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A GENERALIZATION OF THE BOOTHBY-WANG
THEOREM*

By

Luigia D1 Terrizzi!, Jerzy J. KONDERAK' and Robert WoLAK?

Abstract. We consider a Riemannian manifold M with an f-
structure. With some additional properties such a manifold is called
a A, € or Y-manifold. The considered structures determine a
Riemannian foliation, whose leaf closures form a singular Rie-
mannian foliation. We give conditions under which the foliation of
the principal stratum is again associated to a structure of the type we
consider. The manifold can be partitioned into strata on which the
leaf closures are given by toroidal fiber bundles. This theorem is a
topological generalization of the classical Boothby-Wang theorem for
the contact manifolds.

Introduction

Recent years have seen a renewed interest in contact geometry. The
beginnings of the contact geometry can be found in the late fifties. Of particular
interest and influence were the contact manifolds defined on S'-bundles and a
theorem by M. W. Boothby and H. C. Wang published in 1958, cf. [6] and [4].
These contact manifolds have been generalized in many directions, for a fine
review of notions and results see [3, 4]. In this paper we study one of such classes
of manifolds, called #-manifolds, cf. [2]. Any #-manifold admits the underlying
foliation. We prove that the closures of leaves of this foliation form a new
foliation, which outside a closed nowhere dense subset is given by the fibres of a
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toroidal principal fibre bundle over a Kéihler manifold. More generally, the
manifold itself can be partitioned into submanifolds, which are regularly foliated
by the closures of leaves of the underlying foliation, and these regular foliations
are given by the fibres of toroidal principal fibre bundles over Kéhler manifolds.
These theorems can be considered as generalizations of the Boothby-Wang
theorem.

All manifolds, maps, distributions considered here are smooth, i.e., of the
class C*; we denote by I'(—) the set of all sections of a corresponding bundle.
We use the convention that 2uAnv=u@v—vQ u.

1 Preliminaries

Let (Mz”*“',(/),f,-,;yj), (i,j=1,...,s), be a manifold equipped with an f-
structure ¢ with a parallelizable kernel, in short, an f.pk-manifold; this means that
there exist s global vector fields &,...,¢ e (TM) and I-forms 7,...,%, €
I'(T*M) satisfying the following conditions

p(&) =0, mop=0, ¢’ =-Id+> n®& n(&) =06  (L.1)
i=1

for all i,j=1,...,s. On such a manifold, there always exists a compatible
Riemannian metric g, in the sense that for each X,Y e ['(TM)

g(X. ¥) = g(p(X).0(¥Y) + 3 (X (). (1.2)
i=1

We fix such a metric on M, then the obtained structure is called a metric f.pk-
manifold. Let F, be the Sasaki form of ¢ defined by F,(X,Y) :=g(X,¢Y)
for X,Y e TM. We denote by & the bundle Im(¢), which is the orthogonal
complement of the bundle ker(¢) =span{&;,...,&;}. Then the manifold M is
equipped with the structure consisting of an f-structure ¢, the complemented
frame ¢&;,...,¢&, the 1-forms #,...,%,, a compatible metric g and the Sasaki
2-from F,. We put & := (M,g,9,¢;,n;) for (i,j=1,...,s). There is also a tensor
N, of type (2,1) defined in the following way: A, :=[p, 0] +2>""  dn; ® ¢
where [p, ¢] is the Nijenhuis torsion of ¢. We recall some definitions of certain
types of metric f.pk-manifolds which are studied in the present paper, cf. [2,
7, 11].
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DEeriNITION 1.1. It is said that

* Z is normal if N, =0

* Z is a G-manifold if dn; =0 for i=1,...,s, dF, =0 and Z is normal
* Z is a S-manifold if dy; =F, for i=1,...,5 and £ is normal

* Z is a A -manifold if dF, =0 and Z is normal.

The f.pk-manifolds may be seen from a different point of view. Namely as a
certain type of almost CR-manifolds. In fact, given an f.pk-manifold 2, we may
define an almost CR-structure by considering (M, Im(¢), ¢[;,)). This structure is
usually far from being integrable. However, the conditions on < for being €, &,
A" may be expressed in the language of the CR-geometry. Vice versa, given an
almost CR-structure (M, H,J) with a parallelization of the transverse bundle to
H is also given, we may obtain an f.pk-manifold. However, we shall not use in
this paper the language of the CR-geometry.

