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ON THE REISSNER-NORDSTROM-DE SITTER TYPE
SPACETIMES

By

Dorota KowALCzZYK

Abstract. In the paper a family of curvature conditions of pseudo-
symmetry type is determined. We show that the curvature tensor of
some Reissner-Nordstrom-de Sitter type spacetimes satisfy these
conditions.?

1 Introduction

Let (M,g), n >3, be a semi-Riemannian manifold. Let 7" be a (0,4)-tensor
satisfying on M

T =od+BgnrA+)G, (1)

where «, f, y are functions on M and A a symmetric (0,2)-tensor on M. Clearly,
T is a generalized curvature tensor. For precise definition of the symbols used
we refer to Section 2 of this paper and [2]. It is known that if on M we have
T = A + yG, where y is a function on M and A4 a symmetric (0,2)-tensor on M,
then

T-T = Q(Rie(T), T)  (n— 2)y0(g. Weyl(T))

on M ([18], Lemma 2.2). In section 3 we prove a generalization of this result (see
Theorem 3.1). Namely, if (1) holds on M then at all points of M at which o is
nonzero we have

(@) T-T=QRic(T),T)+ L2Q(g, Weyl(T)),

2
(b) Lo=(n—2) (”’——y) @)

o
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In particular, if 4 = Ric(T) then (1) takes the form

T = o Ric(T) + fg A Ric(T) + yG. (3)

Now, at all points of M at which « is nonzero, (2) and (3) yield (see Theorem
3.1)

(a) TT:LTQ(q7T)7

(b) T -Weyl(T) = LrQ(g, Weyl(T)),

2
(0) szm—m<%—v>—5 4)

o

Further, from (3) we get

(5) Rie(T)* = (x(T) ~ (n— D) Ric(T) + 21,

() Yy =(n—1)y+pr(T),
_1-(n-2)B
d) ¥ = =2 (5)

Theorem 3.1 also states that (3) implies

(a) Weyl(T) - Weyl(T) = L1Q(g, Weyl(T)),

(b)  Weyl(T) - Ric(T) = L1Q(g, Ric(T)),

(¢) Weyl(T) T =1:0(g,T),

(d) Li=y,—ys,

(e) 3= :(_Ti —Lr, (6)

on Upyry € M. It is easy to see that if o vanishes at x € M then (1) implies

Weyl(T) = 0. Similarly, if at x e M we have 4 = "(n—A)g then 7 = (:g;n G at this

point. Therefore, we restrict to the set Uy N Uppeyr) = M our considerations

on tensors 7 satisfying (1). According to [8], a (0,4)-tensor 7T satisfying (1) on
Us N Upeyiry = M is said to be a Roter type tensor. Thus if a Roter type tensor
satisfies (3) then (4) and (6) are fulfilled. Manifolds of dimension > 4 with the
curvature tensor R satisfying (3) on UsNUc < M, i.e.
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R=0oS+pBgrS+G, (7)

where o, f§, y are some functions on UsN Uc and S is the Ricci tensor of (M, g),
are called Roter type manifolds ([8]). We refer to [8], [11], [16], [22] and [24] for
results related to Roter type manifolds. In Section 5 we present examples of
Roter type manifolds.

We define on M = {(t,r) e R* : r > 0} the metric tensor § by

gu=-H, §,=0,=0, gp=H", (8)

where H = H(t,r) is a smooth positive (or negative) function on M. The warped
product M xy N of (M,g) and an (n — 2)-dimensional semi-Riemannian space
of constant curvature (N,§), n >4, with the warping function F = F(t,r), will
be called a Reissner-Nordstrém-de Sitter type spacetime. If H = H(r) and F =
F(r) = r? then Reissner-Nordstrém-de Sitter type spacetimes are pseudosymmetric
([19], Example 1). Evidently, the Reissner-Nordstrom-de Sitter spacetime belongs
to this class of manifolds (see Example 5.2(ii)). Certain Reissner-Nordstrom-de
Sitter type spacetimes are non-Einsteinian and non-conformally flat manifolds,
i.e. the set UsNUc = M xz N of that spacetimes is nonempty. Such spacetimes,
in view of Theorem 4.1 of [16], satisfy (7) on UsN U, i.e. they are Roter type
manifolds ([8]). In Section 5 we present a suitable example (see Example 5.3).
The author would like to express her thanks to Professor Ryszard Deszcz for
his guidance and encouragement to study of the theory of pseudosymmetry type
manifolds as well as for his help during the preparation of this paper.

