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LOCAL PROPERTIES AND MAXIMAL TYCHONOFF
CONNECTED SPACES

By

J. van MiLL,® M. G. TkacHeNko,! V. V. Tkacuuk,! R. G. WiLson!

Abstract. We prove that, if X is a Tychonoff connected space and
x(x,X) <w for some xe€ X, then there exists a strictly stronger
Tychonoff connected topology on the space X, i.e., the space X is
not maximal Tychonoff connected. We also establish that if X is
locally connected or g-compact or has pointwise countable type then
X cannot be maximal Tychonoff connected.

1. Introduction

A connected space X is called maximal connected if no strictly stronger
topology on X is connected. The concept was introduced in [Tho], where ex-
amples of maximal connected 7)-spaces were constructed. Later, maximal con-
nected spaces were studied in [GRS], [GS] and [GSW]. In this last paper and in
[Si], maximal connected strengthenings of the usual topology on the real line R
were constructed; the space R being Hausdorff, any strengthening is Hausdorff as
well. In [NIW] it was shown that maximal connected T)-spaces must be sub-
maximal (i.e., all their dense subspaces are open); however, very few non-trivial
examples of submaximal 73-spaces without isolated points are known (see for
example [vD]), and all known are (at least) totally disconnected. In particular, it
is still an open question as to whether there exists a connected submaximal 73-
space. A lot of research has been done here; it is known, for example, that any
infinite submaximal Tychonoff space which is either first countable, separable or
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compact is totally disconnected (see [AC, 4.8, 4.12 and 5.10], where even stronger
results are given).

In view of these results it is natural to ask whether there is a maximal
Tychonoff connected space, that is, an infinite connected Tychonoff space X such
that any stronger Tychonoff topology on X is disconnected. Such spaces do not
apparently have to be submaximal so the results of [AC] mentioned in the pre-
ceding paragraph do not apply. Even so, the folklore suspicion was that such
spaces do not exist. The first steps of an attempted proof were taken in [Jo],
where it was shown that there exists a connected group topology on the reals R
which is stronger than the usual one (see also Example 2.10 of [ATTW]); in [TVs]
stronger connected group topologies were constructed for certain Abelian topo-
logical groups.

It was later shown in [STTWW] that if X is a first countable or a separable
or a locally Cech-complete infinite connected Tychonoff space, then it has a
strictly stronger connected Tychonoff topology, that is, it is not maximal
Tychonoff connected. The results were new even for the classes of metrizable or
compact spaces.

A well-known class containing all first countable and locally Cech-complete
spaces is the class of spaces of pointwise countable type. In this paper we prove
that all spaces with this property are not maximal Tychonoff connected,
answering positively Problem 2 from [STTWW]. Another result is that no
Tychonoff locally connected connected space is maximal Tychonoff connected.
We also establish that if a Tychonoff connected space has a point of countable
character or is g-compact then it cannot be maximal Tychonoff connected.

2. Notation and Terminology

All spaces are assumed to be Tychonoff. Given a space X the family 7(X)
is its topology and *(X) =t(X)\{Z}. If Y <« X and .o/ is a family of subsets
of X then «/|Y ={ANY:Ae.o/}. We denote by R the set of the reals with its
natural topology; I = R is the set [0, 1]. If X is a space and f : X — Y is a map
then G(f) = {(x, f(x)) : xe X} = X x Y is its graph. A connected space is called
non-trivial if it has more than one point; for technical reasons we consider that
the empty space is not connected. If X is connected then x e X is called an
endpoint of X if X\{x} is also connected.

A set F < X is a zero-set in the space X if there is a continuous f : X — 1
such that F = f~1(0). If X is a space and F = X then a family # < t(X) is an
outer base of F in X if for any V e 7(X) with F < V there is U € # such that
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F c Uc V. The set F has countable outer character in X if it has a countable
outer base in X. A space X is of pointwise countable type if it can be covered with
compact subspaces of countable outer character in X. The symbol [] denotes the
end of the proofs of numbered statements; to indicate that a substatement’s proof
is finished, we use the symbol A.

If S is a set then [S]* = {T'< S : |T| = 2} is the set of all non-ordered pairs
of the elements of S. If F = [S]* then a set A < S is homogeneous with respect to
F if [A]* c F. The rest of our notation is standard and can be found in [En].

3. General Properties of Maximal Tychonoff Connected Spaces

After a great deal of hard work on extending connected Tychonoff topologies
the authors became convinced that it is highly probable that maximal Tychonoff
connected spaces exist. They could not prove it, however, so all results about
maximal Tychonoff connected spaces could announce properties of an empty class.
On the other hand, while there is no proof that the class of maximal Tychonoff
connected spaces is empty, looking at its properties might be of use when studying
connected spaces.

