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A GENERALIZATION OF THE BOOTHBY-WANG

THEOREM*

By

Luigia Di Terlizzi1, Jerzy J. Konderak1 and Robert Wolak2

Abstract. We consider a Riemannian manifold M with an f-

structure. With some additional properties such a manifold is called

a K, C or S-manifold. The considered structures determine a

Riemannian foliation, whose leaf closures form a singular Rie-

mannian foliation. We give conditions under which the foliation of

the principal stratum is again associated to a structure of the type we

consider. The manifold can be partitioned into strata on which the

leaf closures are given by toroidal fiber bundles. This theorem is a

topological generalization of the classical Boothby-Wang theorem for

the contact manifolds.

Introduction

Recent years have seen a renewed interest in contact geometry. The

beginnings of the contact geometry can be found in the late fifties. Of particular

interest and influence were the contact manifolds defined on S 1-bundles and a

theorem by M. W. Boothby and H. C. Wang published in 1958, cf. [6] and [4].

These contact manifolds have been generalized in many directions, for a fine

review of notions and results see [3, 4]. In this paper we study one of such classes

of manifolds, called K-manifolds, cf. [2]. Any K-manifold admits the underlying

foliation. We prove that the closures of leaves of this foliation form a new

foliation, which outside a closed nowhere dense subset is given by the fibres of a
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toroidal principal fibre bundle over a Kähler manifold. More generally, the

manifold itself can be partitioned into submanifolds, which are regularly foliated

by the closures of leaves of the underlying foliation, and these regular foliations

are given by the fibres of toroidal principal fibre bundles over Kähler manifolds.

These theorems can be considered as generalizations of the Boothby-Wang

theorem.

All manifolds, maps, distributions considered here are smooth, i.e., of the

class Cy; we denote by Gð�Þ the set of all sections of a corresponding bundle.

We use the convention that 2u5v ¼ un v� vn u.

1 Preliminaries

Let ðM 2nþs; j; xi; hjÞ, ði; j ¼ 1; . . . ; sÞ, be a manifold equipped with an f-

structure j with a parallelizable kernel, in short, an f :pk-manifold; this means that

there exist s global vector fields x1; . . . ; xs A GðTMÞ and 1-forms h1; . . . ; hs A

GðT �MÞ satisfying the following conditions

jðxiÞ ¼ 0; hi � j ¼ 0; j2 ¼ �Idþ
Xs

i¼1

hi n xi; hiðxjÞ ¼ dij ð1:1Þ

for all i; j ¼ 1; . . . ; s. On such a manifold, there always exists a compatible

Riemannian metric g, in the sense that for each X ;Y A GðTMÞ

gðX ;Y Þ ¼ gðjðXÞ; jðY ÞÞ þ
Xs

i¼1

hiðXÞhiðY Þ: ð1:2Þ

We fix such a metric on M, then the obtained structure is called a metric f:pk-

manifold. Let Fj be the Sasaki form of j defined by FjðX ;YÞ :¼ gðX ; jYÞ
for X ;Y A TM. We denote by D the bundle ImðjÞ; which is the orthogonal

complement of the bundle kerðjÞ ¼ spanfx1; . . . ; xsg. Then the manifold M is

equipped with the structure consisting of an f -structure j, the complemented

frame x1; . . . ; xs, the 1-forms h1; . . . ; hs, a compatible metric g and the Sasaki

2-from Fj. We put Z :¼ ðM; g; j; xi; hjÞ for ði; j ¼ 1; . . . ; sÞ. There is also a tensor

Nj of type ð2; 1Þ defined in the following way: Nj :¼ ½j; j� þ 2
Ps

i¼1 dhi n xi

where ½j; j� is the Nijenhuis torsion of j. We recall some definitions of certain

types of metric f :pk-manifolds which are studied in the present paper, cf. [2,

7, 11].
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Definition 1.1. It is said that

� Z is normal if Nj ¼ 0
� Z is a C-manifold if dhi ¼ 0 for i ¼ 1; . . . ; s, dFj ¼ 0 and Z is normal
� Z is a S-manifold if dhi ¼ Fj for i ¼ 1; . . . ; s and Z is normal
� Z is a K-manifold if dFj ¼ 0 and Z is normal.

The f:pk-manifolds may be seen from a di¤erent point of view. Namely as a

certain type of almost CR-manifolds. In fact, given an f:pk-manifold Z, we may

define an almost CR-structure by considering ðM; ImðjÞ; jjImðjÞÞ. This structure is

usually far from being integrable. However, the conditions on Z for being C, S,

K may be expressed in the language of the CR-geometry. Vice versa, given an

almost CR-structure ðM;H; JÞ with a parallelization of the transverse bundle to

H is also given, we may obtain an f:pk-manifold. However, we shall not use in

this paper the language of the CR-geometry.

