QUANTIFIER ELIMINATION OF THE PRODUCTS OF ORDERED ABELIAN GROUPS

By
Hiroshi Tanaka and Hirokazu Yokoyama

Abstract

In this paper, we study the theories of lexicographic products of ordered abelian groups.

1. Introduction

Komori [2] and Weispfenning [6] showed that the lexicographic product of \mathbf{Z} and \mathbf{Q} admits quantifier elimination in a language expanding $L_{o g}=\{0,+,-,<\}$, where $\mathbf{Z}(\mathbf{Q})$ is the ordered abelian group of integers (of rational numbers). Moreover they recursively axiomatized $\operatorname{Th}(\mathbf{Z} \times \mathbf{Q})$. Extending these, Suzuki [4] showed that for the lexicographic product G of an ordered abelian group H and an ordered divisible abelian group K, if H admits quantifier elimination in a language L expanding $L_{o g}$, then G admits quantifier elimination in $L \cup\{I\}$, where we interpret I as $\{0\} \times K$. Moreover if H is recursively axiomatizable, then so is G. In this paper, we give a simple proof for Suzuki's results. In addition we show the converse of Suzuki's results.

2. Main Results

Let \mathscr{L} be a language. By an unnested atomic \mathscr{L}-formula we mean an atomic formula of one of the following forms: $x=y, c=y, F(\bar{x})=y$ or $R(\bar{x})$, where x, y and n-tuple \bar{x} are free variables, c is some constant symbol in \mathscr{L}, F is some function symbol in \mathscr{L} and R is some relation symbol in \mathscr{L}.

Let $L_{o g}$ be the language $\{0,+,-,<\}$ of ordered groups. Let L be the language $L_{o g} \cup L_{r} \cup L_{c}$, where L_{r} and L_{c} are sets of relation and constant symbols, respectively. Let H be an L-structure whose reduct to the language $L_{o g}$ is an

[^0]ordered abelian group. Let K be an ordered abelian group and an $L_{o g}$-structure. Let I be a new unary relation symbol. We now give the lexicographic product $G:=H \times K$ as an $L \cup\{I\}$-structure by the following interpretation:
(1) $0^{G}:=\left(0^{H}, 0^{K}\right)$;
(2) $c^{G}:=\left(c^{H}, 0^{K}\right)$ for each $c \in L_{c}$;
(3) + and - are defined coordinatewise;
(4) $<$ is the lexicographic order of H and K;
(5) For each n-ary relation symbol $R \in L_{r}$,
$$
R^{G}:=\left\{\left(g_{1}, \ldots, g_{n}\right) \in G^{n} \mid\left(h_{1}, \ldots, h_{n}\right) \in R^{H}\right\}
$$
where h_{i} is the first coordinate of g_{i}
(6) $I^{G}:=\{0\} \times K$.

We call this interpretation the product interpretation of H and K.
Let s, t and u be terms. Then, the formula $s<t \wedge t<u$ is written as $s<t<u$.

Lemma 1. Let $G=H \times K$ be the above structure and $\bar{g}=\left(g_{1}, \ldots, g_{n}\right)$ a tuple of elements from G. For each $i \leq n$, let $g_{i}=\left(h_{i}, k_{i}\right)$ with $h_{i} \in H$ and $k_{i} \in K$. Let $\bar{h}=\left(h_{1}, \ldots, h_{n}\right)$. Let $\varphi(\bar{x})$ be a quantifier-free L-formula. Then there exists a quantifier-free $L \cup\{I\}$-formula $\varphi^{*}(\bar{x})$ such that $H \models \varphi(\bar{h})$ if and only if $G \models \varphi^{*}(\bar{g})$.

Proof. Let $\varphi(\bar{x})$ be a quantifier-free L-formula. Then the formula $\varphi(\bar{x})$ is a Boolean combination of the forms $t(\bar{x})=0,0<t(\bar{x})$ and $R\left(t_{1}(\bar{x}), \ldots, t_{m}(\bar{x})\right)$, where t, t_{1}, \ldots, t_{m} are terms and R is an m-ary relation symbol. Let $\varphi^{*}(\bar{x})$ be the formula obtained from $\varphi(\bar{x})$ by replacing $t(\bar{x})=0$ and $0<t(\bar{x})$ with $I(t(\bar{x}))$ and $0<t(\bar{x}) \wedge \neg I(t(\bar{x}))$, respectively. Then $H \models \varphi(\bar{h})$ if and only if $G \models \varphi^{*}(\bar{g})$.

