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THE INTEGRATED DENSITY OF STATES OF ONE-

DIMENSIONAL RANDOM SCHRÖDINGER OPERATOR

WITH WHITE NOISE POTENTIAL AND BACKGROUND

By

Katsumi Nagai

1. Introduction

We consider the Integrated Density of States (IDS), NðlÞ, l A R, of the

fomally defined operator H,

H ¼ � 1

rðtÞ
d

dt

1

pðtÞ
d

dt

� �
þ qðtÞ

rðtÞ þ
cB 0ðtÞ
rðtÞ ; 0a t < y;ð1:1Þ

i.e., the limit of the normalized distribution function of the eigenvalues of Hl

which is the restriction of H to L2ðð0; lÞ : rðtÞ dtÞ under the boundary conditions,

ðb:cÞa;b
jð0Þ cos a� 1

pð0Þ j
0ð0Þ sin a ¼ 0;

jðlÞ cos b � 1
pðl Þ j

0ðlÞ sin b ¼ 0;

(

where ðBðtÞÞtb0 is the standard Brownian motion and B 0ðtÞ is the derivative of

its sample function, namely the white noise. ðpðtÞÞtb0, ðqðtÞÞtb0 and ðrðtÞÞtb0 are

bounded semi-martingales which we shall call the background, and c is a coupling

constant.

NðlÞ is defined by

NðlÞ :¼ lim
l!y

1

l
Nðl; l;oÞ;

where we denote by Nðl; l;oÞ the number of eigenvalues of Hl which are less

than or equal to l.

The main purpose of this paper is to improve Theorem of [5] and Theorem

ðbÞ of [12] cited below, simplifying their proofs at the same time.

Proposition 1.1 ([5]). Suppose that pðtÞ1 1, qðtÞ1 0, rðtÞ1 1 and c ¼ 1.

Then
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NðlÞ ¼
ffiffiffiffiffiffi
2p

p ðy
0

1ffiffiffi
x

p exp � 1

6
x3 � 2lx

� �
dx

� ��1

:

Proposition 1.2 ([12]). Suppose that qðtÞ1 0, c ¼ 1 and

(i) ðpðtÞÞ, ðrðtÞÞ are nonanticipating with respect to sðBðsÞ: 0a sa tÞ,
(ii) p1 a pðtÞa p2, r0 a rðtÞ for some p1, p2 and r0 A ð0;yÞ,
(iii) There exists an ergodic homogeneous stochastic processes MðT ;oÞ,

and a positive function hðTÞ such that supTataTþ2pðjp 0ðtÞj þ jr 0ðtÞjÞa
hðTÞMðTÞ and hðTÞ ! 0 as T ! y,

(iv) pðtÞ ! pðyÞ and rðtÞ ! rðyÞ as t ! y.

Then

NðlÞ ¼
ð p

0

uðxÞ dx
� ��1

;

where uðxÞ is the bounded solution of the equation

1

2
sin4 xu 0ðxÞ þ bðxÞuðxÞ ¼ 1; 0 < x < p;

where bðxÞ ¼ pðyÞ cos2 xþ lrðyÞ sin2 xþ sin3 x cos x.

We shall derive the IDS concretely when the background is continuous

semi-martingales that have limit at y. To state the main result, we assume the

following conditions: let ðpoðtÞÞtb0, ðqoðtÞÞtb0, ðroðtÞÞtb0 be continuous semi-

martingales on a probability space ðW;F;PÞ with a filtration ðFtÞtb0, namely pðtÞ
is expressed as poðtÞ ¼ pðtÞ ¼ pð0Þ þMpðtÞ þ ApðtÞ where Mp ðMð0Þ ¼ 0 a:sÞ is

a continuous local ðFtÞ-martingale and ApðtÞ ðAð0Þ ¼ 0 a:sÞ is a continuous ðFtÞ-
adapted process whose sample functions ðt 7! ApÞ are of bounded variation on

any finite interval a.s., and pð0Þ is an F0-measurable random variable. ðBoðtÞÞtb0

is an ðFtÞ-Brownian motion. Moreover pðtÞ, MpðtÞ and ApðtÞ satisfy following

conditions.

(A.1): there exist that MpðyÞ :¼ limt!y MpðtÞ, ApðyÞ :¼ limt!y ApðtÞ a.s

(A.2): For some 0 < c1 < c2, c3 A R, which are independent of o, c1 a pðtÞ,
rðtÞa c2, jqðtÞja c3.

(A.3):
Ð l

0 tjdApj ¼ oðlÞ as l ! y,
Ð l

0 t
2dhMpi ¼ Oðl dÞ for some 0 < d < 2 as

l ! y.

When qðtÞ and rðtÞ are expressed similarly, we suppose that each martingale part

and each part of bounded variation part also satisfy the above conditions.

Then the main result is the following.
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Theorem 1.1. Under the assumptions (A.1), (A.2) and (A.3), we have

NðlÞ ¼
ð p

0

uðx; pðyÞ; qðyÞ; rðyÞÞ dx
� ��1

;

where, for each ðp; q; rÞ A R3, the function uðxÞ ¼ uðx; p; q; rÞ, 0 < x < y, is the

bounded solution of the equation

1

2
s2ðxÞu 0ðxÞ þ bðx; p; q; rÞuðxÞ ¼ 1; 0 < x < p;ð1:2Þ

sðxÞ :¼ c sin2 x and bðx; p; q; rÞ :¼ p cos2 xþ ð�qþ lrÞ sin2 xþ c2 sin3 x cos x.