It is clear that fS-manifoldsgH fK-manifoldsgI fC-manifoldsg. Moreover,

if Z is a K-manifold, then for each i; j A f1; . . . ; sg the following identities hold:

½xi; xj � ¼ 0 and Lxihj ¼ 0; ð1:3Þ

cf. [16, 2]. The vector fields xi, i ¼ 1 � � � s, define a totally geodesic transversally

Kähler foliation on M, cf. [10].

Lemma 1.1. If Z is a K-manifold then: 1). Lxij ¼ 0, 2). xi D dhj ¼ 0 and 3).

½xi;X � A GðDÞ for any i; j ¼ 1; . . . ; s and X A GðDÞ.

Proof. Let i; j ¼ 1; . . . ; s and X A GðDÞ. We have ðLxijÞðxjÞ ¼ LxijðxjÞ�
jðLxixjÞ ¼ 0. On the other hand, from the normality of Z we have 0 ¼
Njðxi; jðXÞÞ ¼ �j½xi; j2ðXÞ� � ½xi; jðX Þ� ¼ �ðLxijÞðXÞ. Therefore 1). holds. We

have xi D dhj ¼ Lxihj � dðxiPhjÞ ¼ 0 which proves 2). Moreover, hjð½xi;X �Þ ¼
ðLxiX ÞPhj ¼ LxiðXPhjÞ � X D ðLxihjÞ ¼ 0. Hence, ½xi;X � annihilates hj ; this

implies 3). r

2 Extension of K-manifolds

Throughout all of this section, we suppose that Z :¼ ðM; g; j; xi; hjÞ,
ði; j ¼ 1; . . . ; sÞ, is an f:pk-manifold, D ¼ ImðjÞ is the distribution orthogonal to

spanfx1; . . . ; xsg ¼ kerðjÞ; and Fj is the associated Sasaki 2-form. Moreover, we

suppose that there are given orthonormal sections z1; . . . ; zr ðrb 1Þ of the dis-

tribution D such that the subbundle spanfz1; . . . ; zrg is invariant by j. We denote

by m1; . . . ; mr the g-dual 1-forms to the vector fields z1; . . . ; zr. Then we can define

a new f-structure
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c :¼ j�
Xr

a¼1

jðzaÞn ma: ð2:1Þ

Denote by D 0 the distribution orthogonal to spanfx1; . . . ; xs; z1; . . . ; zrg ¼ kerðcÞ.
It is clear that D 0 ¼ ImðcÞ. The following lemma is an easy consequence of the

definitions.

Lemma 2.1. The set Z 0 :¼ ðM; g;c; xi; za; hj; mbÞ, ði; j ¼ 1; . . . ; s and

a; b ¼ 1; . . . ; rÞ, is an f:pk-manifold. r

For the rest of this section, we assume that for each i; j A f1; . . . ; sg and

a; b A f1; . . . ; rg
½xi; xj� ¼ ½za; zb� ¼ ½xi; za� ¼ 0: ð2:2Þ

Straightforward but tedious calculations give the following two lemmas.

Lemma 2.2. Let Z :¼ ðM; g; j; xi; hjÞ, ði; j ¼ 1; . . . ; sÞ, be a K-manifold, za be

Killing vector fields, ða ¼ 1; . . . ; rÞ, and Lzaj ¼ 0 for all a A f1; . . . ; rg, then for any

i; j A f1; . . . ; sg, a; b A f1; . . . ; rg, and any X ;Y A GðD 0Þ

(i) Lxima ¼ 0, Lzihi ¼ 0, Lzamb ¼ 0, Lxihj ¼ 0;

(ii) xi D dma ¼ 0, za D dhi ¼ 0, za D dmb ¼ 0;

(iii) ½xi;X � A GðD 0Þ, ½za;X � A GðD 0Þ;
(iv) Lxi Fj ¼ 0, Lxi Fc ¼ 0, LzaFj ¼ 0, LzaFc ¼ 0;

(v) xi D dFj ¼ 0, xi D dFc ¼ 0, za D dFc ¼ 0;

(vi) Fc is closed;

(vii) ½X ;Y � A GðD 0 l kerðjÞÞ, dma ¼ 0;

(viii) if Jab are functions on M such that jðzaÞ ¼
Pr

b¼1 Jbazb then Jab are

locally constant;

(ix) LjðzaÞj ¼ 0, LjðzaÞFj ¼ 0, LjðzaÞg ¼ 0:

Proof. We will prove only the first identities in (i), (ii), (iii), (iv). The other

can be proved in the similar way.

