ g,. Additionally, set I (resp. §)

as the G-invariant extension of ady A (resp. of B Then the quadruplet

G‘mxm)
(G/H,6,1,§) becomes an absolutely simple para-Hermitian symmetric space of
hyperbolic type.

Note in passing that §o6, =G, o0, and there exists a unique element A
such that (1)—(4) on Proposition 1 for (G/H,&,1,§) and 6. This element A, is
unique and the one A satisfies the same conditions for (G/H,4,1,§) and 6; and
consequently A is just A. Therefore Proposition 4 induces I(G/H,§)/1(G/H, 9o
=~ (Aut(g, 4)" U Aut(g, 4)")/Int(g, 4)".

Assume that a quadruplet (G/H,&,1,3), also, satisfies the conditions (2)-(a)
and (2)-(b) on Proposition 5. Then there exists a unique element A, such that
(1)-(4) on Proposition 1 for (G/H,7,1,§) and . This assures (G/H,a,I) =
(G/H,&,I). In addition, Proposition 2 causes that § is the G-invariant extension
of By up to constant. Hence (G/H,G,1I,3) coincides with (G/H,6,1,§),
where the coincidence of metrics is up to constant. O

mxm

REMARK 3. Take an arbitrary space (G/H,o0,1,g) in Theorem 1, namely an
absolutely simple para-Hermitian symmetric space of hyperbolic orbit type under
the condition which the center of G is trivial. Assume that this Lie group G is the
above G fixed first in this subsection. Then, for any Cartan involution 0 of g
which commutes with o,, there exists a unique element Z such that (1)-(4) on
Proposition 1 for (G/H,o,1,g) and 0. Additionally, by Proposition 5-(1), there
exists an inner automorphism ¢ of g such that Z := ¢( Ye W, %(Z) =1, and

1(G/H,9)/1(G/H,qg), = (Aut(g,Z) " UAut(g,Z)")/Int(g,Z)". Simultaneously, by

Proposition 5-(2), there exists the para-Hermitian symmetric space (G/H,é,1,4)
of hyperbolic orbit type for the element Z. This space (G/H,é,1,§) coincides
just with (G/H,a,1I,q) because Z = ¢(Z) and ¢ € Int(g), where the coincidence
of metrics is up to constant.

Therefore, an arbitrary para-Hermitian symmetric space in Theorem 1 can
be generated from an element 4 € W with 7(4) = 1 in an absolutely simple Lie
algebra, where 7 and W are the same constructed with the above way for this Lie
algebra. Hence, it is sufficient to determine I(G/H,g)/1(G/H g) for an arbitrary
space (G/H 0,1, c) in Theorem 1 that we determine (Aut(g,4)" U Aut(g,4) ")/
Int(g, 4 ) for all 4 e W with 7(A4 ) =1 in every absolutely simple Lie algebra g,
where 7 and W are the same constructed with the above way for g. With the
paper [Ta], we have already known the group Aut(g)/Int(g). Thus, we can
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individually determine (Aut(g,4)" U Aut(g, 4))/Int(g, 4)" for all A€ W with
7(4) =1 in g.

4.2. Examples of the Classical Type. Parenthetically, we note that the
notation of the Lie groups and Lie algebras in this paper is that of in [He].

Our aim in this subsection is to present our procedure for determining
(Aut(g, 4)" U Aut(g,4)")/Int(g, 4)" for g of the classical type. Let us consider
the two types sl(n,R) and so(n,n).

Type sl(n,R). Let g be the Lie algebra sl(n,R) and let §: X — —'X for

X €g, where n> 3. Then the 1 eigenspace f of 0 in g is so(n) and the —1
eigenspace p is {X e€sl(n,R)|’X = X}. Now we choose

aq 0 - 0
O az O n

a:= . . . . Zai:() Cﬁ?
. . . . i=1
0 0 - a

A:={+(ei—¢)|1<i<j<n}, and A" :={e;—e¢;/|1 <i< j<n}, and have
the fundamental system IIc A" as {ok =ex —exp1 |l <k <n-1} and j=
o] + 0 + -+ Opy—1:

1 1 1
O—O— - —O
[24] o Op—1 .