2 Preliminaries

Throughout this paper all manifolds are assumed to be connected para-
compact manifolds of class C*. Let (M,g) be an n-dimensional, n > 3, semi-
Riemannian manifold, V its Levi-Civita connection and Z(M) the Lie algebra of
vector fields on M. On M we define the endomorphisms X A4 Y and Z(X,Y) of
E(M) by

(X m Y)Z=A(Y,2)X — A(X,2)Y,
?I(X, Y)Z =VyVyZ - VyVyZ — V[X7 y]Z,

respectively, where 4 is a symmetric (0,2)-tensor on M and X,Y,Z e E(M).
The Ricci tensor S, the Ricci operator &, the scalar curvature x and the
endomorphism %(X,Y) of (M,g) are defined by S(X,Y) =tr{Z - #(Z,X)Y},
g(¥X,Y)=SX,Y), k=tr & and
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1
CX,Y)Z=AX,Y)Z — _Z(XAng+yXAgY— X A, Y)Z

-1

respectively. Now the (0,4)-tensor G, the Riemann-Christoffel curvature tensor R
and the Weyl conformal curvature tensor C of (M,g) are defined by

G(X1, X2, X3, X4) = g((X1 Ay X2) X3, X4),
R(X1, X2, X3, X4) = g(2(X1, X2) X3, X4),
C(X1, X2, X3, X4) = g(6 (X1, X2) X3, Xy),

respectively, where X1, X>,... € E(M). Let 7 (X,Y) be a skew-symmetric endo-
morphism of E(M). We deﬁne the (0,4)-tensor 7 by T(Xi, X, X3,Xs) =
9(7 (X1, X2) X3, X4). The tensor T is said to be a generalized curvature tensor if

T (X1, X2, X3, Xa) = T(X3, Xa, X1, X2),
T(X],X27X3,X4) + T(X27X3,X1,X4) + T(X3,X1,X2,X4) =0.

For a generalized curvature tensor 7', a symmetric (0,2)-tensor field 4 and a
(0, k)-tensor field T, k > 1, we define the (0,k + 2)-tensor fields 7 - T, Q(4,T)
and AT, by

(T-T)(X1,...,. X X,Y)= (7 (X,Y) - T))(X1,..., X¢)
=TT X, V)X, X, ..., Xp) — -
— (X1, X1, T (X, Y)X0),
04, T)(X1,.... X; X, Y) = (X ma Y) - T)(X1, ..., X0
= —TI(X A Y)X1, Xa, oo Xp) — o
— Ty (X1, X1, (X Aq Y) X,
(A-T)(X1,.... X)) = —Ti(AX1, Xo,. ... X)) — - — TV (X1, Xo, ..., AXp),

respectively, where the endomorphism .o/ is defined by ¢g(/X,Y)=A(X,Y).
Setting in the above formulas 7 (X,Y)=2(X,Y) or 7(X,Y)=%(X,Y),
T'=R, T'=CorT)=S§, A=g or A= S, we obtain the tensors: R-R, R-C,
C-R,C-C,R-S, C-S, Q(g,R), Q(g9,C), O(S,R), O(S,C), O(g,S), S-R and
S - C. For symmetric (0,2)-tensors 4 and B we define their Kulkarni-Nomizu
product A A B by
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(AAB)(X1, X2, X, Y) = A(X1, Y)B(X2, X) + A(X2, X)B(X1, Y)
—A(X1,X)B(X5,Y) — A(X», Y)B(X1, X).