It is clear that {<#-manifolds} < {#-manifolds} o> {#-manifolds}. Moreover,
if & is a #-manifold, then for each i, j € {l,...,s} the following identities hold:

[éia éj] =0 and gc“/”]] = 0, (13)

cf. [16, 2]. The vector fields &, i =1---s, define a totally geodesic transversally
Kéhler foliation on M, cf. [10].

LemMa 1.1, If 2 is a A-manifold then: 1). Lz =0, 2). & dn; =0 and 3).
&, X]eT(2) for any i,j=1,...,s and X € T(92).

Proor. Let i,j=1,...,5s and X e ['(Z). We have (Z%:0)(&) = Z;0(&) —
¢(%:¢) =0. On the other hand, from the normality of 2 we have 0=
No(&ip(X)) = —0[&, 0*(X)] = [ 9(X)] = —(Z;,9)(X). Therefore 1). holds. We
have & dn; = L:n; —d(&am;) =0 which proves 2). Moreover, #;([¢;, X]) =
(Le,X)an; = Le(Xam;) — X 2 (Zen;) =0. Hence, [¢;,X] annihilates 7;;  this
implies 3). O

2 Extension of #-manifolds

Throughout all of this section, we suppose that % :=(M,g,0,<n5),
(i,j=1,...,5), is an f.pk-manifold, 2 = Im(p) is the distribution orthogonal to
span{¢y, ..., &} = ker(p), and F, is the associated Sasaki 2-form. Moreover, we
suppose that there are given orthonormal sections (j,...,{, (r>1) of the dis-
tribution & such that the subbundle span{(;,...,{,} is invariant by ¢. We denote
by #,...,u, the g-dual 1-forms to the vector fields {y,...,{,. Then we can define
a new f-structure
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v=0—Y 0l ®u, @.1)
a=1

Denote by &' the distribution orthogonal to span{¢&,,..., & ¢, ..., (.} = ker(y).
It is clear that 2’ = Im(y). The following lemma is an easy consequence of the
definitions.

Lemma  2.1. The set Z':=(M,g,, &, onjoug), (G,j=1,...,s and
a,f=1,...,r), is an fpk-manifold []

For the rest of this section, we assume that for each i,je{l,...,s} and
a,fed{l,...,r}

Straightforward but tedious calculations give the following two lemmas.

LEMMA 2.2, Let Z := (M,g,0,&im;), (i, ] = 1,...,5), be a H-manifold, {, be
Killing vector fields, (o =1,...,r), and %; 9 =0 for all x € {1,...,r}, then for any
i,je{l,....st o,fe{l,....r}, and any X, Y e (&)

(i)  Lep, =0, Lo =0, Loug =0, Ly =0;

(i) & —du, =0, ¢, 1dy; =0, {, 1 dﬂp =0;

(i) [¢,X] e T(2"), [y X] e T(2);

(IV) g@.F(/, = 0, gfiFW = 0, ngF(ﬂ = O, ngFW = 0;

(v) & adF,=0, ¢ adF, =0, {, 1dF, =0;

(vi) Fy is closed,

(vii) [X,Y]el(2' @ker(p)), du, =0;

(vili) if Jup are functions on M such that ¢((,) = Y 5 Jplp then Juz are
locally constant,

(%) Zoe)9 =0, Lo Fy =0, Zyr,)9 =0.

Proor. We will prove only the first identities in (i), (ii), (iii), (iv). The other
can be proved in the similar way.
For each i je{l,....s}, a,fe{l,....;r}, and X eI(2'), we have:
0, and
(gfnuoc)(X) = ggy,:uot(X) - /“‘x(gfiX) = _g(COH [éia X])
= _éi(g(CmX)) + (gi,-g)@owx) + g(gé,-ém X) =0,

as ¢; is Killing and (2.2) holds. Therefore the first equation in (i) follows.
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Because of (i) and x,(&;) =0, we have that & du, = Lep, —d(& ap,) =
0. Therefore the first equation in (ii) follows.
We have that

nj(LeX) = ZLeni(X) = (Zem)(X) =0,
luot(géiX) = gfnuoc(X) - (gf,luot)(X) =0,

because of (ii). It follows that % X annihilates all #; and u,, therefore the first
identity in (iii) follows.