Actually, we can write down the bounded solution of (1.2) explicitly. Thus we

obtain the following corollary.

Corollary 1.1. Under the same assumption of Theorem 1.1, we have

NðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p

c2pðyÞ

s ðy
0

1ffiffiffi
x

p exp � 1

c2

pðyÞ
6

x3 þ 2ð�qðyÞ þ lrðyÞÞx
� �� �

dx

 !�1

:

Proof. By the proof of Lemma 4.2, the bounded solution u of (1.2) is given

explicitly as uðxÞ ¼ 2SðxÞ
Ð x

0 dy=s2ðyÞSðyÞ, where SðxÞ ¼ exp½�2
Ð x
p=2 bðy; p; q; rÞ=

s2ðyÞ dy�. From this expression, we obtain

SðxÞ ¼ Sðx; p; q; rÞ ¼ exp½ð2=c2Þfðp=3Þ cot3 xþ ð�qþ lrÞ cot xg�=sin2 x;

and here we can compute, by making change of variable twice,

ð p
0

uðv; p; q; rÞ dv

¼ 2

c2

ðy
�y

exp
2

c2

p

3
z3 þ ð�qþ lrÞz

� �� �
dz

�
ðy
z

exp � 2

c2

p

3
y3 þ ð�qþ lrÞy

� �� �
dy

¼ 2

c2

ðy
0

exp � 1

c2

p

6
x3 þ 2ð�qþ lrÞx

� �� �
dx�

ðy
�y

exp � 2px

c2
zþ x

2

� �2
( )

dz

¼ 2

c2

ðy
0

exp � 1

c2

p

6
x3 þ 2ð�qþ lrÞx

� �� � ffiffiffiffiffiffiffiffi
pc2

2px

s
dx: r
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Remark 1.1. When pðtÞ ¼ rðtÞ ¼ 1, qðtÞ ¼ 0 and c ¼ 1, we derive NðlÞ as

given by Proposition 1.1. This is contained the above corollary.

In the remainder of this section we give a brief outline of this paper. In

Section 2, we define the operator Hl rigorously. This argument is necessary since

the Brownian motion BðtÞ is not di¤erentiable in t. We here follow Savchuk and

Shkalikov [11] to define the Schrödinger operator

H :¼ � 1

rðtÞ
d

dt

1

pðtÞ
d

dt

� �
þ qðtÞ

rðtÞ þ
Q 0ðtÞ
rðtÞ

in L2ðð0; lÞ; rðtÞ dtÞ for any Q A L2
locðR : RÞ and ðpðtÞÞ, ðqðtÞÞ and ðrðtÞÞ A CðR;RÞ.

In fact introducing the quasi derivative f½1�ðtÞ :¼ f 0ðtÞ=pðtÞ �QðtÞfðtÞ as in [11],

we can write

HfðtÞ ¼ � 1

rðtÞ ðf
½1� 0ðtÞ þ pðtÞQðtÞf½1�ðtÞ þ pðtÞQ2ðtÞfðtÞ � qðtÞfðtÞÞ:

Since Q is a real function, Hl can be realized as a self-adjoint operator, whose

domain is given by

DðHÞ ¼ fj A ACð0; lÞ j j½1� A ACð0; lÞ; j satisfies ðb:cÞa;bg;

where ACð0; lÞ is the set of all absolutely continuous functions on ð0; lÞ. The

spectrum of Hl is discrete since Hl has a compact resolvent. Futhermore when Q

is locally bounded, the self-adjoint operator is bounded from below. Two other

definitions of the operator corresponding to the expression Hl have been known:

Fukushima and Nakao [5] defined it as self-adjoint operators on L2ð0; lÞ which

is associated with a closed symmetric form. In [8], Minami defined it through

formal integration by parts (1.1). One advantage of the method of introducing

the quasi derivative is that it makes valid, with little modification, the classical

proof of the Sturm-Liouville Oscillation theorem as given e.g. in [13], also for

operators with singular potentials like our Hl . This will be verified in Section 3.

In Section 4, we prove Theorem 1.1. As in [5], we introduce the phase function

yðtÞ of the solution f of Hlf ¼ lf, fð0Þ ¼ sin a, f 0ð0Þ=pð0Þ ¼ cos a by Prü¤er

transformation. The Sturm-Liouville Oscillation theorem implies Nðl; l;oÞ ¼
½ðyðl; lÞ � bÞ=p� þ 1. Therefore NðlÞ ¼ p�1 liml!y yðlÞ=l. Our proof follows the

same line as in [12], but it is simplified in some technical points.