Set {Zi,...,Z,_1} as the dual basis of I1, namely

Z:1<M—0E 0 )

n 0 —Z'En,i

where E; denotes the unit matrix of order /. Every element A € W with j(4) = 1
in the absolutely simple Lie algebra g is any in {Z),...,Z,_1}. In this connection,
the eigenspaces g_;, g;, and g, of ad Z; in g are evaluated as

0 0 D . .
g = { <Xni,i O> ‘Xn_,-J- :(n—1i) x i real matrlx},

A/in—[ . .
g, = {(g 0 ) ’X,«,n_i ck x (n—1i) real matrlx},
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B X: O Tr(X; + X,—i) =0,
80 = O X,_i/)|Xi:ixi,Xy—i:(n—1i)x (n—i) real matrix, respectively
~sl(i,R) ®sl(n—i,R) ®R.

Let us assume that 1 <k <n—1 and let us be just about to determine
(Aut(g, Z) " U Aut(g, Zx) ") /Int(g, Zi) .

(Case I: n is odd). With the paper [Ta], we see that Aut(g)/Int(g) = Z; is
generated by 6. Here,

Lemma 5. Int(g,Zx)” := {4 € Int(g) | §(Z) = —Z1} is empty.
Proor. If there existed a real matrix
e ( Ape Bk,nk)
Cnfk,k ank
such that Ad x(Zx) = —Zx, then the following conditions would be satisfied:

(mn—k)A=—-(n—-k)A, —kB=—-(n—k)B, (n—k)C=kC, —kD=KkD.

Hence we would have 4 = O and D = O, and would obtain B= 0 and C = O
because n # 2k; as a result, x = O and Ad x(Z;) = O. O

Since Int(g, Zy)” = @ and 6(Z;) = —Z;, the following holds:
(Aut(g, Zi) " UAut(g, Z) ") /Int(g, Z4) " = {fidg], [0]} = Zo.

(Case 11: n is even). The paper [Ta] reports that Aut(g)/Int(g) = Z, @ Z; is
generated by 0 and Ad I; -1, where

-1 0
Il,n—l :< 0 E 1)-

By a similar way to Lemma 5, Int(g, Zx) is empty in the condition n # 4k. If
k 1is just n over 4, for instance Ad « is an inner automorphism of g moving Zj
to —Z;. Here

0 B . . . .
= (Ck Ok)’ (Bk, Ck) — (Ek) _Ek) lf k 1S Odd7 Bk = Ck = Ek lf k 1S even.
k k

Notice that Int(g, Z;)~ = Ad a o Int(g, Zx) " and 6 is commutable with Ad a
if n=4k: thus
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(Aut(g, Z) " U Aut(g, Zx) ") /Int(g, Zx) "

N YZISY2 by 6 and Ad ) (- (n # 4k),
"\ Z®Z:®Z, by 0, AdlL, 1, and Ada (n = 4k).

Type so(n,n). Put g:= so(n,n) and 0 := Ad I, ,,, and then T = so(n) @ so(n)

and
P 0 Xn)’ ! }
= X, : n real matrix ;,
P {(X o)

where n > 5. Choose the abelian subspace a in p as the one constructed by all
diagonal matrix of order n and take A" := {¢; + ¢;|1 <i < j < n}. These induce
that the fundamental system IT C A" s {ok == ex — epy1,0m = ep_1 +ey| 1 <k <
n—1} and that § = oy + 200 + -+ + 2042 + oty—1 + o

1 2 Q1
O .

al

SO

Op-2
a,.

Denote the dual basis of IT by {Zj,...,Z,}. Then an element A € W with
)7(A~) =1 in the absolutely simple Lie algebra g is only Z;, Z, |, or Z,

concretely
1 0 0
0 Xk 0 0 0
(g ") W= |
0 0 0
1 1
X(n—l):—z n—1,1, X(n)ZEEn

Here the element Z,_; can be mapped to Z, by the involution Ad 7, ; of
g. Accordingly, it is sufficient that we consider the two cases with Z; or Z,.
Furthermore, we obtain ¢(Z) @ so(n—1,n—1) ® R and ¢,(Z,) = sl(n,R) ®R.