For each i; j A f1; . . . ; sg, a; b A f1; . . . ; rg, and X A GðD 0Þ, we have:

ðLximaÞðxjÞ ¼ LximaðxjÞ � mað½xi; xj�Þ ¼ 0, ðLximaÞðzbÞ ¼ LximaðzbÞ � mað½xi; zb�Þ ¼
0, and

ðLximaÞðXÞ ¼ LximaðXÞ � maðLxiXÞ ¼ �gðza; ½xi;X �Þ

¼ �xiðgðza;X ÞÞ þ ðLxi gÞðza;XÞ þ gðLxiza;XÞ ¼ 0;

as xi is Killing and (2.2) holds. Therefore the first equation in (i) follows.
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Because of (i) and maðxiÞ ¼ 0, we have that xi D dma ¼ Lxima � dðxi D maÞ ¼
0. Therefore the first equation in (ii) follows.

We have that

hjðLxiXÞ ¼ LxihjðX Þ � ðLxihjÞðXÞ ¼ 0;

maðLxiXÞ ¼ LximaðXÞ � ðLximaÞðXÞ ¼ 0;

because of (ii). It follows that LxiX annihilates all hj and ma, therefore the first

identity in (iii) follows.

Properties (iv) follow immediately from the fact that xi and za are Killing and

Lxij ¼ Lzaj ¼ 0.

In fact, we have that xi D dFj ¼ Lxi Fj � dðxi DFjÞ ¼ 0 because of

(iv). Therefore the first equation in (v) follows.

Since xi D dFc ¼ za D dFc ¼ 0, then it is enough to show that for all

X ;Y ;Z A GðD 0Þ, ðdFcÞðX ;Y ;ZÞ vanishes. It is easy to observe that dFj and dFc

coincide when restricted to ðD 0Þ3, therefore Fc is closed. Hence (vi) follows.

Let X ;Y A GðD 0Þ and a A f1; . . . ; rg, then (vii) is equivalent to the fact that

gðza; ½X ;Y �Þ vanishes. Since LzaGðD 0ÞHGðD 0Þ and the map GðD 0Þ C ðX ;YÞ 7!
gðza; ½X ;Y �Þ is tensorial, then we may assume that LzaXp ¼ LzaYp ¼ 0 where

p A M. Since Fj is closed and (iv) holds, then

0 ¼ 3ðdFjÞðza;X ;Y Þp

¼ ðLzaFjÞðX ;YÞp � FjðLzaX ;Y Þp þ FjðX ;LzaY Þp � Fjð½X ;Y �; zaÞp

¼ gðza; jð½X ;Y �ÞÞp:

It follows that jð½X ;Y �Þ A GðD 0Þ and then ½X ;Y � A GðD 0 l kerðjÞÞ. From (ii) it

follows that dma vanishes on each pair of vectors such that one of the vectors

belongs to kerðcÞ. On the other hand, if X ;Y A GðD 0Þ, then 2dmaðX ;YÞ ¼
�mð½X ;Y �Þ ¼ 0 because ½X ;Y � A GðD 0 l kerðjÞÞ. This ends the proof of (vii).

We observe that Jab ¼ gðza; jðzbÞÞ because za ða ¼ 1; . . . ; rÞ are orthonormal.

Then we have

2dJab ¼ 2dðgðza; jðzbÞÞÞ ¼ 2dðFjðza; zbÞÞ ¼ dðzb D ðza DFjÞÞ

¼ Lzb ðza DFjÞ � zb D dðza DFjÞ

¼ ½zb; za�DFj þ za D ðLzbFjÞ � zb D ðLzaFjÞ þ zb D ðza D dFjÞ ¼ 0:

which implies (viii). We observe that from the above equation it follows that for

each a; b ¼ 1; . . . ; r we have
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dðFjðza; zbÞÞ ¼ 0: ð2:3Þ

Since Lzaj ¼ 0, LzaFj ¼ 0, Lzag ¼ 0, and jðzaÞ are CyðMÞ-linear combinations

of z1; . . . ; zr with coe‰cients which are locally constant, then (ix) follows im-

mediately. r

Lemma 2.3. Let Z be a K-manifold, za are Killing, and Lzaj ¼ 0 for all

a A f1; . . . ; sg, then Z 0 is normal.

Proof. Let i; j A f1; . . . ; sg, a; b A f1; . . . ; rg, and X ;Y A GðD 0Þ. We will

proceed by studying the values of Nc on the all possible couples taken from

among xj, xj, za, zb, X , Y .

From the assumption (2.2) and Definition (2.1), it follows that Ncðxi; xjÞ ¼
Ncðxi; zkÞ ¼ Ncðzk; zlÞ ¼ 0.