Properties (iv) follow immediately from the fact that &; and {, are Killing and
Lep=2,0=0.

In fact, we have that & _dF,=%:F,—d(¢ 1F,) =0 because of
(iv). Therefore the first equation in (v) follows.

Since ¢&; 1dFy ={, 1dF, =0, then it is enough to show that for all
X,Y,Zel(2'), (dF,)(X,Y,Z) vanishes. It is easy to observe that dF, and dF
coincide when restricted to (2')°, therefore Fy is closed. Hence (vi) follows.

Let X, Y eI'(2') and o€ {1,...,r}, then (vii) is equivalent to the fact that
g(y, [X, Y]) vanishes. Since % I'(2') = T'(2') and the map I'(2')> (X,Y) —
g(ls [X, Y]) is tensorial, then we may assume that ¥, X, = %Y, =0 where
peM. Since F, is closed and (iv) holds, then

0= 3(dF,)(C, X, Y),
= (%qFfﬂ)(Ac Y)p - F(ﬂ(ngX? Y)p + Eﬂ(X7 g@ Y)p - Fw([X7 Y]7 Cac)p

= g(Cocv(”([Xv YD)[;

It follows that ¢([X, Y]) e I(2’) and then [X, Y] e (2’ ®ker(p)). From (ii) it
follows that dyu, vanishes on each pair of vectors such that one of the vectors
belongs to ker(y). On the other hand, if X,Y eT'(2'), then 2du,(X,Y)=
—u([X, Y]) =0 because [X,Y] el (2’ @ ker(p)). This ends the proof of (vii).

We observe that J,53 = g({,, 9({g)) because {, («=1,...,r) are orthonormal.
Then we have

2dJ.p = 2d(g(Cy, 9(Cp))) = 2d(Fy (L L)) = d(Cp =1 (Ey 2 Fy))
= g{,g(ga JF¢) _gﬂ Jd(i:“ JF¢)
= [{p. &) 2 Fp + (géﬂFw) =g (L Fy) + L 1 (G 2 dF,) = 0.

which implies (viii). We observe that from the above equation it follows that for
each o,f=1,...,r we have
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d(Fy(L,: p)) = 0. (2.3)
Since %9 =0, %, F,=0, %,9 =0, and ¢({,) are C*(M)-linear combinations
of {i,...,{, with coefficients which are locally constant, then (ix) follows im-
mediately. ]

LemmA 2.3. Let & be a A-manifold, {, are Killing, and <0 =0 for all
we{l,...,s}, then Z' is normal.

Proof. Let i,je{l,...,s}, o,fe{l,...,r}, and X, Y e[(2'). We will
proceed by studying the values of .4y on the all possible couples taken from
among éj; éj; C%: Cﬂ, Xa Y.

From the assumption (2.2) and Definition (2.1), it follows that .4} (&;, &) =

N(&i, &) = Ny (G, &) = 0.
From Definition (2.1) and from (iv) of Lemma 2.2, we have that

Np(E X) = Ny (& X) = (&5, X)
=3 o (Ee(X)]) = 0(8)2dp, (& (X))
== (0(L)e(X) (& vdu,)) =0.
Again from Definition (2.1) and from (iv) of Lemma 2.2, we have that
Nl X) = =Y[C (X)) = G5, X]
= 0l o)+ Y o[ 9(X)] = (G, X
= 0((Le0)(X) = ¢[00 X] = (L XT+ D oG X 2 (& 2 dpy)) = 0.

Finally, it is easy to observe that

Ny (X, Y) = Np(X, Y) + Z): P(C ) ([0(X), Y]+ [X, 0(Y))). (2.4)

o=1

The right hand side in (2.4) vanishes since Z is normal and [p(X), Y], [X,¢(Y)]
are sections of 2’ @ ker(p), cf. (vii) of Lemma 2.2. N

From Lemmas 2.2 and 2.3 we get the following theorem
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THEOREM 2.1. Let & be a H-manifold. If
(i) ¢, are Killing and orthonormal,
(i) ZL,p=0 for all o€ {l,...,s}, then Z' is also a A-manifold.