In particular, for a symmetric (0,2)-tensor 4 we define the (0,4)-tensor 4 by
A= %A AA. If T is a generalized curvature tensor then its Weyl curvature tensor
Weyl(T) is defined by

K(T)

Weyl(T) = T — Lg ARic(T) + n—2)n—1)

n—2 “ ®)

where Ric(T) and x(T) is the Ricci tensor and the scalar curvature of T, re-
spectively. If (3) holds on Ugier) N Upeycry then on this set we have

Weyl(T) = o Ric(T) + (ﬁ —$>QARI'C(T) + (y +%) G. (10)

Conversely, if on Ugie(r) N Uppeyir) We have

Weyl(T) = o Ric(T) + fg A Ric(T) + yG,

for some functions «, f, y on Ugi 1) N Upeyi(r), then

—— 1 k(T)
T = o Ric(T _— Ric(T -—— |G
o RT) + (145 25 Jan et + (7~ =550 —5)
In particular, the curvature tensor R of a semi-Riemannian manifold (M, g),
n >4, has a decomposition of the form (3) if and only if its Weyl tensor has a
decomposition of this form.

REMARK 2.1. (i) From (3) and (10), by making use of (2)(b) and (6)(d), we
get

L

T—od—
* n—2

G,

L,
n—2

Weyl(T) = ad; — G,

on Upgic(r) N Upeyi(r), Where A = Ric(T) +§g and 4 = A — (nJZ)a g. In Section 4
we consider tensors satisfying (3) on the subset of Upgi. 1) N Upeyry of all points
at which the functions L; and L, are nonzero.

(i) Curvature properties of manifolds of dimension >4 whose curvature

tensor R satisfies (3), with f =y =0 on UsN Uc = M, were investigated in [24].
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A semi-Riemannian manifold (M,g), n > 3, is said to be pseudosymmetric
([2], [7]) if at every point of M the tensors R- R and Q(g,R) are linearly de-
pendent. Thus the manifold (M,g) is pseudosymmetric if and only if

R-R=LQ(¢, R) (11)

on Ug = {x eEM|R —ﬁG #0 at x}, where Ly is some function on Ug. It is
clear that every semisymmetric manifold (R-R = 0) is pseudosymmetric. There
exist pseudosymmetric manifolds which are non-semisymmetric (see e.g. [7], Sec-
tion 3.6). We mention that certain spacetimes are pseudosymmetric, for instance:
the Robertson-Walker spacetimes, the Schwarzschild spacetime, the Kottler space-
time, as well as the Reissner-Nordstrom spacetime ([4], [19]). The Reissner-
Nordstrom-de Sitter spacetime is also pseudosymmetric (see Example 5.2(ii)). For
more detailed information on the geometric motivation for the introduction of
pseudosymmetric manifolds, and for a review of results on different aspects of
pseudosymmetric manifolds, see [2], [7] and [27].

A semi-Riemannian manifold (M, g) is said to be Ricci-pseudosymmetric ([2],
[7]) if at every point of M the tensors R-.S and Q(g,S) are linearly dependent.
Thus the manifold (M,g) is Ricci-pseudosymmetric if and only if

R-S=Ls0(g,S) (12)

on Ug = {x eEM|S—5g+#0 at x}, where Lg is some function on Ug. Note that
Us = Ug. Every pseudosymmetric manifold is Ricci-pseudosymmetric manifold.
The converse statement is not true ([7], Section 8). Semi-Riemannian manifolds
fulfilling (11) or (12) or other conditions of this kind are called manifolds of
pseudosymmetry type ([7], [27]). We refer to [2] for a recent survey of results on
pseudosymmetry type manifolds.

Let 77 and T» be (0,k)-tensors on M. According to [5], we say that the
tensors 77 and T, are pseudosymmetric related to a generalized curvature tensor
T and a symmetric (0,2)-tensor A if at every point of M the tensors 7 - 7T} and
Q(A, T») are linearly dependent. This is equivalent to T - T} = LQ(A, T>) on the
subset U = M of all points at which Q(4,T,) is nonzero, where L is some
function on U. If T} = T5, then we say that the tensor T is pseudosymmetric with
respect to the tensors T and A.

3 Roter Type Tensors

Let T be a generalized curvature tensor on a semi-Riemannian manifold
(M,g), n>4. We denote by Ric(T), Weyl(T) and «(T) its Ricci tensor, the
Weyl tensor and the scalar curvature, respectively. The subsets Ur, Ugir) and
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Uweyi(ry are defined in the same manner as the subsets Ur, Us and Uc, re-
spectively. Further, we assume that 7 is a generalized curvature tensor satisfying
(1) on Upgie(r) N Upeyiry = M. Let Uy denote the subset of M consisting of all
points at which the tensor 4 is not proportional to g. It is clear that Ug(r) N
Uweyir) = Usg. We have

LemMa 3.1. Let (M,g), n >4, be a semi-Riemannian manifold admitting a
generalized curvature tensor T satisfying (1) on M. If at xe Uy = M the tensor
Weyl(T) is nonzero then also o is nonzero at x.