We give the new structures to show recursive axiomatizability in Theorem 3.
For any model G^{*} of $\operatorname{Th}(G)$, we consider the structures H^{*}, K^{*} such that $K^{*}:=\left\{g \in G^{*} \mid g \vDash I(x)\right\}$ and $H^{*}:=\left\{g / \sim \mid g \in G^{*}\right\}$, where an equivalent relation \sim on G^{*} by $a \sim b \Leftrightarrow a-b \in K^{*}$. Then H^{*} is an ordered abelian group as an L structure, K^{*} is an ordered abelian group as an $L_{o g}$-structure. Then we notice that $H \equiv H^{*}$ and $K \equiv K^{*}$. Moreover we obtain that $G^{*} \equiv_{L \cup\{I\}} H^{*} \times K^{*}$ by the next lemma.

Lemma 2. Suppose that H, K, H^{*}, K^{*} are the above structures. Then we obtain that $H \times K \equiv H^{*} \times K^{*}$ in the language $L \cup\{I\}$, where $H^{*} \times K^{*}$ is the product interpretation of H^{*} and K^{*}.

Proof. It suffices to show that $H \times K \equiv H^{*} \times K^{*}$ for any finite language of $L \cup\{I\}$. We fix L^{\prime} as a finite language of $L \cup\{I\}$ and may assume that L^{\prime} contains $L_{o g}$ and $\{I\}$. According to [1, Corollary 3.3.3], we have to prove the followings:

$$
\text { for each } n<\omega, \quad H \times K \approx_{n} H^{*} \times K^{*} .
$$

When A, B are the same structures with a finite language, $A \approx_{n} B$ means that for any n-tuple $\left(c_{1}, \ldots, c_{n}\right)$ in $A \cup B$, there exists partial isomorphism f from A to B such that we find some n-tuple $\left(d_{1}, \ldots, d_{n}\right)$ in $A \cup B$ satisfying the following conditions: for each $i \leq n$ if $c_{i} \in A$ (B, respectively) then let $a_{i}=c_{i}$ and $b_{i}=d_{i}=$ $f\left(c_{i}\right) \in B$ (let $b_{i}=c_{i}$ and $a_{i}=d_{i}=f^{-1}\left(c_{i}\right) \in A$, respectively) and $A \models \varphi\left(a_{1}, \ldots, a_{n}\right)$ $\Leftrightarrow B \models \varphi\left(b_{1}, \ldots, b_{n}\right)$ for any unnested atomic formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$.

The unnested atomic L-formulas are of the formulas of the forms $x=y$, $y=c, y=0, x_{0}+x_{1}=y,-x=y, R(\bar{x}), x_{0}<x_{1}, I(x)$, where x, y, x_{0}, x_{1} and n-tuple \bar{x} are free variables.

For $n<\omega$, let $\left(c_{1}, \ldots, c_{n}\right)$ be any n-tuple from $(H \times K) \cup\left(H^{*} \times K^{*}\right)$. When we see it coordinatewisely, we have partial isomorphisms $f: H \rightarrow H^{*}$ and $g: K \rightarrow K^{*}$ satisfying the above condition. We will obtain some n-tuple $\left(d_{1}, \ldots, d_{n}\right)$ as follows: for $i \leq n$ if c_{i} is in $H \times K$ then we split it into $c_{i}=\left(h_{i}, k_{i}\right)$ and let $a_{i}=c_{i}$ and $b_{i}=d_{i}=\left(h_{i}^{*}, k_{i}^{*}\right)=\left(f\left(h_{i}\right), g\left(k_{i}\right)\right) \in H^{*} \times K^{*}$. If c_{i} is in $H^{*} \times K^{*}$ then we let $b_{i}=c_{i}$ and $a_{i}=d_{i}=\left(h_{i}, k_{i}\right)=\left(f^{-1}\left(h_{i}^{*}\right), g^{-1}\left(k_{i}^{*}\right)\right) \in H \times K$ similarly. Then we have that $H \times K \models \varphi\left(a_{1}, \ldots, a_{n}\right) \Leftrightarrow H^{*} \times K^{*} \models \varphi\left(b_{1}, \ldots, b_{n}\right)$ for every unnested atomic L^{\prime}-formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$.