(Case I: n is odd). An result of [Ta] is that Aut(g)/Int(g) = Z, ® Z; is
generated by 0 and Ad J,, where

0 K
Jn = .
! <_En o )
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On both of the cases with Z; and Z,: the set Int(g,Z;)” is empty by a
similar way to Lemma 5 and the maps 0 and Ad J, move Z; to —Z;. Hence
(Aut(g, Zx) " U Aut(g, Zi) ") /Int(g, Zx) " = Zy ® Z, by 6 and Ad J,, where k = 1
or n.

(Case 1I: n is even). Applying the paper [Ta] in the case, we see that
Aut(g)/Int(g) = (Z, ® Z,) X Z, is generated by Ad a, Ad J,, and Ad I} ,_;. We
obtain Ad a e Aut(g, Z;)" and AdJ, Aut(g,Z;) . However, we just note that
Ad 1,1 ¢ Aut(g, Zx) " UAut(g, Zy) . Here k=1 or n and

I -1 0]
a=1"I -1 x1I - =< (n) I 1)-
,h—

On the one case with Z;: the inner automorphism Ad b of g carries Z;
to —Z;, where b=1,,-1 X —1I; ,—1. Moreover, by this inner automorphism,
[Ad I 1] € (Aut(g,Zl)+ uAut(g7Zl)7)/Int(g,Zl)+; particularly Ad I, , 1o Ad b
e Aut(g,Z;)". By regarding the algebraic relation among these, the following
holds:

(Aut(g7 Zk)+ U Aut(ga Zk) _)/Int(ga Zk)+

~7,® ((Z2 ) Zz) D! Zz) by Ad b,Ad a, Ad Iy, and Ad ]1,n71-

On the other case (with Z,): there exists an inner automorphism of g
which can transfer Z, to —Z,, for instance the Cartan involution 6= Ad Ly n.
Nevertheless, [Ad 11, 1] ¢ (Aut(g,Z;)" U Aut(g, Z1)")/Int(g,Z;)" by any inner
automorphism of g. This is realized by a similar way to Lemma 5. As a
result,

(Aut(gv Zl)+ U Aut(gv Zl)i)/Int(ga Zl)+

~7, ®Z, DZ, by 0, Ada, and Ad J,.

4.3. Examples of the Exceptional Type. In the last place, we aim to present
our proceeding of the exceptional type. Let us consider the two types ege) and

€7(-25)-

Type ¢g). Let gc be the complex Lie algebra (e)c and let he be a Cartan
subalgebra of gc. Then we have the system of nonzero roots Ac of (g¢,bhc) and a
fundamental system Il¢ := {&;,..., &} of Ac with the coefficients of the maximal
root as follows:
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2
&
1 2 3 2 1
Oo—0O—0O—0O—=0
& & & & &,

Let gc =hc @ (—DEG Ac 9¢ be the root space decomposition, where g: is the root
space of £ e Ac. Then there exist a Weyl basis {X:}..,. of gc mod ¢, a set
{He}ecae> and a set {Ney}te ) cacxae ©f real numbers such that

Xf € gc_’7 [X@X—d = Hf € I)Cv BQC(H@H) = é(H) (fOI‘ all H e [)C) for é EAc,

and

NeyXery (E+neAc)

for each pair (&,7) € Ac x Ac. In addition, the real Lie algebra g,:=
Scenc RWVETH:) + 30 A  R(Xe = X¢) + 2 a R(V=I(Xe + X)) is a com-
pact real form of g.

Now, define the involution pe of go by & «— &, & — &, &« &, and
&4 « &4. Moreover, put 6:= pc oexp vV—1n ad Ty, where {T7,..., Ts} is the dual
basis of IIc. Then 6 is an involution of g with 6(g,) = g,. When  (resp. v/—1Ip)
is the 1 (resp. —1) eigenspace of 0| o, i0 g, the subalgebra f of g, is sp(4) (cf. the
list on p. 305 in [Mu]). Thus the real form ¥@® p of g¢ is the Lie algebra eq),
and we accordingly settle g as T@® p.