3.1. ProOPOSITION. The following are equivalent for any Tychonoff space X:

(1) X is maximal Tychonoff connected,

(2) for any function f : X — Lits graph G(f) = X x 1is connected if and only
if f is continuous.

Proor. There is a continuous one-to-one map of G(f) onto X for any
function f: X — L If f is continuous then G(f) is homeomorphic to X so G(f)
is connected. If f is discontinuous then the projection of G(f) onto X is not a
homeomorphism so G(f) has to be disconnected because otherwise, by identifying
the set G(f) with X, we obtain a strictly stronger connected Tychonoff topology
on X. This proves (1) = (2).

Now assume that X is not maximal Tychonoff connected. Then there is
a connected Tychonoff topology 7’ on X such that ¢/ # 7 <= ¢’. Since 7’ and 7
are Tychonoff, there is a function f : X — I such that f is t’-continuous and not
7-continuous. Let X’ = (X,7’) and denote by i : X’ — X the identity map. It is
clear that the graph G’ = G(f) considered as a subspace of the space X’ x I is
homeomorphic to X’ so G’ is connected. Now, if j: I — 1 is the identity map
then 4 =1ix j maps X’ x I continuously onto X x I and 4(G’) = G(f). Thus
f:X — 1is a discontinuous function whose graph is connected; this contradicts
(2) and hence (2) = (1). O
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3.2. LEMMA. Given a connected space X and a continuous function f: X — 1
assume that the set F = f~1(0) is non-empty and U # & is a clopen subspace of
X\F. Then (0,¢&) < f(U) for some &> 0.

Proor. If our statement is not true then we can choose a strictly decreasing
sequence {r,:new} < (0,1)\f(U) such that r, — 0. Pick an arbitrary ye U
and n € o such that r, < f(p). Then ye V = U\f~'([0,r,]) = U\f~'([0,r,)) and
therefore V' is a clopen non-empty proper subset of X which contradicts the
connectedness of X. O

3.3. THEOREM. Let X be a connected space for which there exists a continuous
surjective function ¢ : X — 1 with the following properties:

(a) the set S = ¢~ '(0) is connected;

(b) if 0y =97 1([0,1)) for all neN then the family O ={0,:neN} is an
outer base of S in X.

Then X has a strictly stronger connected Tychonoff topology.

PrOOF. Let Y = X\S; since ¢ is surjective, B, = ¢~ (1) # & for all ne N.
It follows from Lemma 3.2 that

() if C is clopen in Y and C # ¢ then CNB, # & for all but finitely
many 7.

The function # :(l” is continuous on Y and {#(B,):neN} is a discrete
family of singletons in R. An evident consequence is that there is a continuous
function o : Y — I such that «(B,) =0 if n is even and a(B,) =1 for each odd
neN. Define f: X — I by f(x) =0 for any x € S and f|Y = «; it follows from
(b) of our hypothesis that f is discontinuous. By Proposition 3.1, all there
remains to prove is that G(f) is connected.

Assume the contrary and denote by n: G(f) — X the natural projection;
let S"=Sx {0} = G(f) and pick a clopen non-empty proper subset D of G(f)
with DN S’ # . Since the set S’ is connected, we have S’ = D so C = G(f)\D
is a clopen non-empty proper subset of G(f") for which CNS’ = ¢&. Since o is a
continuous map and G(a) = G(f)\S’, the map n|G(x) : G(o) — Y is a homeo-
morphism so U = z(C) is a non-empty clopen subset of Y.

It follows from () that there is m € N such that UN B, # & for all n > m;
choose a point x, € UNB, for any ne Ng={keN:k>m and k is even}.
Since the family @ is an outer base of S in X, there is a cluster point x € S for
the sequence {x,:ne€ No}. Then P = {(x,,0):ne No} = C and (x,0)e CND
which is a contradiction. Thus G(f) is connected so X admits a strictly stronger
connected topology by Proposition 3.1. O
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The following result, often referred to as Kuratowski’s Lemma, is part of the
folklore; its proof can be found in [Ko, Chapter 2, §5].

3.4. THEOREM. Let X be a connected space with a connected subspace C. If S
is a component of X\C, then X\S is connected.

From now on, for any space X we denote by %y the collection of all con-
nected open U < X such that |[U\U|=1 and X\U # . The unique point in
U\U will be denoted by xy.

3.5. PROPOSITION. Let X be a connected space. Then,

(1) if Uex then U is a component of X\{xy} and X\U is connected,

() if U,V ey and xy € U then either V < U or UUV = X;

(3) if Uet(X) and |U\U| =1 then U is connected,

@) if {U,...,U,} =t(X), the family {U,,...,U,} is disjoint and
|U\U;| =1 for each i < n, then F = X\| J{U; : i < n} is connected and U; UF is
connected for every i <n.