From Definition (2.1) and from (iv) of Lemma 2.2, we have that

Ncðxi;XÞ ¼ Ncðxi;X Þ �Njðxi;XÞ

¼
Xr

a¼1
jðzaÞma ½xi; jðXÞ�ð Þ �

Xr

a¼1
jðzaÞ2dmaðxi; jðX ÞÞ

¼ �
Xr

a¼1
ðjðzaÞjðXÞD ðxi D dmaÞÞ ¼ 0:

Again from Definition (2.1) and from (iv) of Lemma 2.2, we have that

Ncðza;XÞ ¼ �c½za; jðXÞ� � ½za;X �

¼ �j½za; jðXÞ� þ
Xr

b¼1
jðzbÞmbð½za; jðXÞ� � ½za;X �

¼ jððLzajÞðXÞÞ � j2½za;X � � ½za;X � þ
Xr

b¼1
jðzbÞX D ðza D dmbÞÞ ¼ 0:

Finally, it is easy to observe that

NcðX ;YÞ ¼ NjðX ;Y Þ þ
Xr

a¼1

jðzaÞmað½jðX Þ;Y � þ ½X ; jðYÞ�Þ: ð2:4Þ

The right hand side in (2.4) vanishes since Z is normal and ½jðX Þ;Y �, ½X ; jðYÞ�
are sections of D 0 l kerðjÞ, cf. (vii) of Lemma 2.2. r

From Lemmas 2.2 and 2.3 we get the following theorem
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Theorem 2.1. Let Z be a K-manifold. If

(i) za are Killing and orthonormal,

(ii) Lzaj ¼ 0 for all a A f1; . . . ; sg, then Z 0 is also a K-manifold.

Moreover, we have the following theorem.

Theorem 2.2. Let Z is a C-manifold. If

(i) za are Killing and orthonormal,

(ii) Lzaj ¼ 0 for all a A f1; . . . ; sg, then Z 0 is also a C-manifold.

Proof. Theorem 2.1 implies that Z 0 is a K-manifold. Let i A f1; . . . ; sg,
a; b A f1; . . . ; rg, and X ;Y A GðD 0Þ. Therefore dhi ¼ 0 since Z is a K-manifold.

From (v) of Lemma 2.2, we get that xi D dma ¼ za D dmb ¼ 0. Finally, from (vii)

of Lemma 2.2, we get that 2dmaðX ;YÞ ¼ �mað½X ;Y �Þ ¼ 0. It follows that all the

1-forms hi, ma vanish and then our assertion follows. r

Observation 2.1. If Z is an S-manifold, then Z 0 is never an S-manifold.

In fact, we have that Fc 0Fj ¼ dh1.

Observation 2.2. The assumption that the vector fields xi and zj are

orthonormal is very important. Using the classical formula for the Levi-Civita

connection one can show the following property:

Let C : Rr �M ! M be smooth locally free action on some Riemannian

manifold ðM; gÞ: The foliation FC defined by the action is totally geodesic i¤

there exits a basis fvig of Rr such that the corresponding vector fields Xi ¼ v�i on

M are orthonormal.

In fact, gð‘Xi
Xj;XÞ ¼ qXgðXi;XjÞ for any local vector field X commuting

with Xi. As the action is isometric and Xi commute, locally, we have such

sections which span the tangent bundle to M. Therefore gðXi;XjÞ are locally

constant functions and thus constant as our manifold is connected. Using the

standard Gramm-Schmidt orthonormalization procedure at one point, we obtain

the global result.

The following example illustrates the necessity of the above assumption.

Example 2.1. We consider R3 with its canonical coordinates ðx; y; zÞ.
Suppose that there are also given the additive Lie groups Z 3, R2, R and the

actions of these groups on R3 given by r0 : Z
3 � R3 ! R3, r1 : Z

3 � R3 ! R3

and r2 : Z
3 � R3 ! R3 such that
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r0ððk;m; nÞ; ðx; y; zÞÞ :¼ ðxþ k; yþm; zþ nÞ

r1ðða; bÞ; ðx; y; zÞÞ :¼ ðx; yþ a; zþ bÞ

r2ða; ðx; y; zÞÞ :¼ ðx; yþ a; zþ aaÞ

for each k;m; n A Z and a; b A R; a is a fixed element from RnQ. It is easy to

observe that these actions commute with each other. We consider vector fields

x :¼ q
qy
þ a q

qz
, z :¼ a q

qy
� q

qz
and the 1-forms

h :¼ 1

1þ a2
ðdyþ a dzÞ; m :¼ 1

1þ a2
ða dy� dzÞ:

It follows from the construction that hðxÞ ¼ mðzÞ ¼ 1 and hðzÞ ¼ mðxÞ ¼ 0.

We observe that the vector fields x, z and the 1-forms h, m are invariant with

respect to the actions r0, r1 and r2. We define on R3 the following Riemannian

metric

g :¼ ðdxÞ2 þ ðhÞ2 þ f ðxÞðmÞ2; ð2:5Þ

where f : R ! ð0;þyÞ is a smooth function which is periodic with the period

equals to one. We assume also that f ð0Þ ¼ 1. The map f factorizes to the map

f : R=Z ! ð0;þyÞ which is also smooth. Again the actions r0, r1, and r2
preserve the metric, i.e., the Lie groups act by isometries. Moreover, the vector

fields x, z and the 1-forms h, m are also preserved.