ProOF. We suppose that o vanishes at x. Now (1) reduces to 7= flgn 4+
yG. From this, by standard calculations, we obtain Weyl/(T) = 0, a contradiction.

Lemma 3.2. Any symmetric (0,2)-tensor on a semi-Riemannian manifold
(M,g), n>4, satisfies
G-G=0, A-G=0, (grd)-G=0, G-4
G-(gnd)=0(g,9n4), A -A=-0(4*4), gr0(g.4)=0(4,G),
(Grd)-A=0(9,4%), A-(grA)+(grnd)-A=—-0(4 gnrA),
(grd)-(gnrd) = —0(4%,G), 0(4,G)=—0(g,9 A A4),
0(4,gnA) = =0(g,A), G-A=0(g,4), A-A=0(4,4%).  (13)

Proor. The identities (13) are a consequence of suitable definitions.

LemMmA 3.3, Let on a semi-Riemannian manifold (M,g), n >4, be given a
generalized curvature tensor T satisfying (1). Then at all points at which o is
nonzero we have

42 = L)+ = 2pa+ (Bir a+ =19 = Ric(T)),

2

ToA=(n-2) (”’ - y> 09, 4) — 0(4, Rie(T)) 2 01, Rie(T)). (14)

A consequence of the above lemma is the following

COROLLARY 3.1. Let on a semi-Riemannian manifold (M,g), n > 4, be given
a generalized curvature tensor T satisfying (1) on Upgiry N Upeyry = M and let
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Lt and Ly be the functions on Ugcr) N Upeyr) defined by (4)(c) and (6)(c),
respectively.
(i) If A = Ric(T) then T - Ric(T) = L10Q(g, Ric(T)) on Ugi(r) N Uweyi(r)-
() f T=Rthen R-S=LrQ(g,S) and C-S=L1Q(g,S) on UsNUc = M.

Using the above lemmas we can prove the following generalization of Lemma 2.2
of [18].

THEOREM 3.1. Let (M,g), n > 3, be a semi-Riemannian manifold admitting a
generalized curvature tensor T satisfying (1) on M.

(i) At all points of M at which o is nonzero we have (2). In addition, if
A = Ric(T) then (4) is fulfilled.

(i) On Upeyyry = M we have (6), provided that n > 4.

Proor. (i) First of all we note that for any generalized curvature 7" and any
function y on M the following identity is satisfied

(T =7G) (T =yG)=T-T —yQ0(g,T). (15)
Further, if T satisfies (1) then we have
(T —9G) - (T —yG) = (aA+PgnA) - (aAd+pgnA)
=a?A-A+oap((grA)-A+A-(gnrA))
+Bgnd) - (gAA). (16)

In addition, let x be a point of M at which o is nonzero. Now (16), in view of
Lemma 3.2, (14) and (15), yields

T-T=yQ(g.T) - Qad?ad) — Q(ad?, fg n A) ~ iz 0(aA?, G)

=70(g,T) — Q((B tr(4) + (n — 1)p)g, %) + Q(Ric(T), aA)
= O((xtr(A) + (n—=2)B)A, Bg n A) — O((B tr(A) + (n — 1)y)g, Bg A A)

2
+ O(Rie(T), g r )~ 0((a 1) + (1~ 24,6

+[§Q(Ric(T), G) 4+ O(Ric(T),yG) — yQ(Ric(T), G)
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2
= O(Rie(T), T) +yQ(g, T) — <ﬂa - V) Q(9,9 A Ric(T)) = (n = 1)yQ(g, 24)
_ 2 _ n— 2
+ 02D g 0d) — (- 17000, 8914+ 2P 00,y 1)

= Q(Ric(T),T) + L,Q(g, Weyl(T)).
Thus (2) is proved. Let 4 = Ric(T). We have
O(Ric(T), T) + Ly Q(g, Weyl(T))

= Q(Ric(T), fg A Ric(T) +7G) + L>0(g. T) =25 0lg.g n Ric(T)