ProoF. The first part of (1) is trivial because X\{xy} is the union of the
disjoint open sets U and X\U while U is connected. The second part of (1)
follows from the first part and Theorem 3.4 (with C = {xy} and S = U).

To prove (2) note that X\ U is connected by (1) so it is either contained in V’
or in X\V, ie, UUV =X or V< U.

For (3), there is x e X such that U\U = {x}; if U is disconnected then
U = EUF for some non-empty disjoint closed sets E and F. If x € E then F is
clopen in X, and if x € F then E is clopen in X which contradicts connectedness
of X.

As to (4), let U\U; = {x;} and F; = X\U; for every i < n. Assume that F =
ﬂi -, Fi is not connected; then F = EyU E; for some disjoint non-empty closed
sets E, and E;. Observe that {x0,..., Xy} = F and let E; = E;U(J{U,;: x; € E}}
for every je {0,1}. It is immediate that E, and E; form a partition of X into
disjoint closed sets, which contradicts the connectedness of X; this shows that F
is connected.

For the second part of (4) observe that U; is connected by (3) and x; € U; N F
so U;UF is connected being a union of two connected non-disjoint sets.  []

3.6. PROPOSITION. Let X be a maximal Tychonoff connected space. Then,
(1) for any disjoint non-trivial connected sets A,B = X there is a set U € Uy
such that either A < U and B < X\U or vice versa,
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(2) if A,B< X are connected disjoint sets then |ANB| < 1;
(3) if connected sets A,B < X are disjoint and AUB =X then ANB is a
singleton.

Proor. (1) Let B’ be the component of X\A4 that contains B, and A4’ =
X\B'. Then the set A’ is connected by Theorem 3.4 and we have 4 < 4', B< B’
while A’UB’ = X and A’ N B’ = . Since X is connected, we have A’ N B’ # (.

If |[A'NB’| > 1, fix distinct points a,b e A’NB’. We can assume, without
loss of generality, that a € A’. Take a continuous g : X — I such that g(a) =0
and g(b) =1 and define a function f : X — I as follows: f(x) =0 for all x e B’
and f(x) =g(x) for every xe A’. It is evident that f is discontinuous at b
independently of whether b € 4’ or not.

Let us show that the graph G(f) of the function f is connected. Indeed, the
set Gp = {(x,0):xe B'U{a}} is homeomorphic to B'U{a} and hence con-
nected. Analogously, f|A4’ is continuous so G4 = G(f)N (A’ xI) is also con-
nected. Thus G(f) = G4 UGp is a union of two connected subspaces with a
non-empty intersection. Therefore G(f) is connected which in light of Proposition
3.1 shows that X is not maximal Tychonoff connected. This contradiction proves
that A’N B’ = {x} for some x e X; if xe A’ then A’ is closed in X and hence
U=PB €Uy is as promised. Analogously, if xe B’ then U = A’ €Uy while
A< U and B< B’ = X\U. This settles (1).

To prove (2) apply (1) to find U € %y such that A = U and B < X\U or vice
versa. It is immediate that in both cases we have ANB < UNX\U = {xy}.

As to the statement of (3), it follows from (2) that |4 N B| < 1; since 4 and B
are non-empty (recall that we consider that empty spaces are not connected), an
immediate consequence of the connectedness of X is that AN B # & so we have
|[ANB| = 1. O

3.7. PrROPOSITION. If X is a maximal Tychonoff space and U < X is a non-
trivial open connected subset of X then U (with the topology inherited from X) is
also a maximal Tychonoff connected space.

Proor. Let 7 be the topology of X and assume that there is a Tychonoff
connected topology p on U such that u # 7|U = u. Let ¢’ be the topology on X
generated by the family Uy as a subbase; then t =7/ and ©’ # 7.

To see that 7’ is Tychonoff take any x € X and V € ¢’ with x € V. Assume
first that x € U and take W et such that xe W = W < U (the bar denotes the
closure in (X,7)). Then V' =VNW eu and x e V'’ so there is a p-continuous
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function f: U — I such that f(x) =1 and f|(U\V')=0. Letting g(») = f(»)
for all ye U and ¢g(y) =0 for all ye X\U we obtain a function g: X — 1
such that g(x) =1 and g|(X\V) = 0. To see that g is t’-continuous observe that
it is 7’-continuous on U (because its restriction to U coincides with the u-
continuous function f) and constant on a t-open set X'\ W. Therefore ¢ is locally
7’-continuous and hence continuous on (X,7’).