Moreover, we have the following theorem.

THEOREM 2.2. Let & is a €-manifold. If
(i) ¢, are Killing and orthonormal,
(i) L9 =0 for all oe{l,...,s}, then Z'" is also a -manifold.

Proor. Theorem 2.1 implies that &' is a #-manifold. Let ie {l1,...,s},
a,fef{l,...,r}, and X, Y e T(Z'). Therefore dpn; =0 since Z is a H#-manifold.
From (v) of Lemma 2.2, we get that &; 1du, = {, 1 dug = 0. Finally, from (vii)
of Lemma 2.2, we get that 2du, (X, Y) = —u,([X, Y]) = 0. It follows that all the
l-forms #;, p, vanish and then our assertion follows. O

OBSERVATION 2.1. If & is an %-manifold, then %’ is never an .%-manifold.
In fact, we have that Fy # F, = dn;.

OBSERVATION 2.2. The assumption that the vector fields &; and (; are
orthonormal is very important. Using the classical formula for the Levi-Civita
connection one can show the following property:

Let W¥: R x M — M be smooth locally free action on some Riemannian
manifold (M,g). The foliation &y defined by the action is totally geodesic iff
there exits a basis {v;} of R" such that the corresponding vector fields X; = v on
M are orthonormal.

In fact, g(Vyx,X;,X) = 0xg(X;, X;) for any local vector field X commuting
with X;. As the action is isometric and X; commute, locally, we have such
sections which span the tangent bundle to M. Therefore g(X;, X;) are locally
constant functions and thus constant as our manifold is connected. Using the
standard Gramm-Schmidt orthonormalization procedure at one point, we obtain
the global result.

The following example illustrates the necessity of the above assumption.

ExampLE 2.1. We consider R® with its canonical coordinates (x,y,z).
Suppose that there are also given the additive Lie groups Z>, R?, R and the
actions of these groups on R> given by p,: Z> x R®* = R®, p, : Z* x R* — R®
and p,: Z> x R> — R? such that
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po((k,m,n), (x,y,2)) == (x+ k,y+m,z+n)
pl((aab)a(xv yaz)) = (x,y—i—a,z—i—b)
p2(aa (xa y,Z)) = (x,y+a,z+aoc)

for each k,m,ne Z and a,be R; « is a fixed element from R\Q. It is easy to
observe that these actions commute with each other. We consider vector fields

¢ = p-i—ocg, ¢ —ocf—f’z and the 1-forms

(dy+oadz), p:== (o dy — dz).

T 1+a? T+02

It follows from the construction that 7(&) =u(() =1 and #({) = u(&) =0.
We observe that the vector fields &, { and the 1-forms #, u are invariant with
respect to the actions py, p; and p,. We define on R> the following Riemannian
metric

= (dx)* + () + f(x) (), (2.5)

where f: R — (0,+00) is a smooth function which is periodic with the period
equals to one. We assume also that f(0) = 1. The map f factorizes to the map
f:R/Z — (0,+c0) which is also smooth. Again the actions p,, p;, and p,
preserve the metric, i.e., the Lie groups act by isometries. Moreover, the vector
fields &, { and the 1-forms #, p are also preserved.

We consider the manifold S' x T2 = (S§')* = R3/Z>. There is the canonical
projection of 7 : R* — S' x T? such that 7z(z,x, y) = (7, %, 7). This projection is a
local diffeomorphism and gives also local charts on S' x T2. The metric g, the
vector fields &, ¢, and the 1-forms 5 and u project via 7, respectively, to g, &, (, 7
and g. In particular, § is a Riemannian metric such that 7 is a local isometry.