We consider the manifold S 1 � T 2 ¼ ðS 1Þ3 ¼ R3=Z 3. There is the canonical

projection of p : R3 ! S 1 � T 2 such that pðt; x; yÞ ¼ ðt; x; yÞ. This projection is a

local di¤eomorphism and gives also local charts on S 1 � T 2. The metric g, the

vector fields x, z, and the 1-forms h and m project via p, respectively, to g, x, z, h

and m. In particular, g is a Riemannian metric such that p is a local isometry.

We consider the Lie groups H :¼ ðR;þÞ and G :¼ ðT 2;þÞ where the op-

eration on G is just summing on the components of T 2 ¼ ðR=ZÞ2. There are

the induced actions r1 : G � ðS 1 � T 2Þ ! S 1 � T 2 such that r1ðða; bÞ; ðt; x; yÞÞ :¼
ðt; aþ x; bþ yÞ; this is just the natural action of G on the second component of

S 1 � T 2. There is also given the induced action r2 : H � ðS 1 � T 2Þ ! S 1 � T 2

such that r2ða; ðt; x; yÞÞ :¼ ðt; xþ a; yþ aaÞ. We observe that both actions r1
and r2 are isometric with respect to the metric g, i.e., H;GH IsomðS 1 � T 2; gÞ.
The group H is actually a subgroup of G by considering the monomorphism

u : H ,! G such that uðaÞ :¼ ða; aaÞ. Moreover, we have that r1ðuðaÞ; ðt; x; yÞÞ ¼
r2ða; ðt; x; yÞÞ. Hence HHGH IsomðS 1 � T 2; gÞ. It is well known that H is

dense in G since a is irrational.

224 Luigia Di Terlizzi, Jerzy J. Konderak and Robert Wolak



The Lie algebra g of G is R2 with the vanishing bracket. The Lie algebra of

H is just Rð1; aÞ. The exponential map g ! G is given by expðA;BÞ ¼ ð0;A;BÞ.
We observe that ð1; aÞ A h determines the infinitesimal automorphism x and

ða;�1Þ determines the infinitesimal automorphism z of S 1 � T 2. Then gðx; xÞ ¼ 1,

gðx; zÞ ¼ 0 and gðz; zÞ ¼ f ðxÞ. In particular, the vector fields x, z are orthonormal

when restricted to the orbit f0g � T 2 but they are not orthonormal throughout all

of the manifold S 1 � T 2 unless f is constant.

3 Structures Determined by the Closure of the Leaves

Throughout all of this section we assume that Z ¼ ðM 2nþs; g; j; xi; hjÞ,
ði; j ¼ 1; . . . ; sÞ, is a compact K-manifold.

In [10], it was shown that a K-manifold is a particular Riemannian foliation,

a transverse Kähler foliation FK, cf. [18, 19, 8]. Therefore the closures of the

leaves of the foliation FK form a new Riemannian foliation Fb which can be

singular, i.e. the leaves can have di¤erent dimensions. Using the dimensions of

leaves and holonomy of F we can partition the manifold M into submanifolds

Si, cf. [15], on which the foliation Fb is regular and without holonomy. It implies

that, on each Si, Fb is given by a global submersion hi : Si ! Wi onto some

smooth Riemannian manifold Wi. As the fibres are compact, each submersion hi

is a locally trivial fibre bundle. This partition is, in fact, a stratification of the

manifold M. The stratum M0 corresponding to leaves of the greatest dimension

and without holonomy is open and dense, the other strata form a closed, nowhere

dense subset S. Therefore outside a closed subset of measure 0, the foliation Fb is

given by the fibres of a locally trivial fibre bundle.

Let us apply these considerations to a particular class of K-manifolds on

compact manifolds, those whose underlying foliation F has all leaves compact.

In this case Fb ¼ F. In addition to being Riemannian, our foliation is trans-

versely Kähler, therefore the submersion h : M0 ! W0 induces a Kähler structure

on W0: We call such submersions transverse Kähler. Summing up, we have the

following proposition.

Proposition 3.1. Let Z, ði; j ¼ 1; . . . ; sÞ be a K-manifold on a compact

manifold M whose underlying foliation F has all leaves compact. Then there exists

a closed nowhere dense saturated subset S of M such that the restriction of the K-

manifold to M � S is given by a global locally trivial Riemannian submersion

h : M � S ! W0 onto a Kähler manifold W0.

On the other hand, if our manifold is a C-manifold the following is true.
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Proposition 3.2. Let Z, ði; j ¼ 1; . . . ; sÞ be a C-manifold on a compact

manifold M, whose underlying foliation F has all leaves compact. Then there exists

a closed nowhere dense saturated subset S of M such that the open set M � S,

locally, is the Riemannian product of a leaf of F on M � S and a Kähler manifold,

which is a leaf of the transverse foliation restricted to M � S.