Assume 6 to be | o> and then 6 is a Cartan involution of g. Take a maximal
abelian subspace a in p, and set A as the system of nonzero restricted roots of
(g,a) and A" as a half system of A. Then the fundamental system IT C A" is the

{a1,...,06} with the coefficients of the maximal root as follows:
2
(2%]
1 2 3 2 1
O—O0—O—0O—0
(04} o3 oy [073 (07

Let 7 be the maximal root of A" and let {Z;,...,Zs} be the dual basis of IT. It
is only Z; or Zs that an element A € W = {d e a|a(4) >0 for all Ge A"} with
)7(A~) =1 in the absolutely simple Lie algebra g. This element Z4 can be translated
to Z; by the involution of g defined by o < ag, 0y < o, a3 < as, and oy < oy.

Accordingly, let us consider the case with the element Z;.
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Here the algebra ¢4(Z) is s0(5,5) @ R (cf. the list on p. 97 in [Ka-Koz]). In
addition, the paper [Ta] informs us of what Aut(g)/Int(g) = Z, is generated by 6.
In addition,

Lemma 6. Int(g,Z)) = .

PrOOF. Put G:= Eqg and o := Aexp /“Tnz,» and then we see (G%), C
C¢(Zy) C G°. By Theorem 3.6.8-(2) on p. 219 in [Yo], the fixed points G” has
two connected components and G’ = R x Spin(5,5), where R* = R\{0}.

Setting R* as the set of positive numbers, we have R™ x Spin(5,5) = (G°), C
Ce(Z)). In particular,

{1} x Spin(5,5) € C6(Z)).
Since R* x {e} C Z(G?),
R* x {e} C C4(Z)).

Owing to these conditions, G = R* x Spin(5,5) C (R* x {e})({1} x Spin(5,5)) C

C¢(Z1)C(Z1) € Cg(Z1), and then this assures Cg(Z;) = G and Int(g,Z;)” is
empty. ]

Lemma 6 and what the involution @ transfers Z) to —Z) report a result:

(Aut(g, Z1)" UAut(g, Z1)")/Int(g, Z1) " = {[id,], [0]} = Z».

Type ¢;_»5). Let gc be the complex Lie algebra (e¢7)c. Similarly to the
type eq(), we settle a Weyl basis, the compact real form g,, and the dual basis
{T\,...,T7} of a fundamental system {¢&,...,&;} with the coefficients of the
maximal root as follows:

3
&
2 3 4 3 2 1
oO—CO0O——"(0O——CO0O——C0CO—=0O
& & 4 & & &

Here, the involution 6 := exp vV—lnad Ty of gc leaves g, invariant. Hence
we have the decomposition g, =@ V/—1p, where T = ¢ @ V—IR (resp. v—1p)
is the 1 (resp. —1) eigenspace of é'm in g, (cf. [Mu]). Thus the real form t@® p
of g¢ is the Lie algebra e;_s), and accordingly put g:=1® p.
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Think of 6 as é|g, and then 6 is a Cartan involution of g. Take a maximal
abelian subspace a in p. With due order, we have a fundamental system II =
{a1,00,03} with the coefficients of the maximal root as follows:

2 2 1
O—0O&0
[04] (0%) [04]

Set y as the maximal root of IT and set {Z,,Z,,75} as the dual basis of f[,
and then an element A € W with 7(4) = 1 in the absolutely simple Lie algebra g
is only Zj.

Here, the algebra c¢j(Z3) is e5_2) @ R (cf. [Ka-Koz]) and the group
Aut(g)/Int(g) = Z, is generated by 0 (cf. [Ta)]). Additionally, the mapping V in
the Weyl group of G := E;_js) related to the following reflection is an inner
automorphism of g carrying Z; to —Zj:

S{X]+O’,2+O<3 © Soq-&-oc; O Doy +oy+ay © Doy+on © Doy +aptaz © Sot; © ch-'rocz

o Sfxz o Soc2+oc3 o oo o o+t

where S, is the reflection along a root « of a.
Since the involution @ transfers Z3; to —Z3; and commutes with i,

(Aut(g, Z1)" U Aut(g, Z1) ") /Int(g, Z1) " = {[idy], (0], [¥], [0 0 ¥]} = Z> ® Z».

With a similar way to the above examples, we individually determine
(Aut(g,4)" U Aut(g, 4))/Int(g,4)" and accordingly obtain Tables 1 and 2.
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