= 1,00, 7) 2 09,2 RietT)) + y0(Rie(T), 6) L 0(g. pg n Ric(T))

4100 Rie(T) = (L2 -5 00, 7)

This, together with (2), leads to (4)(a). Note that (5)(a) is an immediate con-
sequence of (4)(a). Further, (4)(a) and (5)(a), together with (9), imply (4)(b).
(i) The relations (3) and (9) give

Wesl() = R(T) + (= L5 ) Rictt) + (54 (=55 )G
I

We note that Ric(Weyl(T)) =0. Now, in view of Theorem 3.1(i), we get
Weyl(T) - Weyl(T)
2
—(n- ( (#-:55) ~1- o=t 1)> Olg. Weyl(T))
2 —(n— K
- ((n—z> (’%—y) . (n(_ o —n(_TD Olg, Weyl(T)),

ie. (6)(a). Now we prove that (6)(b) and (6)(c) are satisfied. From (6)(a) and (9)
we obtain

whence
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! 9N (Weyl(T) - Ric(T))

Weyl(T)- T =

L .
+L10(9, ) ~ -5 0(g.9 A Rie(T)). (17)
Further, applying (5), (6)(d), (9) and Lemma 3.2 into (17) we find

Weyl(T) - Ric(T)

g A Rie(T) + M)

1
:<T_n—2 (n—2)(n—1)

=T - Rice(T) - ﬁ(g/\Ric(T)) - Ric(T) +

G) - Rie(T)

1(T) .
mQ(%RZC(T))
x(T)
(n—2)(n—1)

= L10lg, Rie(T)) ~ - (g, Rie(T)?) + Oy, Rie(T))

k(T) 1
= (14 S (0 +

This, by (6)(d), yields (6)(b). Finally, (6)(b) together with (17) and the identity (see
Lemma 3.2)

g Qlg, Rie(T)) = Q(Ric(T), G),

leads to (6)(c), completing the proof.
From Theorem 3.1 it follows

CorOLLARY 3.2 (cf. [13], Theorem 4.2; [22]). If the curvature tensor R of
a semi-Riemannian manifold (M, g), n > 4, satisfies (1) on UsNUc = M, with
A =S, then on this set we have

R'R:LRQ(Q,R), R~S:LRQ<Q,S), R'C:LRQ(gaC>7

R-R=Q(S,R) + <LR +§) 0(g, C),

1-—(n-2)p K

CQ(g7 )7 C R+ (}172)0( I’l*l,

C-R= LCQ(Q,R),

o (2L s o D D),

o o
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We have also the following

ProposiTiON 3.1 ([10], Proposition 6.5). Let (M,g), n>4, be a semi-
Riemannian manifold admitting a generalized curvature tensor T and let the
conditions:

T-T=LrQ(g.T) and T-T = Q(Ric(T),T)+ LO(g, Weyl(T))

be fulfilled on Ugic(r) N Upeypiry = M. Then on this set we have

Q(Ric(T) —(Ly - L)g, T — 5G> =0.

Proor. From our assumptions it follows that
O(Ric(T),T) + LO(g, Weyl(T)) = LQ(g, T),
hence
. L .
O(Ric(T), T) = 0(g,g A Ric(T)) = (Ly — L) 09, T).

This, by the identity (see Lemma 3.2)

0(9,9 A Ric(T)) = —Q(Ric(T), G), (18)

turns into

= O(Ric(T), G) = O((Lr — L)g - Ric(T), T),

which yields (4), completing the proof.
The last proposition, together with Lemma 3.4 of [13], implies

CoroLLARY 3.3 ([10], Corollary 6.1). Let (M,g), n>4, be a semi-
Riemannian manifold admitting a generalized curvature tensor T and let the
conditions:

T-T=LrQ(g.T) and T-T = Q(Ric(T),T)+ LO(g, Weyl(T))

be satisfied on Upgir) N Uweyry = M. If at every point of this set the tensor
Ric(T) has no a decomposition in a metrical part and a part of rank at most one
then (3) holds on Upgiry N Upeyi(r)-
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REMARK 3.1. As it was stated above, if T be a generalized curvature tensor
on a semi-Riemannian manifold (M,g), n > 4, then (18) holds on M. We define
now on M the following (0, 6)-tensors:

09, T), 0y, Rie(T)) = —=Q(Ric(T), g A Ric(T)),

0(9,9 A Ric(T)) = —Q(Ric(T), G), Q(9,G) =0,

O(Rie(T), T), Q(Rie(T), Ric(T)) = 0. (19)
Now we assume that (3) holds on Ugie(r) N Upeyiry = M. Applying (3) into (19)
we obtain (cf. [11], p. 162)

09, Rie(T)) = 0(9. T) +L o(Rie(7), 6),

o

. B s y
O(Rie(T), T) = = Q(g.T) + | 7 =~ | Q(Rie(T), G), (20)

T
Using (4)(c), (9), (19) and (20) we also obtain

Vs
n—2

O(Ric(T), Weyl(T)) =, Q(9, T) + O(Ric(T), G),

Oy, Weyl(T)) = 0(9,T) + - O(Rie(T), G).

4 New Curvature Conditions of Pseudosymmetry Type

In this section we present a family of new curvature conditions of pseu-
dosymmetry type. Such conditions are fulfilled on a semi-Riemannian manifolds
(M,g), n >4, admitting a generalized curvature tensor 7' such that (3) holds on
Uric(t) NV Upey(ry = M. Namely, using results from previous sections we can
prove

ProposITION 4.1. Let (M,g), n>4, be a semi-Riemannian manifold ad-
mitting a generalized curvature tensor T satisfying (3) on Ugiry N Uweyiry = M.
Then on some open subset V of this set we have: (2), (4), (6) and

T-T = LyQ(Ric(T), Weyl(T)) + LsQ(Ric(T), T), (1)
_ (n—1)aL,Lr _ (n— D)oL,
b=y By -

T-T = LsQ(Ric(T), Weyl(T)) + LeQ(g, Weyl(T)), (23)
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L5:—i—1T, L(,:@—?—l)u, (24)

Weyl(T) - Weyl(T) = L70(g, T) + LgQ(Ric(T), T), (25)

L; = LILST, Lg = *%7 (26)

Weyl(T) - Weyl(T) = LoyQ(g, T) + Li1oQ(Ric(T), Weyl(T)), (27)

3 s

Weyl(T) - Weyl(T) = L1 Q(Ric(T), T) + L12Q(Ric(T), Weyl(T)),  (29)

LII_Z’L1<M_13&M_I>’ L‘Z__W#’ (30)

Liz=—LrLy, Liy= —i—; (32)

T - Weyl(T) = Li50(g, T) 4+ Li6Q(Ric(T), Weyl(T)), (33)

LISZLT<1_Z_§>7 L16:fb_:7 (34)

T - Weyl(T) = Li7Q(Ric(T), T) + LisQ(Ric(T), Weyl(T)), (35)
__#y (= Dapslr _ _(n=Dali

Lo = —grr (PR 1) = O g

Weyl(T) - T = Q(Ric(T), Weyl(T)) + L19Q(g, Weyl(T)), (37)

Lig = —3, (38)

Weyl(T) - T = LyyQ(Ric(T), T) + Ly Q(Ric(T), Weyl(T)), (39)

Ly = —%L1 (—(n -~ zuﬂLz + 1>7 Ly = _ (= ValiLy I‘ZTLILZ; (40)

Weyl(T) - T = —LsQ(Rie(T), T) + L 0lg, Weyl(T)), (41)

Ly = szQ ) (42)

provided that the functions [, Wy, Vs, L1 and Ly are nonzero at every point of V.
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COROLLARY 4.1. Let (M,g), n > 4, be a semi-Riemannian manifold admitting
a generalized curvature tensor T satisfying (3) on Ugiccr) N Upeyir) = M. Using
(2), (4), (6) and (21)—(42) we can state that on a certain subset of Ugie(ry N Uweyi(r)
any linear combination of the tensors: T -T, T -Weyl(T), Weyl(T)-T and
Weyl(T) - Weyl(T) is equal to some linear combination of the tensors: Q(g,T),
Q(Ric(T),T), Q(g, Weyl(T)) and Q(Ric(T), Weyl(T)).