Proof. It is a simple consequence of the considerations preceding Propo-

sition 3.1 and results of [5]. r

The underlying foliation F of a K-manifold is given by a smooth isometric

action of the abelian group Rs. Therefore we have a representation of R s into the

group IsomðM; g; jÞ of g isometries preserving the tensor j. Since IsomðM; g; jÞ
is compact and ImðrÞ is abelian, then K is an abelian compact subgroup. Let K0

be the identity component of K . Hence K0 is a certain torus T sþr. The connected

components of the orbits of the action of K on M are just orbits of T sþr, and

these orbits are just the closures of leaves of F. However, this action may not be

locally free.

The stratification defined by this action, cf. [14], is the stratification we have

introduced earlier. For any point p A M, the orbit K0p is di¤eomorphic to K0=Hp,

where Hp is the isotropy group of the action at p. As the group K0 is abelian,

Hp ¼ Hq ¼ H for any two points p, q of a given stratum Sr, and K0=H is also

a Lie group. Therefore the foliation Fb on Sr is given by a locally free action

of the connected abelian Lie group K0=H ¼ T k. Moreover, the space of orbits of

T k on Sr is a smooth manifold and the natural projection p0 : Sr ! Sr=T
k is a

principal T k-bundle. In particular, the foliation FbjSr is defined by a locally free

action of Rk on Sr which extends the original action of R s on Sr. Of course

sa k. Therefore it is quite reasonable to ask under which conditions this ex-

tended action defines a new K-manifold. Let p0 A M be a point belonging to a

leaf of maximal dimension. Without loss of generality we can assume that the

action of Rsþr on the principal stratum is locally free. The Lie algebra LðKÞ
of K is isomorphic to Rsþr. Then each element v of LðKÞGRsþr defines a

global vector field v� on M. The vector fields x1; . . . ; xs may be recovered in

this way. There exists some elements v1; . . . ; vr in Rsþr such that the corre-

sponding vector fields z1 :¼ v�1 ; . . . ; zr :¼ v�r are orthonormal when restricted to

Tp0M.

For the rest of this section we restrict our attention to the principal stratum

which we denote by the same letter M. We denote by D 0 the subbundle of TM

which is an orthogonal complement of spanfx1; . . . ; xs; z1; . . . ; zrg.
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Lemma 3.1. The following holds: (1) the vector fields x1; . . . ; xs, z1; . . . ; zr
commute with each other; (2) za is Killing and Lzaj ¼ 0 for each a A f1; . . . ; rg.

Proof. (1) and (2) follow immediately from the fact that KH IsomðM; g; jÞ.
r

Then we define mað�Þ :¼ gðza;�Þ for a A f1; . . . ; rg. Moreover, we define an

endomorphism c A EndðTMÞ using formula (2.1) and we put Z 0 :¼ ðM; g;c; xi;

za; hj ; mbÞ. Moreover, we have the following theorem.

Theorem 3.1. Let Z be a K-manifold. If

(i) jðD 0ÞHD 0,

(ii) the vector fields zj are orthonormal,

then Z 0 is also a K-manifold; if in addition, Z is a C-manifold then Z 0 is so.

Proof. The condition that jðD 0ÞHD 0 is equivalent to the one that

jðspanfz1; . . . ; zsgÞH spanfz1; . . . ; zsg: ð3:1Þ

Hence from Lemma 2.1, we get that Z 0 is an f:pk-structure. From Lemma 3.1

and Theorem 2.1 it follows that Z 0 is K-manifold. If in addition Z is a

C-manifold, then from Lemma 3.1 and Theorem 2.2 follows that Z 0 is a

C-manifold too. r

The assumption that jðD 0ÞHD 0, or equivalently condition (3.1), in Theorem

3.1 is essential as shows the following example.

Example 3.1. We consider M0 :¼ C n ðnb 1Þ and its standard global

coordinates ðx1; . . . ; xn; y1; . . . ; ynÞ. The manifold carries the standard metric gst

and the standard complex structure Jst A EndðTM0Þ such that Jst
q

qxk

� �
:¼ q

qyk
.

Suppose that there are given the real numbers a1; . . . ; an, and b1; . . . ; bn such that

bn ¼ 1. Then we define two vector fields:

x1 :¼
q

qxn
; x2 :¼

Xn

k¼1

ak
q

qxk
þ
Xn

k¼1

bk
q

qyk
:

The vector fields q
qx1

; . . . ; q
qxn�1

, q
qy1

; . . . ; q
qyn�1

, x1, x2 are linearly independent at

each point of M0. We define a new Riemannian metric g0 on M0 by supposing

that: g0jTC n�1 :¼ gstjTC n�1 , g0ðxk; xlÞ :¼ dkl , ðk; l ¼ 1; 2Þ, and that TC n�1 and
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spanfx1; x2g are orthogonal. Next, we define an f -structure j0 by assuming that

j0jC n�1 :¼ JstjC n�1 , kerðj0Þ :¼ spanfx1; x2g, and 1-forms h1, h2 as the g0-duals to

x1, x2. It is a standard calculation to verify that Z0 :¼ ðM; g0; j0; x1; x2; h1; h2Þ is a
metric f:pk-manifold. Then we have the following explicit formulas

g ¼
Xn

k¼1

ðdxkÞ2 þ
Xn�1

k¼1

ðdykÞ2 þ kxk0ðdynÞ
2 �

Xn

k¼1

ak dxkdyn �
Xn�1

k¼1

bk dykdyn

h1 ¼ dxn; h2 ¼ dyn �
Xn

k¼1

ak dxk �
Xn

k¼1

bk dyk

Fj0 ¼
Xn�1

k¼1

dxk5dyk �
Xn�1

k¼1

bk dxk5dyn þ
Xn�1

k¼1

ak dyk5dyn � 2
Xn�1

k¼1

akbk dyn5dyn;

where kxkk0 denotes the standard norm in C n and Fj0 is the Sasaki 2-form. The

forms h1, h2, Fj are closed since their coe‰cients are constants. Moreover, Nj0

vanishes since j is a linear combination with constant coe‰cients of the canonical

basis of T �M0 nTM0. These implies that Z0 is a C-manifold and in particular a

K-manifold. The group Z 2n acts properly discontinuously on C n by translations

and all the tensors of Z0 are Z 2n-invariant. Hence the C-manifold Z0 descends

to the T 2n ¼ C n=Z 2n. The underling foliation on C n defined by the distribution

spanfx1; x2g consists of parallel 2-dimensional real planes. The induced foliation

on T 2n is the so-called linear 2-dimensional foliation. The closures of the leaves

have the same dimension. The dimension depends on the dimension of the vector

space spanned by a1; . . . ; an�1, b1; . . . ; bn�1, 1 over the field of rational numbers

Q, i.e. if dimQðspanfa1; . . . ; an�1; b1; . . . ; bn�1; 1gÞ ¼ k then the dimension of any

closure of the leaf of the foliation is equal to k þ 1. If a1; . . . ; an�1 are linearly

independent over Q and b1; . . . ; bn�1 are rational, then the vector fields q
qx1

; . . . ; q
qxn

are tangent to the closures of the leaves. The images jðzaÞ of the added vector

fields za commute with xi and with themselves. However, they can be placed

anywhere with respect to the closures of leaves.

The example presented above shows that we cannot expect that the foliation

by the closures of leaves of the underlying foliation is also given by a new

K-manifold. We have to impose some restrictions.

The suspension construction provides us with a whole family of

interesting examples of C-manifolds, cf. [10]. We are going to recall the con-

struction and investigate the properties of the leaf closure foliations of such

C-manifolds.
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Example 3.2. Let k be any positive integer and ðW ; gW ; JW Þ a compact

Kähler manifold. The fundamental group of T k is isomorphic to Z k. Let

r0 : Z
k ! IsomðW ; gW ; JW Þ be a representation of Z k into the group of holo-

morphic isometries of ðW ; gW ; JW Þ. On the product Rk �W , we put the Rie-

mannian metric g0 þ gW , (g0—the Euclidean metric of Rk), for which the

transformations, a A Z k, ~rr0ðaÞðx;wÞ :¼ ðxþ a; r�1
0 ðaÞwÞ are isometries. The pull-

back by the projection p : Rk �W ! W of the complex structure JW defines a

complex structure on the bundle p�TW , which is the normal bundle of the

foliation kerðdpÞ. These objects project onto the compact manifold Mðk;W ; r0Þ,
the quotient of Rk �W by the isometric action induced by the representation

~rr0, and which we have just defined above. They define a C-manifold Z on

Mðk;W ; r0Þ.
Let L be the leaf of the foliation FZ passing through a point ½x;w� A

Mðk;W ; hÞ. Its trace on the transverse manifold fxg �W is equal to the orbit of

G ¼ Imðr0Þ at w, i.e. Gw. Therefore the trace of the closure L is equal to the

orbit Kw, where K is the closure of G in the compact group IsomðW ; gW ; IW Þ. It
is not di‰cult to see that the foliation by the closures of leaves has the integrable

complement i¤ the action of K on W has the integrable orthogonal complement.

Example 3.2 implies that there is no chance that the f:pk-manifold associated

with the leaf closure foliation is a C-manifold without any supplementary as-

sumptions.

Example 3.1 has elucidated the complexities of the problems encountered in

the study of leaf closures of K-manifolds. To obtain some results, one needs to

impose restrictions on the structures under considerations. In view of the example,

the only reasonable condition is to assume that the tangent bundle to the closures

of leaves is j-invariant, i.e. the closures of leaves are invariant submanifolds of

M, cf. [4, 9]. However, to prove that the leaf closures define a new nice structure

we need something more as considerations in Section 3 have shown.