We consider the Lie groups H := (R,+) and G:= (T?+) where the op-
eration on G is just summing on the components of T> = (R/Z)>. There are
the induced actions j, : G x (S! x T?) — 8§' x T? such that 5,((a,b), (i, %, 7)) :=
(f,a+ x,b + y); this is just the natural action of G on the second component of
8! x T?. There is also given the induced action p,: H x (§' x T?) — §' x T?
such that p,(a,(7,X, 7)) := (f,x +a,y+an). We observe that both actions p,
and p, are isometric with respect to the metric g, i.e., H,G < Isom(S1 X Tz,g‘).
The group H is actually a subgroup of G by considering the monomorphism
u: H — G such that u(a) := (a,aw). Moreover, we have that p,(u(a), (f,%,7)) =
p(a, (1,%,7)). Hence H c G < Isom(S' x T?,5). It is well known that H is
dense in G since « is irrational.
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The Lie algebra g of G is R* with the vanishing bracket. The Lie algebra of
H is just R(1,u). The exponential map g — G is given by exp(4, B) = (0, 4, B).
We observe that (1,o) el determines the infinitesimal automorphism ¢ and
(a, —1) determines the infinitesimal automorphism { of ' x T2. Then §(¢,&) =1,
g(&,0) =0 and §(¢,{) = f(x). In particular, the vector fields &, { are orthonormal
when restricted to the orbit {0} x T? but they are not orthonormal throughout all
of the manifold S' x T2 unless f is constant.

3 Structures Determined by the Closure of the Leaves

Throughout all of this section we assume that Z = (M>* g, ¢, Sismy),
(i,j=1,...,s), is a compact H#-manifold.

In [10], it was shown that a 2#-manifold is a particular Riemannian foliation,
a transverse Kdhler foliation -, cf. [18, 19, 8]. Therefore the closures of the
leaves of the foliation %, form a new Riemannian foliation &%, which can be
singular, i.e. the leaves can have different dimensions. Using the dimensions of
leaves and holonomy of % we can partition the manifold M into submanifolds
%, cf. [15], on which the foliation &} is regular and without holonomy. It implies
that, on each X, %, is given by a global submersion /; : X; — W; onto some
smooth Riemannian manifold ;. As the fibres are compact, each submersion #;
is a locally trivial fibre bundle. This partition is, in fact, a stratification of the
manifold M. The stratum M, corresponding to leaves of the greatest dimension
and without holonomy is open and dense, the other strata form a closed, nowhere
dense subset . Therefore outside a closed subset of measure 0, the foliation %}, is
given by the fibres of a locally trivial fibre bundle.

Let us apply these considerations to a particular class of #-manifolds on
compact manifolds, those whose underlying foliation % has all leaves compact.
In this case %, = %. In addition to being Riemannian, our foliation is trans-
versely Kéhler, therefore the submersion 4 : My — W; induces a Kéhler structure
on W,. We call such submersions transverse Kdhler. Summing up, we have the
following proposition.

ProposiTION 3.1. Let Z, (i,j=1,...,s5) be a H-manifold on a compact
manifold M whose underlying foliation & has all leaves compact. Then there exists
a closed nowhere dense saturated subset T of M such that the restriction of the A~
manifold to M —X is given by a global locally trivial Riemannian submersion
h:M—X— W,y onto a Kihler manifold W;.

On the other hand, if our manifold is a #-manifold the following is true.
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ProposITION 3.2. Let Z, (i,j=1,...,s) be a @-manifold on a compact
manifold M, whose underlying foliation F has all leaves compact. Then there exists
a closed nowhere dense saturated subset X of M such that the open set M — %,
locally, is the Riemannian product of a leaf of # on M — X and a Kdhler manifold,
which is a leaf of the transverse foliation restricted to M — X.

Proor. It is a simple consequence of the considerations preceding Propo-
sition 3.1 and results of [5]. O

The underlying foliation % of a J#-manifold is given by a smooth isometric
action of the abelian group R®. Therefore we have a representation of R* into the
group Isom(M,g,p) of g isometries preserving the tensor ¢. Since Isom(M, g, p)
is compact and Im(p) is abelian, then K is an abelian compact subgroup. Let K
be the identity component of K. Hence Kj is a certain torus 7°*". The connected
components of the orbits of the action of K on M are just orbits of T and
these orbits are just the closures of leaves of . However, this action may not be
locally free.