REMARK 4.1. From the above statement it follows that on some subset of
Urie(ry N Uweyiry © M the tensor T - Weyl(T) — Weyl(T) - T is expressed by a
linear combination of the tensors Q(g,7T), O(Ric(T),T), Q(g, Weyl(T)) and
O(Ric(T), Weyl(T)). Recently manifolds with the tensor R-C—C-R ex-
pressed by a linear combination of the tensors Q(g, R), Q(g,C), QO(S,R) and
0O(S,C) were investigated among others in [9], [14] and [15] (see also [10],
Section 5).

5 Examples

It is known that certain spacetimes are pseudosymmetric. Such spacetimes
were investigated in [4], [12] and [19]. For instance, in [19] it was stated that every
Robertson-Walker, the Schwarzschild, the Kottler and the Reissner-Nordstrom
spacetimes are pseudosymmetric. There are also spacetimes satisfying other con-
ditions of pseudosymmetric type (see e.g. [17] and references therein). In this
section we give an example of a family of warped product spacetimes satisfying
(3) for T=R.

ExAMPLE 5.1.  We recall that the warped product M xz N, of a 1-dimensional
manifold (M, §), §;; = —1, with a warping function F and a 3-dimensional Rie-
mannian manifold (N, §) is said to be a generalized Robertson-Walker spacetime
([1], [20]). Generalized Robertson-Walker spacetimes were investigated among
others in [25]. In particular, if (N, §) is a Riemannian space of constant curvature
then M xy N is called a Robertson-Walker spacetime. It is well-known that such
spacetimes are conformally flat. Every Robertson-Walker spacetime is pseudo-
symmetric ([7], Section 6). In [3] it was shown that at every point of a generalized
Robertson-Walker spacetime M xp N the following condition is satisfied: the
tensors R- R — Q(S,R) and Q(g,C) are linearly dependent. This is equivalent
to R-R—Q(S,R)=LQ(gy,C) on Uc = M, where L is some function on Uc.
Generalized-Robertson Walker spacetimes satisfying some curvature condition of
pseudosymmetry type were investigated in [17].
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ExampLE 5.2. (i) Let M = {(t,r)eR*:r >0} be on an open connected
nonempty subset of R? and let on M be defined the metric tensor § as in (8).
We consider the warped product M xy N of the manifold (M,§) and the 2-
dimensional unit standard sphere (N,g), with the warping function F =
F(r) =r%

(ii) According to [23] the warped product M x N defined in (i) is said to
be the Reissner-Nordstrom-de Sitter spacetime if H(r) =1—22+ f—; — 1Ar?, where
m = const. > 0, e = const. and A = const. In particular, if ¢ #0 and A =0, or
e=0and A#0, or e=0 and A =0, then the Reissner-Nordstrom-de Sitter
spacetime is called the Reissner-Nordstrom spacetime, the Kottler spacetime or
the Schwarzschild spacetime, respectively [26] (Section 13). These spacetimes are
non-semisymmetric pseudosymmetric manifolds ([19], Example 1). It is well-
known that the Kottler spacetime is a non-Ricci flat Einstein manifold. The
Schwarzschild spacetime is a Ricci flat manifold.

(i) If H(z,r)=1 —zm—r(’) then the warped product M xy N is called the
Vaidya spacetime. The Ricci tensor S of the Vaidya spacetime satisfies
rank S < 1, which means that this spacetime is a special quasi-Einstein manifold.
We can check that the Vaidya spacetime is a non-pseudosymmetric manifold
satisfying

R-R—Q(S,R) = —’;—; (9, C),

p1 = 2(8m*m" (=5r + 2m) 4 2r’m(2 + 2m"™ — Trm")
+ 13 (=m” + 2rm") 4+ rm(=5 — 4m’ + 36rm")),
py = r(r — 2m)(2m(=3r% + 6rm — 4m*)(1 + rm") + 1> (2 + rm")),

. . . !
at all points at which p, is nonzero, where m” =%~ and m’ =4,

ExaMPLE 5.3. Let M xz N be the spacetime defined in Example 5.2 with
2

the warping function F = F(r) =r*. Let ¥ and x be the scalar curvature of
(M,§) and M x N, respectively. We have
k= (QH"? - HH"YH 3,
k= QH*+2H? +2r*H” — rH(4H' +rH"))r *H3,
where H” =4 and H' =4 In addition, we set
t=2H*+2H> - 2r"H"” + *HH".