2. Schödinger Operator with Singular Potential

In this section, following [11], we define the Schrödinger operator of the type
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H :¼ � 1

rðtÞ
d

dt

1

pðtÞ
d

dt

� �
þ qðtÞ

rðtÞ þ
Q 0ðtÞ
rðtÞ ; 0a ta l;

with Q A L2
locðRÞ and continuous functions p, q and r, on the Hilbert space

L2ðð0; lÞ; rðtÞ dtÞ, and show its self-adjointness. Let Q A L2
locðR;RÞ. For any

absolutely continuous j, we define the quasi derivative j½1� of j by

j½1� :¼ j 0ðtÞ
pðtÞ �QðtÞjðtÞ,

and we formally rewright H in the form,

Hj ¼ � 1

r
fðj½1�Þ 0 þ pQj½1� þ pQ2j� qjg:ð2:1Þ

We can express (2.1) without Q 0, so (2.1) is meaningful if j and j½1� are ab-

solutely continuous function. Let us define the maximal operator HM as follows:

DðHMÞ :¼ fj A L2ð½0; l�; rðtÞ dtÞ j j; j½1� A ACð0; lÞ; hðjÞ A L2ð½0; l�; rðtÞ dtÞg;

HMj :¼ � 1

r
fðj½1�Þ 0 þ pQj½1� þ pQ2j� qjg for j A DðHMÞ;

where ACð0; lÞ is the set of all absolutely continuous functions on ð0; lÞ. We also

define the minimal operator Hm as the restriction of HM to the domain

DðHmÞ :¼ fj A DðHMÞ j jð0Þ ¼ jðlÞ ¼ j½1�ð0Þ ¼ j½1�ðlÞ ¼ 0g:

The following lemma is contained in Section 3.8 Problem 1 of [2] and

Theorem 2.1 of [13].

Lemma 2.1 (Savchuk and Shkalikov [11] Theorem 0). Let f be in

L1
locðrðtÞ dt;C

nÞ and A be in L1
locðrðtÞ dt;C

n nCnÞ. Then, for any s A ½0; l � and

x A Cn, an equation y 0ðtÞ ¼ AðtÞyðtÞ þ f ðtÞ, yðsÞ ¼ x has a unique solution in

ACð0; lÞ.

Proof. We can verify the claim by successive approximation as follows.

y0ðtÞ ¼ x;

ykðtÞ ¼ xþ
Ð t
s
AðxÞyk�1ðxÞ dxþ

Ð t
s
f ðxÞ dx; kb 1:

�

Then ðykÞk converges uniformly to the unique solution. r

Using Lemma 2.1, we define the solution of the equation

hðjÞ ¼ ljþ fð2:2Þ
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for any l A C, f A L2
locðrðtÞ dt;CÞ in the following way. We rewrite ð2:2Þ as

follows.

ð#Þ d

dt

j

j½1�

� �
¼ pQ p

�pQ2 � lrþ q �pQ

� �
j

j½1�

� �
þ 0

�rf

� �

Since p, q and r are continuous and Q A L2
locðRÞ, each component of the co-

e‰cient matrix

pQ p

�pQ2 � lrþ q �pQ

� �

is a locally integrable function. By Lemma 2.1, under a given initial condition the

above normal system has a unique solution.

Definition 2.1 (Savchuk and Shkalikov [11] Definition 1). A square rðtÞ-
integrable function j on R is said to be a solution of ð2:2Þ under a given initial

condition if j coincides with the first component of the solution of the system ð#Þ
under the same initial condition.

We characterize the self-adjointness of Hl . To do so, we quote several

lemmas.

Lemma 2.2 (Lagrange formula [11] Lemma 1). For any j A DðHMÞ and

c A DðHMÞ,

ðHMj;cÞ ¼ ðj;HMcÞ þ ½j;c�l0ð2:3Þ

where

½j;c�l0 :¼ ½�j½1�ðtÞcðtÞ þ jðtÞc½1�ðtÞ�t¼l
t¼0:

Proof. See [11]. r

Using Lemma 2.2, we have the following lemma.

Lemma 2.3 ([11] Lemmas 2, 3 and 4). (i) DðHmÞ is dense in L2ð½0; l�; rðtÞ dtÞ.
(ii) HM ¼ H �

m and H �
M ¼ Hm.

(iii) For any l A C, dim KerðHM � lÞ ¼ 2.

(iv) RanðHmÞ ? KerðHMÞ.

Proof. See [11]. r
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Lemma 2.4. Let Q A L2
locðR;RÞ and H be a self-adjoint extension of Hm. Then

there are w1 and w2 A DðHÞnDðHmÞ such that they are linearly independent and the

domain of H is expressed as follows:

DðHÞ ¼ fj A DðH �
mÞ j j ¼ c0 þ a1w1 þ a2w2 for some c0 A DðHmÞ a1; a2 A Cg:

Proof. See Reed and Simon [9] [Vol II Theorem X.2 (page 140)]. r

Lemma 2.5 ([4]). Let S be a subspace of DðH �
mÞ which includes DðHmÞ. Then

the restriction of H �
m to S is a self-adjoint extension of Hm if and only if S ¼ S �,

where S � :¼ fy A DðH �
mÞ j ½y; f�

l
0 ¼ 0; Ef A Sg.

Proof. See [4] (XII.4.16, Lemma 16 (b) page 1231). r

Then we have the following.