The stratification defined by this action, cf. [14], is the stratification we have
introduced earlier. For any point p € M, the orbit Kyp is diffeomorphic to Ko/H,,
where H), is the isotropy group of the action at p. As the group Ky is abelian,
H, = H, = H for any two points p, ¢ of a given stratum X,, and Ky/H is also
a Lie group. Therefore the foliation #; on X, is given by a locally free action
of the connected abelian Lie group Ko/H = T*. Moreover, the space of orbits of
T* on %, is a smooth manifold and the natural projection py:X, — X,/T kis a
principal T*-bundle. In particular, the foliation F|%, is defined by a locally free
action of R¥ on X, which extends the original action of R* on X,. Of course
s < k. Therefore it is quite reasonable to ask under which conditions this ex-
tended action defines a new #-manifold. Let po € M be a point belonging to a
leaf of maximal dimension. Without loss of generality we can assume that the
action of R*"" on the principal stratum is locally free. The Lie algebra L(K)
of K is isomorphic to R*"". Then each element v of L(K) = R*'" defines a

global vector field v* on M. The vector fields &;,...,& may be recovered in
this way. There exists some elements vy,...,v, in R*™ such that the corre-
sponding vector fields {; :=v{,...,{, :=v; are orthonormal when restricted to
Ty M.

For the rest of this section we restrict our attention to the principal stratum
which we denote by the same letter M. We denote by 2’ the subbundle of TM
which is an orthogonal complement of span{&y,... &, C,..., ().
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LemmA 3.1. The following holds: (1) the vector fields &,...,&, (y,...,¢,
commute with each other; (2) {, is Killing and ¥;,¢p =0 for each o€ {l,...,r}.

Proor. (1) and (2) follow immediately from the fact that K = Isom(M, g, ¢).
O

Then we define p,(—) := g({,,—) for a e {l,...,r}. Moreover, we define an
endomorphism € End(TM) using formula (2.1) and we put 2’ := (M, g,¥,&;,
Cmnj,,uﬁ). Moreover, we have the following theorem.

THEOREM 3.1. Let & be a H-manifold. If
i) p(@) <=,
(ii) the vector fields {; are orthonormal,
then &' is also a A-manifold; if in addition, & is a G-manifold then %' is so.

PrOOF. The condition that ¢(2') = &' is equivalent to the one that

p(span{y, ..., {}) = span{(y, ..., (i} (3-1)

Hence from Lemma 2.1, we get that 2 is an f.pk-structure. From Lemma 3.1
and Theorem 2.1 it follows that 2’ is #-manifold. If in addition % is a
%-manifold, then from Lemma 3.1 and Theorem 2.2 follows that %’ is a
%-manifold too. O

The assumption that ¢p(2') = &', or equivalently condition (3.1), in Theorem
3.1 is essential as shows the following example.

ExaMpLE 3.1. We consider M,:=C" (n>1) and its standard global
coordinates (xi,...,Xu, 1,.-.,Vn). The manifold carries the standard metric gy
and the standard complex structure Jy € End(TM;) such that Jy (s(? :ﬁ
Suppose that there are given the real numbers «ay,...,a,, and by, ..., b, such that
b, = 1. Then we define two vector fields:

0 g 0 o 0
==, = a,—+ bc_'
< o, & 1;:1 L kEZI ke

The vector fields =& ,...,=2—, -2 ... ¢ &, & are linearly independent at

0x ) 0xp1? Oy1? 7 0Yn-1

each point of My. We define a new Riemannian metric g9 on M, by supposing
that: go|pert = gstlpents 90(Exs &) =0, (k,1=1,2), and that TC"' and
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span{&;, &} are orthogonal. Next, we define an f-structure ¢, by assuming that
Pol et = Jst|en1, ker(py) == span{¢;, &}, and 1-forms 7, n, as the go-duals to
&1, &. It is a standard calculation to verify that 2 := (M, go, ¢o, &1, 2,11, 7,) 1S @
metric f.pk-manifold. Then we have the following explicit formulas

g= i dxk +
k=1

n—1

—1
(dyi)? + 1€ llo(dn)* Z ar dxidy, — Y by dyidy,
k=1 k=1 k=1

=

mo=dxa, Mm=dy— > apdxi— > be dyx
= =

n—1 n—1 —1

F, = Z dxi Ady — Z by dxi ndy, + Z ay dyp ndy, — 2 Z arby dy, A dyy,
k=1 k=1 k=1 k=