For the Reissner-Nordstrom-de Sitter spacetime the last three formulas turn into
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18(3e* + Ar®(1 + Ar?) + 3e*r?(=3 + 4Ar?) + 6r’m(1 — 2Ar?))
(3¢2 — 6mr + 3r2 — Ar#)?

K= ,
K= =22 — 18A%10 — 36mA%r® 4+ 18A(6 — 2A)r® — 432Amr”
— T2A(3m* — 4e)r® + 216e’mAr> — 54e*Art
—216m(e? — 2m?)r + 1622 (4m?* + *)r* — 324¢*mr + 54¢°,
= —2A%"12 = 30A%10 — 36mA%° + 182 ANt + T2mArT — T2A(3m? + 2¢°)r®
+ 216e*mAr° + (—108e? — 54e* A — 432m?)r* + 432m(e* — m*)r’
+ 162e*(4m* — e*)r? — 324e* mr + 54¢°.
We can check that the tensor S —%5g of M %y N is a zero tensor if and only if
=0, (43)

holds on M. Further, the tensor C of M xy N is a zero tensor if and only if on
M we have

2H? +2H® +2*H? 4+ rH(2H' —rH") = 0. (44)

For the Reissner-Nordstrom-de Sitter spacetime the left-hand side of (44) has the
form

2H? +2H* +2*H"” + rH(2H' — rH")
= A2 19N — 18mA% + 92 A% — 162mArT — 36A(3m> — 4e?)r®
— 54m(2e* + 3)r° 4 (162e* — 27e* A — 324m?)r* + 54m(7e* — 4m?)r?
+ 812 (4m? — e*)r? — 162¢*mr + 27¢°.

From the above considerations it follows that xe UsN Uc = M xp N if and
only if the left-hand sides of (43) and (44) are nonzero at m(x), where
my: M x N — M denotes the natural projection. The curvature tensor R of
M xp N satisfies (7) on UsN Uc with

o= (rPH*(2H* +2H’ + 2r’H” + rH(2H' — rH"))7"?, (45)
B=(rH(2*H"” — rHH'(4H' + rH") + 2H*(H' 4+ 2rH")

+2H*(H' —4rH"* 4+ 2rH")))1 72, (46)
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y=4H" +4H*(H"” — H") = 2H"H" + 4rHH"*(-2H' + rH" — rH")
+H*(=12rH"” + 6rH'H" + r*H" + 4H"(1 — r*H"))
+H8H"” +6rH'H" + H" (-2 +r*H"))r . (47)
In addition, on UsN Uc we have
Y, = ((H+H*—rH)(—4°H" + 4°HH"H" — " H*H"
+2H*Q2H' +rH") + H*(4H' — 4rH"” + 2rH")))tT 2 'H2,
h=7
Y3 = (4H? +4H’ + 4*H"” — rH(SH' + 2rH"))6r *H ",
Ly = (=2H? —2H* = 2rH"” + rH(-2H' + rH"))12r *H3,

Ly = (~(3+4H)H"” +2(1 + H)HH") — 127 2H L, (48)

!

H
R-R:—WQ(g,R). (49)

REMARK 5.1. Warped products M xy N of semi-Riemannian spaces of con-
stant curvature (M,q), p>2, and (N,§), n—p > 2, satisfying (7) were inves-
tigated in [16]. In that paper (see [16], Example 4.1) an example of such warped
product is given. That warped product can be locally realized as hypersurfaces
immersed isometrically in a semi-Riemannian space of constant curvature N/*!(c),
n >4, with signature (s,n+ 1 —y).

REMARK 5.2. Let M be a hypersurface in N"*!(c), n > 4. On M we have
((18])

0(g,0), (50)

where p is the scalar curvature of the ambient space. We assume that M is a
pseudosymmetric manifold. Thus (11) holds on Ur =« M. From (11) and (50) it
follows that

Q(A,R—n(nlirl)G>:0 (51)

holds on Ug ([6]), where 4 =S — (LR—&-;'Z;E)I’;)Q. In addition, we assume that

rank 4 > 2 at x € UgrN Us. Applying now Lemma 3.4 of [13] to (51), we obtain
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R = g/f on some neighbourhood U < Ug N Uy of x, where ¢ is some function on
U. Thus on U the tensor R satisfies (3).
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