Proposition 2.1 (Savchuk and Shkalikov [11] Theorem 2). Let Q A

L2
locðR;RÞ. Then a closed symmetric extension H of Hm is self-adjoint if and only

if H has its domain as

DðHÞ ¼ fj A DðH �
mÞ jBjðjÞ ¼ 0; j ¼ 1; 2g;

where

BjðjÞ :¼ aj1jð0Þ þ aj2j
½1�ð0Þ þ bj1jðlÞ þ bj2j

½1�ðlÞ; j ¼ 1; 2;

for some ajk; bjk A C, ð j; k ¼ 1; 2Þ such that

aj1ak2 � aj2ak1 ¼ bj1bk2 � bj2bk1; ð j; k ¼ 1; 2Þ

and that rank A ¼ 2. Here A is a matrix given by

A :¼

a12 a22

a11 a21

b12 b22

b11 b21

0
BBB@

1
CCCA:

Proof. We follow Ahiezer and Glazman [1] (APPENDIX II.3) to prove the

assertion. We suppose that H is a self-adjoint extension of Hm. Let j A DðH �
mÞ.

By Lemma 2.2 and Lemma 2.3, j A DðHÞ is equivalent to saying ðHc; jÞ ¼
ðc;H �

mjÞ for any c A DðHÞ. This is, in turn, equivalent to saying ½j;c�l0 ¼ 0 for

any c A DðHÞ. By Lemma 2.4, there are w1;w2 A DðHÞnDðHmÞ which are linearly
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independent, so that any element c of DðHÞ is of the form c ¼ c0 þ a1w1 þ a2w2,

for some c0 A DðHmÞ, and a1; a2 A C. So, ½j;c�l0 ¼ 0 for any c A DðHÞ is equiva-

lent to saying a1½j;w1�l0 þ a2½j;w2�l0 ¼ 0 for any a1; a2 A C, namely to saying

½j;w1�l0 ¼ ½j;w2�l0 ¼ 0. If we set

aj1 :¼ w
½1�
j ð0Þ; aj2 :¼ �wjð0Þ; bj1 :¼ �w

½1�
j ðlÞ; bj2 :¼ wjðlÞ; j ¼ 1; 2;

then BjðjÞ :¼ �½j;wj�l0 ¼ 0, j ¼ 1; 2. Moreover aj1ak2 � aj2ak1 ¼ bj1bk2 � bj2bk1

for j; k ¼ 1; 2 since ½wj;wk�l0 ¼ 0 for j; k ¼ 1; 2. Since w1 is independent of w2, we

have rank A ¼ 2.

Conversely suppose that the domain D of H is given as above. By (iii) of

Lemma 2.3, we can take a basis fu1; u2g of KerðHMÞ. Let vj, j ¼ 1; 2, be the

solutions of HMvj ¼ uj such that vjðlÞ ¼ v
½1�
j ðlÞ ¼ 0, j ¼ 1; 2. If we assume that

ðv1ð0Þ; v½1�1 ð0ÞÞ and ðv2ð0Þ; v½1�2 ð0ÞÞ are not linearly independent, there exists a1, a2

such that ða1; a2Þ0 ð0; 0Þ and a1v1 þ a2v2 A DðHmÞ. Then Hmða1v1 þ a2v2Þ ¼
a1u1 þ a2u2. The left hand side is an element of RanðHmÞ and not zero. On the

other hand the right hand side belongs to KerðHMÞ. This contradicts (iv) of

Lemma 2.3. Thus we can take the suitable basis of KerðHMÞ such that v1 and v2

satisfy ðv1ð0Þ; v½1�1 ð0ÞÞ ¼ ð1; 0Þ, ðv2ð0Þ; v½1�2 ð0ÞÞ ¼ ð0; 1Þ. Similarly there exists v3 and

v4 in DðH �
mÞ such that ðv3ð0Þ; v½1�3 ð0Þ; v3ðlÞ; v½1�3 ðlÞÞ ¼ ð0; 0; 1; 0Þ and ðv4ð0Þ; v½1�4 ð0Þ;

v4ðlÞ; v½1�4 ðlÞÞ ¼ ð0; 0; 0; 1Þ. We set wj :¼ �aj2v1 þ aj1v2 þ bj2v3 � bj1v4, j ¼ 1; 2, then

wjð0Þ ¼ �aj2, w
½1�
j ð0Þ ¼ aj1, wjðlÞ ¼ bj2, w

½1�
j ðlÞ ¼ �bj1, j ¼ 1; 2. Since rank A ¼ 2

and v1, v2, v3 and v4 are linearly independent, w1 and w2 are linearly independent.

Moreover rank A ¼ 2 implies that w1 and w2 B DðHmÞ. Then D ¼ ff A DðH �
mÞ j

BjðfÞ ¼ 0; j ¼ 1; 2g and D ¼ D�. Hence the restriction of H �
m to D is a self-

adjoint extension of Hm by Lemma 2.5. r

Remark 2.1. 1. Savchuk and Shkalikov [11] did not state the condition

rank A ¼ 2. But H is not a self-adjoint operator unless rank A ¼ 2 in Proposi-

tion 2.1.