In the case of " $x_{0}+x_{1}=y$ " we obtain that $a_{i}+a_{j}=a_{l} \Leftrightarrow\left(h_{i}, k_{i}\right)+$ $\left(h_{j}, k_{j}\right)=\left(h_{l}, k_{l}\right) \Leftrightarrow\left(h_{i}+h_{j}=h_{l}\right.$ and $\left.k_{i}+k_{j}=k_{l}\right) \Leftrightarrow\left(f\left(h_{i}\right)+f\left(h_{j}\right)=f\left(h_{l}\right)\right.$ and $\left.g\left(k_{i}\right)+g\left(k_{j}\right)=g\left(k_{l}\right)\right) \Leftrightarrow\left(h_{i}^{*}+h_{j}^{*}=h_{l}^{*}\right.$ and $\left.k_{i}^{*}+k_{j}^{*}=k_{l}^{*}\right) \Leftrightarrow\left(h_{i}^{*}, k_{i}^{*}\right)+\left(h_{j}^{*}, k_{j}^{*}\right)=$ $\left(h_{l}^{*}, k_{l}^{*}\right) \Leftrightarrow b_{i}+b_{j}=b_{l}$.

Moreover we can also argue the other cases similarly. Therefore it holds that $H \times K \approx_{n} H^{*} \times K^{*}$.

We now give a simple proof for Suzuki's results [4].
Theorem 3. Let $G=H \times K$ be the above structure. If the ordered abelian group H admits quantifier elimination in L and the ordered abelian group K is divisible, then the ordered abelian group G admits quantifier elimination in $L \cup\{I\}$. Moreover, if H is recursively axiomatizable, then so is G.

Proof. Let $\exists x \varphi(x, \bar{y})$ be an $L \cup\{I\}$-formula, where $\varphi(x, \bar{y})$ is a quantifierfree $L \cup\{I\}$-formula. We may assume that the formula φ is of the form $\varphi_{1} \wedge \cdots \wedge \varphi_{j}$, where each φ_{i} is an atomic formula or the negation of an atomic
formula. Since $\varphi(x, \bar{y})$ is a quantifier-free $L \cup\{I\}$-formula, the formula $\varphi(x, \bar{y})$ is a Boolean combination of the forms $m x=t(\bar{y}), t(\bar{y})<m x, m x<t(\bar{y}), I(s(x, \bar{y}))$ and $R\left(s_{1}(x, \bar{y}), \ldots, s_{l}(x, \bar{y})\right)$, where l, m are positive integers, $t, s, s_{1}, \ldots, s_{l}$ are terms and R is an l-ary relation symbol. Now the formulas $t=s$ and $t<s$ are equivalent to $n t=n s$ and $n t<n s$ for each positive integer n, respectively. Hence, we may assume that the formula $\varphi(x, \bar{y})$ is equivalent to either $t(\bar{y})<m x<$ $u(\bar{y}) \wedge \psi(x, \bar{y})$ or $m x=s(\bar{y}) \wedge \psi(x, \bar{y})$, where the formula $\psi(x, \bar{y})$ is a finite conjunction of formulas of the forms $I, R\left(s_{1}, \ldots, s_{l}\right)$ or negation of these.

Let the formula $\varphi(x, \bar{y})$ be $t(\bar{y})<m x<u(\bar{y}) \wedge \psi(x, \bar{y})$. Let $\bar{g}=\left(g_{1}, \ldots, g_{n}\right)$ be a tuple of elements from the ordered abelian group G. For each $i \leq n$, let $g_{i}=\left(h_{i}, k_{i}\right)$ with $h_{i} \in H$ and $k_{i} \in K$. Let $\bar{h}=\left(h_{1}, \ldots, h_{n}\right)$ and $\bar{k}=\left(k_{1}, \ldots, k_{n}\right)$. Let $\psi^{1}(x, \bar{y})$ be the formula obtained from $\psi(x, \bar{y})$ by replacing $I(t(x, \bar{y}))$ with $t(x, \bar{y})=0$. Let $t^{2}(\bar{y}) \quad\left(u^{2}(\bar{y})\right)$ be the term obtained from $t(\bar{y})(u(\bar{y}))$ by replacing each $c \in L_{c}$ with 0 . Then $G \models \exists x(t(\bar{g})<m x<u(\bar{g}) \wedge \psi(x, \bar{g}))$ if and only if
(1) $H \models \exists x\left(t(\bar{h})<m x<u(\bar{h}) \wedge \psi^{1}(x, \bar{h})\right)$,
(2) $H \models \exists x\left(t(\bar{h})=m x<u(\bar{h}) \wedge \psi^{1}(x, \bar{h})\right)$ and $K \models \exists x\left(t^{2}(\bar{k})<m x\right)$,
(3) $H \models \exists x\left(t(\bar{h})<m x=u(\bar{h}) \wedge \psi^{1}(x, \bar{h})\right)$ and $K \models \exists x\left(m x<u^{2}(\bar{k})\right)$, or
(4) $H \models \exists x\left(t(\bar{h})=m x=u(\bar{h}) \wedge \psi^{1}(x, \bar{h})\right)$ and $K \models \exists x\left(t^{2}(\bar{k})<m x<u^{2}(\bar{k})\right)$.