Theorem 3.2. Let Z be a K-manifold on a compact manifold M. If the

endomorphism j maps sections of the commuting sheaf into sections of the

commuting sheaf, then

(1) the closures of leaves of FZ form a regular foliation;

(2) there exists a K-structure on M extending Z whose underlying foliation is

Fb;

(3) there exists a closed, nowhere dense subset S of M such that the leaves of

the foliation Fb on M � S are the fibres of some T k-principal fibre bundle

with kb s.
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Proof. Let denote by Fb the foliation by the closures of leaves of FZ. We

know that the foliation Fb is given by an isometric action of Rk for some kb s.

We have the following orthogonal splitting of TM:

TM ¼ TFZ lQ0 lQ1

where TFb ¼ TFZ lQ0: The splitting together with the assumption that

jðTFbÞHTFb ensures that jðQ1ÞHQ1. In fact, the subbundle TFb is the

foliated orbit space of the commuting sheaf, cf. [15, 19], as the foliation F is

transverse Kähler. Therefore any element X of the commuting sheaf can be

understood as an infinitesimal automorphism X of a transverse Kähler manifold.

The assumption on the commuting sheaf assures that JðXÞ is also an infinitesimal

automorphism, therefore, according to Lemma on p. 79 of [13], X is parallel with

respect to the Levi-Civita connection of the Kähler manifold. This fact implies

that for any two vector fields X , Y corresponding to sections of X , Y of the

commuting sheaf the function gðX ;YÞ is constant. Therefore the function gðX ;YÞ
is constant as well. Thus the vector fields of the commuting sheaf cannot vanish.

This fact and the fact that the commuting sheaf is locally constant ensures that

the dimension of the foliation Fb is constant, thus Fb is a regular foliation with

compact leaves. This property permits to choose orthonormal vector fields zj as

required by Theorem 3.1. The third part is due to the considerations following

Proposition 3.2. r

The structure of the space of leaves of the foliation Fb is relatively simple.

Taking into account the results of the forthcoming paper by the third author, cf.

[12], we can formulate the following theorem.

Theorem 3.3. Let Z be a K-manifold on a compact manifold M. Then the

space M=Fb of the closures of leaves of the underlying foliation is a stratified

Riemannian singular space. If the closures are invariant submanifolds, then M=Fb

is a Kähler singular space.

By a Kähler singular space we understand a singular stratified space, which

is Riemannian singular and symplectic singular at the same time, and on each

stratum the induced structures give a Kählerian structure. The geometrical

structures on stratified singular spaces can be found in [1] (Riemannian structures

on orbit spaces), [17] (symplectic singular spaces). Intuitively speaking the space

M=Fb is a union of Riemannian (symplectic) manifolds with compatible Rie-

mannian (symplectic) structures. Moreover, over each stratum of M=Fb our
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foliation Fb is given by the fibres of a toroidal principal fibre bundle. The total

spaces of these fibre bundles are the strata of the stratification of M defined

earlier in this section.

The following theorem can be considered a generalization of the Boothby-

Wang theorem.

Theorem 3.4. Let Z be a K-manifold on a compact manifold M. There

exists a stratification S ¼ fSag of M such that on each stratum Sa the foliation Fb

by the closures of leaves of the underlying foliation F is given by a Riemannian

submersion pa onto the manifold Sa=Fb ¼ Sb
a , which is a principal fibre bundle with

a toroidal structure group. The manifolds Sb
a form a stratification of the space

M=Fb of leaves of Fb, which is a Riemannian singular space. If the leaves of Fb

are invariant submanifolds, then the space M=Fb is a singular symplectic space, the

strata Sb
a carry the induced Kähler structures, and the submersions pa are transverse

Kählerian.

Taking into account Proposition 3.2, for C-manifolds, we can prove the

following:

Theorem 3.5. Let Z be a C-manifold on a compact manifold M. There exists

a stratification S ¼ fSag of M such that on each stratum Sa the foliation Fb by the

closures of leaves of the underlying foliation F is given by a Riemannian sub-

mersion pa onto the manifold Sa=Fb ¼ Sb
a , which is a principal fibre bundle with a

toroidal structure group. The manifolds Sb
a form a stratification of the space M=Fb

of leaves of Fb, which is a Riemannian singular space. If the leaves of Fb are

invariant submanifolds, then the space M=Fb is a singular symplectic space, the

strata Sb
a carry the induced Kähler structures, and the submersions pa are transverse

Kählerian. If, additionally, any non-vanishing section of the commuting sheaf is

‘-parallel ð‘z ¼ 0Þ, then the leaf closure foliation in regular, the extended f:pk-

manifold is a C-manifold and the principal stratum, locally, is a Riemannian

product flat Riemannian manifold and a Kähler manifold.
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