2. When the boundary condition that realizes a self-adjoint extention is

ðb:cÞa;b, the corresponding matrix A in Proposition 2.1 is expressed as follows:

A ¼

�sin a 0

cos a�Qð0Þ sin a 0

0 sin b

0 cos b �QðlÞ sin b

0
BBB@

1
CCCA;

and actually rank A ¼ 2.
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Corollary 2.1. (i) Let Q A L2
locðR;RÞ be a locally bounded function. Then

the self-adjoint extensions of Hm are bounded from below.

(ii) ([11] Theorem 3) The spectrum of each self-adjoint extension of Hm is

purely discrete.

(iii) For the sequence fln; nb 1g of the eigenvalues of the self-adjoint ex-

tension of Hm, ln ! y as n ! y.

Proof of (i). Since p, q, r and Q are bounded on ½0; l �, it is easily seen that

Hm is bounded from below. In fact

ðHmj; jÞ ¼
ð l

0

pðj½1�Þ2
dt�

ð l
0

pQ2j2 dtþ
ð l

0

qj2 dt

b�
ð l

0

p

r
Q2j2r dt�

ð l
0

jqj
r
j2r dt:

Therefore it follows from [9] (Vol II, X.3, Proposition, page 179) that any self-

adjoint extension of Hm is also bounded from below since the deficiency indices

of Hm are equal to f2; 2g by Lemma 2.3.

Proof of (ii), (iii). The deficiency indices of Hm are equal to f2; 2g. Hence

by [10] (Vol IV, page 117, Example 5), it su‰ces to show the assertion when the

boundary condition which realizes self-adjoint extension is ðb:cÞa;b. In this case,

it is well known that the H has compact resolvent (cf. see [1] APPENDIX

II.6, THEOREM 2, page 182). Thus, by [10] (Theorem XIII.64, page 245), when

the sequence of the eigenvalues of H is denoted by fln; nb 1g, ln ! y as

n ! y. r

Remark 2.2. (ii) of Corollary 2.1 is same as Theorem 3 in [11], but the

proof of (ii) of Corollary 2.1 is simpler than that of Theorem 3 in [11].

3. Oscillation Theorem

Using the quasi derivative, we can show the Sturm-Liouville Oscillation

theorem for singular potentials by a minor modification of the classical argument

([13] Theorem 13.2, page 199). Let Q be a real valued bounded measurable

function. Then from what we showed in Section 2, the associated self-adjoint

operator H ¼ Hl with the boundary conditions

jð0Þ cos ~aa� j½1�ð0Þ sin ~aa ¼ 0;

jðlÞ cos ~bb � j½1�ðlÞ sin ~bb ¼ 0

(

has eigenvalues l1 < l2 < l3 < � � � < ln ! y. Then we have the following:
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Proposition 3.1 ([13]). Let Q be a real valued continuous function on ½0;yÞ.
Then the eigenfunction jn ¼ jð�; lnÞ corresponding to ln has exactly n� 1 zeros in

ð0; lÞ.

Outline of Proof. For l A R, let jðt; lÞ be the (real) solution of the

equations

Hlj ¼ lj; jð0Þ ¼ sin ~aa; j½1�ð0Þ ¼ cos ~aa:

We introduce the variables x and h through the following Prü¤er transformation:

ðP:tÞ~aa
jðt; lÞ ¼ hðt; lÞ sin xðt; lÞ;
j½1�ðt; lÞ ¼ hðt; lÞ cos xðt; lÞ;
xð0; lÞ ¼ ~aa;

8><
>:

where xðt; lÞ can be defined as a cotinuous function in t. We may restrict to

0a ~aa < p, 0 < ~bba p without loss of generality. ðP:tÞ~aa implies that xðt; lÞ satisfies

the equation

xðt; lÞ � xð0; lÞ ¼
ð t

0

pQ sin 2x dsþ
ð t

0

p dsþ
ð t

0

f�pþ pQ2 þ lr� qg sin2 x ds;

that is

d

dt
xðt; lÞ ¼ pQ sin 2xðt; lÞ þ pðtÞ þ ð�pþ pQ2 þ lr� qÞ sin2 xðt; lÞ:ð3:1Þ

Since the equation (3.1) and Corollary 2.1 hold, we can verify the following

assertions:

(i) if there exists j A N, t0 > 0 such that xðt0; lÞ ¼ jp then xðt; lÞb jp for

tb t0,

(ii) the function xðt; lÞ is increasing in l, and liml#�y xðt; lÞ ¼ 0,

liml"y xðt; lÞ ¼ y. ð0 < ta lÞ.
Thus the remainder of the proof is same as Weidmann [13]. r

4. Proof of the Main Result

In this section, we prove Theorem 1.1. We define the IDS, NðlÞ as follows:

NðlÞ :¼ lim
l!y

Nðl; l;oÞ
l

;

where Nðl; l;oÞ ¼ Nabðl; l;oÞ is the number of eigenvalues which are less than or

equal to l of the operator Hl with the boundary conditions ðb:cÞa;b. To find this,
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let j be the solution of the equation Hlj ¼ lj, jð0Þ ¼ sin a, j 0ð0Þ=pð0Þ ¼ cos a.