where [|&||, denotes the standard norm in C" and F,, is the Sasaki 2-form. The
forms 5y, #,, F, are closed since their coefficients are constants. Moreover, .4,
vanishes since ¢ is a linear combination with constant coefficients of the canonical
basis of T*My ® TM,. These implies that & is a ¥-manifold and in particular a
A-manifold. The group Z*" acts properly discontinuously on C" by translations
and all the tensors of %, are Z”'-invariant. Hence the #-manifold %, descends
to the T?" = C"/Z*". The underling foliation on C” defined by the distribution
span{&;, &, } consists of parallel 2-dimensional real planes. The induced foliation
on T?" is the so-called linear 2-dimensional foliation. The closures of the leaves
have the same dimension. The dimension depends on the dimension of the vector
space spanned by ai,...,a,_1, bi,...,b,_1, 1 over the field of rational numbers
0, ie. if dimg(span{ai,...,an_1,b1,...,b,_1,1}) = k then the dimension of any
closure of the leaf of the foliation is equal to k+ 1. If ay,...,a,_; are linearly
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are tangent to the closures of the leaves. The images ¢((,) of the added vector

independent over Q and by, ...,b, | are rational, then the vector fields % e

fields {, commute with &, and with themselves. However, they can be placed
anywhere with respect to the closures of leaves.

The example presented above shows that we cannot expect that the foliation
by the closures of leaves of the underlying foliation is also given by a new
2 -manifold. We have to impose some restrictions.

The suspension construction provides us with a whole family of
interesting examples of %-manifolds, cf. [10]. We are going to recall the con-
struction and investigate the properties of the leaf closure foliations of such
%-manifolds.
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ExampLE 3.2. Let k£ be any positive integer and (W,gw,Jw) a compact
Kihler manifold. The fundamental group of T* is isomorphic to Z*. Let
po: ZX — Isom(W,gw,Jw) be a representation of Z* into the group of holo-
morphic isometries of (W,gw,Jy). On the product R¥ x W, we put the Rie-
mannian metric gy + g, (go—the Euclidean metric of R*), for which the
transformations, « € Z*, py(a)(x, w) := (x + o, py ' (2)w) are isometries. The pull-
back by the projection p: R x W — W of the complex structure Jy defines a
complex structure on the bundle p*TW, which is the normal bundle of the
foliation ker(dp). These objects project onto the compact manifold M (k, W, p,),
the quotient of R¥ x W by the isometric action induced by the representation
Po, and which we have just defined above. They define a #-manifold Z on
M (k ’ Wv pO)-

Let L be the leaf of the foliation 5 passing through a point [x,w] e
M(k, W,h). Its trace on the transverse manifold {x} x W is equal to the orbit of
G =1Im(p,) at w, i.e. Gw. Therefore the trace of the closure L is equal to the
orbit Kw, where K is the closure of G in the compact group Isom(W,gw, Iy ). It
is not difficult to see that the foliation by the closures of leaves has the integrable
complement iff the action of K on W has the integrable orthogonal complement.

Example 3.2 implies that there is no chance that the f.pk-manifold associated
with the leaf closure foliation is a %-manifold without any supplementary as-
sumptions.

Example 3.1 has elucidated the complexities of the problems encountered in
the study of leaf closures of #~manifolds. To obtain some results, one needs to
impose restrictions on the structures under considerations. In view of the example,
the only reasonable condition is to assume that the tangent bundle to the closures
of leaves is g-invariant, i.e. the closures of leaves are invariant submanifolds of
M, cf. [4, 9]. However, to prove that the leaf closures define a new nice structure
we need something more as considerations in Section 3 have shown.