Since the ordered abelian group H admits quantifier elimination in L and the ordered abelian group K is divisible, there exist quantifier-free L-formulas $\theta_{1}(\bar{y})$, $\theta_{2}(\bar{y}), \theta_{3}(\bar{y})$ and $\theta_{4}(\bar{y})$ such that $G \models \exists x(t(\bar{g})<m x<u(\bar{g}) \wedge \psi(x, \bar{g}))$ if and only if
(1) $H \models \theta_{1}(\bar{h})$,
(2) $H \models \theta_{2}(\bar{h})$,
(3) $H \models \theta_{3}(\bar{h})$, or
(4) $H \models \theta_{4}(\bar{h}) \wedge t(\bar{h})=u(\bar{h})$ and $K \models t^{2}(\bar{k})<u^{2}(\bar{k})$.

By Lemma 1, there exist quantifier-free $L \cup\{I\}$-formulas $\theta_{1}^{*}(\bar{y}), \theta_{2}^{*}(\bar{y}), \theta_{3}^{*}(\bar{y})$ and $\theta_{4}^{*}(\bar{y})$ such that $G \models \exists x(t(\bar{g})<m x<u(\bar{g}) \wedge \psi(x, \bar{g}))$ if and only if
(1) $G \models \theta_{1}^{*}(\bar{g})$,
(2) $G \models \theta_{2}^{*}(\bar{g})$,
(3) $G \models \theta_{3}^{*}(\bar{g})$, or
(4) $G \models \theta_{4}^{*}(\bar{g}) \wedge t(\bar{g})<u(\bar{g}) \wedge I(u(\bar{g})-t(\bar{g}))$.

Hence, the formula $\exists x(t(\bar{y})<m x<u(\bar{y}) \wedge \psi(x, \bar{y}))$ is equivalent to a quantifierfree $L \cup\{I\}$-formula.

Similarly, the formula $\exists x(m x=s(\bar{y}) \wedge \psi(x, \bar{y}))$ is equivalent to a quantifierfree $L \cup\{I\}$-formula. It follows that the ordered abelian group G admits quantifier elimination in $L \cup\{I\}$.

Last we show that in the theorem, if H is recursively axiomatizable, so is G. By lemma 2, for any model G^{*} of $\operatorname{Th}(G)$ there exist $H^{*} \models \operatorname{Th}(H)$ and
$K^{*} \models \operatorname{Th}(K)$ such that G^{*} is elementarily equivalent to $H^{*} \times K^{*}$. Thus we have G is recursively axiomatizable since H is recursively axiomatizable.

Finally we show the converse of Suzuki's results.
Theorem 4. Let $G=H \times K$ be the above structure. If the ordered abelian group G admits quantifier elimination in $L \cup\{I\}$, then the ordered abelian group H admits quantifier elimination in L and the ordered abelian group K is divisible. Moreover if G is recursively axiomatizable, then so is H.

Proof. First, we show that the ordered abelian group H admits quantifier elimination in L. Let $\exists x \varphi(x, \bar{y})$ be an L-formula, where $\varphi(x, \bar{y})$ is a quantifierfree L-formula. Since $\varphi(x, \bar{y})$ is a quantifier-free L-formula, the formula $\varphi(x, \bar{y})$ is a Boolean combination of the forms $m x=t(\bar{y}), t(\bar{y})<m x, m x<t(\bar{y})$ and $R\left(s_{1}(x, \bar{y}), \ldots, s_{l}(x, \bar{y})\right)$, where l, m are positive integers, $t, s, s_{1}, \ldots, s_{l}$ are terms and R is an l-ary relation symbol.

Let $\varphi^{*}(x, \bar{y})$ be the formula obtained from $\varphi(x, \bar{y})$ by replacing $m x=t(\bar{y})$, $t(\bar{y})<m x$ and $m x<t(\bar{y})$ with $I(t(\bar{y})-m x), t(\bar{y})<m x \wedge \neg I(t(\bar{y})-m x)$ and $m x<t(\bar{y}) \wedge \neg I(t(\bar{y})-m x)$, respectively. Let $\bar{h}=\left(h_{1}, \ldots, h_{n}\right)$ be a tuple of elements from the ordered abelian group H. Then, we have

$$
H \models \exists x \varphi(x, \bar{h}) \Leftrightarrow G \models \exists x \varphi^{*}(x,(\overline{h, 0})),
$$

where $(\overline{h, 0}):=\left(\left(h_{1}, 0\right), \ldots,\left(h_{n}, 0\right)\right)$. Since the ordered abelian group G admits quantifier elimination in $L \cup\{I\}$, there exists a quantifier-free $L \cup\{I\}$-formula $\psi(\bar{y})$ such that

$$
G \models \exists x \varphi^{*}(x,(\overline{h, 0})) \Leftrightarrow G \models \psi((\overline{h, 0})) .
$$