Then we introduce the new functions yðt; lÞ, rðt; lÞ which are defined by

ðP:tÞ jðt; lÞ ¼ rðt; lÞ sin yðt; lÞ;
j 0ðt; lÞ ¼ pðtÞrðt; lÞ cos yðt; lÞ:

�

yðtÞ satisfies the following stochastic di¤erential equation;

dyðtÞ ¼ �sðyðtÞÞ dBðtÞ þ bðyðtÞ; pðtÞ; qðtÞ; rðtÞÞ dt;ð4:1Þ

where sðxÞ :¼ c sin2 x and bðx; p; q; rÞ :¼ p cos2 xþ ð�qþ lrÞ sin2 x þ
c2 sin3 x cos x.

Proposition 3.1 (the Oscillation theorem) and its proof imply the following

Lemma.

Lemma 4.1.

Nabðl; l;oÞ ¼
yðl; lÞ � b

p

� �
þ 1;

where ½x� denotes the integer part of x A R:

Proof. By the definition of Nabðl; l;oÞ, Nabðl; l;oÞ ¼ n if and only if

ln a l < lnþ1. The proof of Proposition 3.1 implies that xðl; lmÞ ¼ ðm� 1Þpþ ~bb,

for m A N, and xðl; lÞ is increasing in l. Hence ln a l < lnþ1 is equivalent to

ðn� 1Þpþ ~bba xðl; lÞ < npþ ~bb. Since yðtÞ satisfies (4.1) and yðtÞ1 0, ðmod pÞ,
yðtÞ is di¤erentiable in t at the zeros of j and dyðtÞ=dt is positive there. Moreover

dxðtÞ=dt is also positive at zeros of j by the proof of Propositon 3.1. Thus if

mpa xðl; lnÞ < ðmþ 1Þp, for each m A N, then mpa yðl; lnÞ < ðmþ 1Þp.

By the comparison theorem ([6]), yðt; lÞ is also increasing in l. For the

eigenvalues lm, m A N, of Hl , yðl; lmÞ1 b ðmod p). So, ðn� 1Þpþ ~bba xðl; lÞ <
npþ ~bb is equivalent to saying ðn� 1Þpþ ba yðl; lÞ < npþ b, namely to saying

½ðyðl; lÞ � bÞ=p� ¼ n� 1. r

Therefore it su‰ces to prove the existence of

NðlÞ ¼ 1

p
lim
l!y

yðl; lÞ
l

:

We prepare several lemmas to prove Theorem 1.1.

Lemma 4.2. The function u in the Theorem 1.1 is extended as a continuous

periodic function on R with period p.
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Proof. Since the function u is the bounded solution of the first order

di¤eretial equation, u is represented explicitly as follows:

uðx; p; q; rÞ ¼ 2SðxÞ
ð x

0

dy

s2ðyÞSðyÞ ; 0 < x < p;

where

SðxÞ ¼ Sðx; p; q; rÞ ¼ exp �2

ð x
p=2

bðy; p; q; rÞ
s2ðyÞ dy

( )
:

By de l’ Hôpital theorem, it can be verified uð0þÞ ¼ uðp�Þ ¼ 1=p. Therefore we

can extend u as a continuous periodic function on R with period p. r

Lemma 4.3. Let ~bbðx; p; q; rÞ be bðx; p; q; rÞ or bðx; p; q; rÞ þ 2c2 sin3 x cos x.

Let hðx; p; q; rÞ be bounded, periodic in x with period p, and Lipschitz continuous in

ðp; q; rÞ with a Lipschitz constant independent of x. Then a bounded solution v of

the equation

1

2
s2ðxÞv 0ðxÞ þ ~bbðx; p; q; rÞvðxÞ ¼ hðx; p; q; rÞ

is also a Lipschitz continuous function of ðp; q; rÞ and its Lipschitz constant is

independent of x. Moreover v is jointly continuous at ð0; p; q; rÞ.

Proof. Suppose ðp; q; rÞ0 ðp 0; q 0; r 0Þ and let ~vvðxÞ :¼ vðx; p; q; rÞ � vðx; p 0; q 0;

r 0Þ. Then ~vv satisfies the equation

1

2
s2ðxÞ~vv 0ðxÞ þ ~bbðx; p; q; rÞ~vvðxÞ

¼ f~bbðx; p 0; q 0; r 0Þ � ~bbðx; p; q; rÞgvðx; p 0; q 0; r 0Þ þ hðx; p; q; rÞ � hðx; p 0; q 0; r 0Þ

¼: HðxÞ:

We can solve this equation explicitly as follows.

~vvðxÞ ¼ 2Sðx; p; q; rÞ
ð x

0

HðyÞ
s2ðyÞSðy; p; q; rÞ dy;

where Sðx; p; q; rÞ is given in Lemma 4.2 with ~bb instead of b. By the assumption,

jHðxÞjaCðjp� p 0j þ jq� q 0j þ jr� r 0jÞ

for some constant C independent of x.
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Hence v is a Lipschitz continuous function in ðp; q; rÞ. Then

jvðxn; pn; qn; rnÞ � vð0; p; q; rÞjð4:2Þ

a jvðxn; pn; qn; rnÞ � vðxn; p; q; rÞj þ jvðxn; p; q; rÞ � vð0; p; q; rÞj

aCðjpn � pj þ jqn � qj þ jrn � rjÞ þ jvðxn; p; q; rÞ � vð0; p; q; rÞj:

Since v is continuous at x ¼ 0, v is continuous at ð0; p; q; rÞ as a four-variable

function. r

Lemma 4.4. We set

gðy; p; q; rÞ :¼
ð y

0

uðx; p; q; rÞ dx.