THEOREM 3.2. Let & be a A-manifold on a compact manifold M. If the
endomorphism ¢ maps sections of the commuting sheaf into sections of the
commuting sheaf, then
(1) the closures of leaves of Fy form a regular foliation;
(2) there exists a A -structure on M extending % whose underlying foliation is
Fb;

(3) there exists a closed, nowhere dense subset T of M such that the leaves of
the foliation F, on M — X are the fibres of some T*-principal fibre bundle
with k > s.
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PrOOF. Let denote by %, the foliation by the closures of leaves of #5. We
know that the foliation %, is given by an isometric action of R* for some k > s.
We have the following orthogonal splitting of 7TM:

TM =T75 ® Q@ O

where T, =TFy ® Qy. The splitting together with the assumption that
o(TFy) =« TFy ensures that ¢(Q;) = Q0y. In fact, the subbundle T.%, is the
foliated orbit space of the commuting sheaf, cf. [15, 19], as the foliation & is
transverse Kéhler. Therefore any element X of the commuting sheaf can be
understood as an infinitesimal automorphism X of a transverse Kéhler manifold.
The assumption on the commuting sheaf assures that J(X) is also an infinitesimal
automorphism, therefore, according to Lemma on p. 79 of [13], X is parallel with
respect to the Levi-Civita connection of the Kdhler manifold. This fact implies
that for any two vector fields X, Y corresponding to sections of X, Y of the
commuting sheaf the function (X, Y) is constant. Therefore the function g(X, Y)
is constant as well. Thus the vector fields of the commuting sheaf cannot vanish.
This fact and the fact that the commuting sheaf is locally constant ensures that
the dimension of the foliation &, is constant, thus %, is a regular foliation with
compact leaves. This property permits to choose orthonormal vector fields {; as
required by Theorem 3.1. The third part is due to the considerations following
Proposition 3.2. []

The structure of the space of leaves of the foliation % is relatively simple.
Taking into account the results of the forthcoming paper by the third author, cf.
[12], we can formulate the following theorem.

THEOREM 3.3. Let & be a A-manifold on a compact manifold M. Then the
space M| Fy of the closures of leaves of the underlying foliation is a stratified
Riemannian singular space. If the closures are invariant submanifolds, then M |,
is a Kdhler singular space.

By a Kihler singular space we understand a singular stratified space, which
is Riemannian singular and symplectic singular at the same time, and on each
stratum the induced structures give a Kdéhlerian structure. The geometrical
structures on stratified singular spaces can be found in [1] (Riemannian structures
on orbit spaces), [17] (symplectic singular spaces). Intuitively speaking the space
M /% is a union of Riemannian (symplectic) manifolds with compatible Rie-
mannian (symplectic) structures. Moreover, over each stratum of M /%, our
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foliation %, is given by the fibres of a toroidal principal fibre bundle. The total
spaces of these fibre bundles are the strata of the stratification of M defined
earlier in this section.

The following theorem can be considered a generalization of the Boothby-
Wang theorem.

THEOREM 3.4. Let & be a H-manifold on a compact manifold M. There
exists a stratification S = {Z,} of M such that on each stratum X, the foliation 7,
by the closures of leaves of the underlying foliation F is given by a Riemannian
submersion m, onto the manifold ¥,/ F;, = 25 , which is a principal fibre bundle with
a toroidal structure group. The manifolds 23 form a stratification of the space
M| Fy of leaves of Fp,, which is a Riemannian singular space. If the leaves of F,
are invariant submanifolds, then the space M | ¥, is a singular symplectic space, the
strata Zi’ carry the induced Kdihler structures, and the submersions m, are transverse
Kdihlerian.

Taking into account Proposition 3.2, for %-manifolds, we can prove the
following:

THEOREM 3.5. Let & be a 6-manifold on a compact manifold M. There exists
a stratification S = {Z,} of M such that on each stratum X, the foliation F} by the
closures of leaves of the underlying foliation & is given by a Riemannian sub-
mersion T, onto the manifold ¥,/ = Zé’ , which is a principal fibre bundle with a
toroidal structure group. The manifolds Zi’ form a stratification of the space M |F)
of leaves of Fp, which is a Riemannian singular space. If the leaves of Fp are
invariant submanifolds, then the space M|y is a singular symplectic space, the
strata =P carry the induced Kahler structures, and the submersions , are transverse
Kdhlerian. If, additionally, any non-vanishing section of the commuting sheaf is
V-parallel (V{ =0), then the leaf closure foliation in regular, the extended f.pk-
manifold is a %-manifold and the principal stratum, locally, is a Riemannian
product flat Riemannian manifold and a Kdhler manifold.
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