Let $\psi^{\prime}(\bar{y})$ be the formula obtained from $\psi(\bar{y})$ by replacing $I(t(\bar{y}))$ with $t(\bar{y})=0$. Then we have

$$
G \models \psi((\overline{h, 0})) \Leftrightarrow H \models \psi^{\prime}(\bar{h}) .
$$

It follows that the ordered abelian group H admits quantifier elimination in L.
Next, we show that the ordered abelian group K is divisible. Let $a \in K$. Let n be a positive integer. Since the ordered abelian group G admits quantifier elimination in $L \cup\{I\}$, there exists a quantifier-free $L \cup\{I\}$-formula $\theta_{n}(x)$ such that

$$
G \models \exists y((0, a)=n y \wedge I(y)) \leftrightarrow \theta_{n}((0, a)) .
$$

We have $G \models \theta_{n}((0,0))$. Suppose that $a>0$. Then we have $G \models \theta_{n}((0, n a))$. Now the formula $\theta_{n}(x)$ is a Boolean combination of the forms $m x=t, t<m x, m x<t$, $I(m x+t)$ and $R\left(m_{1} x+s_{1}, \ldots, m_{l} x+s_{l}\right)$, where $l, m, m_{1}, \ldots, m_{l}$ are positive inte-
gers, t, s_{1}, \ldots, s_{l} are terms which do not contain a free variable and R is an l-ary relation symbol. Notice that $t^{K}=0, s_{1}^{K}=0, \ldots, s_{l}^{K}=0$.

In the case that $G \models m(0, n a)=t$, we have $a=0$, a contradiction.
In the case that $G \models t<m(0, n a)$, we have $t^{H} \leq 0$. Hence $G \models t<m(0, a)$.
In the case that $G \models m(0, n a)<t$, we have $G \models m(0, a)<t$ by $a>0$.
In the case that $G \models I(m(0, n a)+t)$, we have $t^{H}=0$. Hence $G \models$ $I(m(0, a)+t)$.

In the case that $G \models R\left(m_{1}(0, n a)+s_{1}, \ldots, m_{l}(0, n a)+s_{l}\right)$, since R^{G} depends only on $R^{H}, G \models R\left(m_{1}(0, a)+s_{1}, \ldots, m_{l}(0, a)+s_{l}\right)$.

Hence, if $a>0$, then $G \models \theta_{n}((0, a))$. Similarly, if $a<0$, then $G \models \theta_{n}((0, a))$. It follows that the ordered abelian group K is divisible.

Last we show that if G is recursively axiomatizable, then so is H. However we can show it like the proof of Theorem 4.

Acknowledgements

We are grateful to Akito Tsuboi for useful comments and suggestions.

References

[1] W. Hodges, A shorter model theory, Cambridge University Press, 1997.
[2] Y. Komori, Completeness of two theories on ordered abelian groups and embedding relations, Nagoya Math. J. 77 (1980), 33-39.
[3] D. Marker, Model theory: an introduction, GTM 217, Berlin Heidelberg New York, Springer, 2002.
[4] N. Suzuki, Quantifier elimination results for products of ordered abelian groups, Tsukuba J. Math. 28 (2004), 291-301.
[5] K. Tanaka, On the theory of ordered groups, Kobe J. Math. 5 (1988), 117-122.
[6] V. Weispfenning, Elimination of quantifiers for certain ordered and lattice-ordered abelian groups, Bulletin de la Société Mathématique de Belgique, Ser. B 33 (1981), 131-155.

Hiroshi Tanaka
Department of Mathematics Faculty of Science
Okayama University 1-1
Naka 3-chome, Tsushima
Okayama 700-8530, Japan
E-mail address: htanaka@math.okayama-u.ac.jp
Hirokazu Yokoyama
Department of Mathematics Faculty of Science
Okayama University 1-1
Naka 3-chome, Tsushima
Okayama 700-8530, Japan
E-mail address: hiro_y@math.okayama-u.ac.jp

[^0]: 2000 Mathematics Subject Classification: 03C10, 03C64, 06F20.
 Key words and phrases: ordered abelian groups, quantifier elimination.
 Received August 8, 2005.
 Revised December 27, 2005.