Then g is a C 2-class function in ðy; p; q; rÞ.

Proof. It is su‰cient to prove that gðy; p; q; rÞ is a C 2-class function on

½0; p� � ðc1; c2Þ � ð�c3; c3Þ � ðc1; c2Þ since uðx; p; q; rÞ is periodic in x with period

p. Here the constants c1, c2 and c3 appeared in the assumption (A.2). Lemma 4.3

implies u is bounded and periodic in x with period p. Moreover u is Lipschitz

continuous in ðp; q; rÞ and its Lipschitz constant is independent of x by Lemma

4.3. By di¤erentiating the equation (1.2) in Theorem 1.1 with respect to p, qpu

satisfies

1

2
s2ðxÞðqpuÞ0ðxÞ þ bðx; p; q; rÞðqpuÞðxÞ ¼ �uðxÞ cos2 x; 0 < x < p;ð4:3Þ

where qp :¼ q=qp. Thus qpu is bounded and periodic in x with period p, and

qpuð0þ; p; q; rÞ ¼ qpuðp�; p; q; rÞ ¼ � 1

p2
;

by de l’ Hôpital Theorem as in proof of Lemma 4.2. By Lemma 4.3, qpu is a

Lipschitz continuous function in ðp; q; rÞ, and its Lipschitz constant is inde-

pendent of x. Moreover qpu is jointly continuous at ð0; p; q; rÞ.
By di¤erentiating the equation (4.3) with respect to p, we can also show that

q2
p uð0þ; p; q; rÞ ¼ q2

p uðp�; p; q; rÞ ¼ 2

p3
;

and q2
p u is jointly continuous at ð0; p; q; rÞ in a similar way. Similarly we can

prove that
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qn1
x qn2

p qn3
q qn4

r uð0þ; p; q; rÞ ¼ qn1
x qn2

p qn3
q qn4

r uðp�; p; q; rÞ

for 0a n1 þ n2 þ n3 þ n4 a 2, 0a n1 a 1, 0a n2; n3; n4 a 2, where qx :¼ q=qx,

qp :¼ q=qp, qq :¼ q=qq, qr :¼ q=qr, and they are jointly continuous at ð0; p; q; rÞ.
Hence the lemma is proved. r

Remark 4.1. Thompson was not aware that g is actually of C 2-class.

Proof of Theorem 1.1. For notational brevity, we set p1ðtÞ :¼ pðtÞ,
p2ðtÞ :¼ qðtÞ, p3ðtÞ :¼ rðtÞ. Then

gðy; p1; p2; p3Þ ¼
ð y

0

uðx; p1; p2; p3Þ dx,

yðlÞ
l

¼ gðyðlÞ; p1ðlÞ; p2ðlÞ; p3ðlÞÞ
l

� yðlÞ
gðyðlÞ; p1ðlÞ; p2ðlÞ; p3ðlÞÞ

:ð4:4Þ

By Lemma 4.3, gðy; p; q; rÞ is of C 2-class in ðy; p; q; rÞ. We can apply Itô formula,

to obtain

gðyðlÞ; p1ðlÞ; p2ðlÞ; p3ðlÞÞð4:5Þ

¼ gðyð0Þ; p1ð0Þ; p2ð0Þ; p3ð0ÞÞ þ
ð l

0

LgðyðsÞ; p1ðsÞ; p2ðsÞ; p3ðsÞÞ ds

þ
ð l

0

gyðyðsÞ; p1ðsÞ; p2ðsÞ; p3ðsÞÞsðyðsÞÞ dBðsÞ

þ
X3

j¼1

ð l
0

gjðyðsÞ; p1ðsÞ; p2ðsÞ; p3ðsÞÞ dM jðsÞ

þ
X3

j¼1

ð l
0

gjðyðsÞ; p1ðsÞ; p2ðsÞ; p3ðsÞÞ dA jðsÞ

þ
X3

j¼1

ð l
0

gyjðyðsÞ; p1ðsÞ; p2ðsÞ; p3ðsÞÞ dhN;M jiðsÞ

þ 1

2

X3

j;k¼1

ð l
0

gjkðyðsÞ; p1ðsÞ; p2ðsÞ; p3ðsÞÞ dhM j;MkiðsÞ

¼: I1 þ I2 þ I3 þ I4 þ I5 þ I6 þ I7;
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where we have set L :¼ 1
2 s

2ðyÞq2=qy2 þ bðy; p1; p2; p3Þq=qy, NðtÞ :¼Ð t
0 sðyðsÞÞ dBðsÞ, gy :¼ qg=qy, gj :¼ qg=qpj, gyj :¼ q2g=ðqyqpjÞ, and gjk :¼ q2g=

ðqpjqpkÞ, j; k ¼ 1; 2; 3.

Now we claim

lim
l!y

gðyðlÞ; p1ðlÞ; p2ðlÞ; p3ðlÞÞ
l

¼ 1:ð4:6Þ

Let us estimate Ii, 1a ia 7, separatery.

It is clear that jI1j ¼ jgðyð0Þ; p1ð0Þ; p2ð0Þ; p3ð0ÞÞj ¼ oðlÞ as l ! y. By the

definition of u, jI2j ¼ l, and jI3j ¼ oðlÞ as l ! y. jI4j ¼ Oðl dð1=2þeÞÞ ¼ oðlÞ as

l ! y. Indeed, yðtÞ ¼ OðtÞ as t ! y and gj ¼
Ð y

0 qu=qpj ¼ OðyÞ as y ! y. Thus

if we set mjðlÞ :¼
Ð l

0 gj dM
j then by the assumption (A.3),

hmjiðlÞ ¼
ð l

0

g2
j dhM jia const:

ð l
0

t2 dhM ji ¼ Oðl dÞ

for some 0 < d < 2. For a continuous local martingale there exists a Brownian

motion ~BB such that mjðtÞ ¼ ~BBðhmjiðtÞÞ. By the law of iterated logarithm, for any

e > 0, ~BBðtÞ ¼ Oðt1=2þeÞ as t ! y. Thus, for 0 < e < ð2 � dÞ=2d,

mjðlÞ ¼ Oðhm1=2þe
j ðlÞiÞ ¼ Oðl dð1=2þeÞÞ ¼ oðlÞ:

jI5ja
X3

j¼1

ð l
0

gj dA
jðtÞ

����
����

a const:
X3

j¼1

ð l
0

jyðtÞj jdA jðtÞj

a const:
X3

j¼1

ð l
0

tjdA jðtÞj

¼ oðlÞ as l ! y:

By Propositon 3.2.14 of [7],

jI6ja
X3

j¼1

ð l
0

gyj dhN;M ji

����
����

¼
X3

j¼1

ð l
0

ujsðyðsÞÞ dhB;M jiðsÞ
����

����
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a const:
X3

j¼1

ð l
0

jdhB;M jiðsÞj

a const:
X3

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hBiðlÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hM jiðlÞ

p

a const:
X3

j¼1

ffiffi
l

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hM jiðyÞ

p

¼ oðlÞ as l ! y;

and

jI7ja
X3

j;k¼1

ð l
0

gjk dhM j;Mki

����
����

a
X3

j;k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið l
0

g2
jk dhM ji

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið l
o

1 dhMki

s

a const:
X3

j;k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið l
0

jyðtÞj2 dhM jiðtÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hMkiðlÞ

q

a const:
X3

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið l
0

t2 dhM jiðtÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hM jiðyÞ

p

aOðl d=2Þ
X3

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hM jiðyÞ

p

¼ oðlÞ as l ! y:

Thus we obtain (4.6). Hence

lim
l!y

yðlÞ
l

¼ lim
l!y

yðlÞ
gðyðlÞ; pðlÞ; qðlÞ; rðlÞÞ :ð4:7Þ

In order to get the right hand side of (4.7), we claim the following:

yðlÞ ! y as l ! yð4:8Þ

and

jgðy; p; q; rÞ � gðy; ~pp; ~qq; ~rrÞjaCðjp� ~ppj þ jq� ~qqj þ jr� ~rrjÞ:ð4:9Þ
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Proof of (4.8). The boundedness of u and (4.6) implies lim
l!y

yðlÞ ¼ y. In

fact for any y > 0,

jgðy; p; q; rÞja
ð y

0

juðx : p; q; rÞj dx

aCy:

where C > 0 is independent of y.

yðlÞ
l

b
1

C

gðyðlÞ; pðlÞ; qðlÞ; rðlÞÞ
l

! 1

C
> 0 ðl ! yÞ:

Hence

lim
l!y

yðlÞ ¼ y:

Proof of (4.9). By Lemma 4.3, u is a uniformly Lipschitz continuous

function in ðp; q; rÞ. Thus g satisfies the inequality (4.9).

The existence of pðyÞ ¼ limt!y pðtÞ, qðyÞ ¼ limt!y qðtÞ and rðyÞ ¼
limt!y rðtÞ in the assumption (A.1), the inequality (4.9) and (4.8) imply

lim
l!y

gðyðlÞ; pðlÞ; qðlÞ; rðlÞÞ
yðlÞ ¼ lim

l!y

gðyðlÞ; pðyÞ; qðyÞ; rðyÞÞ
yðlÞ

¼ lim
y!y

gðy; pðyÞ; qðyÞ; rðyÞÞ
y

:

By the periodicity of u in x with period p,

lim
l!y

gðyðlÞ; pðlÞ; qðlÞ; rðlÞÞ
yðlÞ ¼ 1

p

ð p
0

uðx : pðyÞ; qðyÞ; rðyÞÞ dx:ð4:10Þ

Therefore we obtain by (4.7) and (4.10) that

NðlÞ ¼
ð p

0

uðx : pðyÞ; qðyÞ; rðyÞÞ dx
� ��1

: r
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