Now, if x € X\U then 7, = {U e1:xe U} is a local base at x in (X,7’) so
there is W et such that xe W < V. The space X being Tychonoff there is a
7-continuous function f : X — I such that f(x) =1 and f|(X\W) = 0. It is clear
that f is continuous on (X,7’') and witnesses the Tychonoff property at x in
(X,7).

Finally, to see that the space X' = (X,7’) is connected take a t’-clopen set
W such that WNU # . Since t'|U = u, the space (U,7'|U) is connected so
Uc W. Let W' = X\W; the family 7, = {Get: ye G} is a local base at y in
X' for any y € X\ U which implies, together with W' < X\ U, that W’ is open in
X. Besides, any point of W\U has a t-open neighbourhood contained in W;
since U is also a 7-open neighbourhood of any element of U, we conclude that
the set W is t-open as well, i.e., W is a clopen subset of X. The space X being
connected we have W = X and hence X’ is connected. Since X is a maximal
Tychonoff connected space, we obtained a contradiction which proves that U is
also maximal Tychonoff connected. |

3.8. THEOREM. Suppose that ¢: X — Y is a continuous monotone open
surjective map. If X is maximal Tychonoff connected then Y is also maximal
Tychonoff connected.

Proor. It is clear that Y is connected. If it is not maximal Tychonoff
connected then it follows from Proposition 3.1 that there exists a discontinuous
function g : ¥ — I such that its graph G(g) is connected. The function f =gog
is discontinuous because ¢ is a quotient map so it suffices by Proposition 3.1 to
prove that G(f) is connected.

If id:I—1 is the identity map then ® =p xid: X xI — Y x I is open,
monotone and G(f) = ® '(G(g)) so the mapping ®' = ®|G(f) is open and
monotone as well. Since the inverse image of a connected space under a
monotone open map has to be connected, the set G(f) is connected which
contradicts maximal Tychonoff connectedness of X. O

We will now turn our attention to countably compact spaces. The methods
of [STTWW] are not applicable to that class of spaces because of the existence of
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a dense-in-itself countably compact space all countable subspaces of which are
scattered (see [JvM]).

3.9. THEOREM. Let X be a normal, countably compact, maximal connected
Tychonoff space. Then %y is finite.

ProoOF. Assume, towards a contradiction, that %y is infinite.

Claim 1. Let % < t*(X) be an infinite pairwise disjoint collection. If 4 =
X\|J then there is U e such that AU U is not connected.

To prove Claim 1 assume that AU U is connected and pick a point xy € U
for every U e 4. Since X is countably compact, the set {xy: Ue %} has a
cluster point z € 4. For every U € % pick a continuous function fy : UUA — 1
such that fy(4) =0 and fy(xy) =1. If f=1{),_, fu, then f is discontinuous
at the point z and G(f) = (J{G(fv): U e %} while G(fy) is homeomorphic to
AU U and hence connected for every U € %. Since the connected sets G(fy) have
a non-empty intersection G(f|4), the set G(f) is connected, which, together with
Proposition 3.1, contradicts the maximal Tychonoff connectedness of X. A

Claim 2. 1If x € X then the family of all components of X\{x} contains at
most finitely many elements that are open in X.

Suppose that € = {C, : n€ w} = t*(X) is a fathfully indexed collection of
components of X\{x}. By Theorem 3.4 the set Fy = X\Cj is connected. Now,
assume that new and we proved that F; = X\((J{Ci:k <i}) is connected
for any i <n. Since C,;; is a component of F,\{x}, the set F, | = F,\Cyii
is connected. Thus F, = X\({ J{Cx : k <n}) is connected for any n e w which
implies, together with countable compactness and normality of X, that Y =
X\| % is connected. Since for every Ce% we have xe C, the set CUY is
connected as well which is a contradiction with Claim 1. A4

Claim 3. There exists no infinite ¥~ = %y such that the family {V : V e ¥'}
is pairwise disjoint.

If Claim 3 is false then there is a family ¥~ = {V,,:ne w} = %x such that
VyN V=& whenever n #m. If S, = (\{X\V;:i <n} then S, is connected for
every n€ w by Proposition 3.5. It follows from countable compactness and
normality of X that S = (){S, : n € w} is non-empty and connected. Observe that
the components of X\S are precisely the sets 7, and SUV, is connected for
every n because xy, € V,NS. This gives a contradiction with Claim 1. A
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Fix an element U € %y. By Claim 2, the collection {V € Uy : xp = xy} is
finite because if V' € %y then V is a component of X\{x;} (see Proposition 3.5).
Since %y is infinite, we can find a sequence {U, : n € w} < %y such that if n # m
then xy, # xy,,; for the sake of brevity let x, = xy, for all ne w.

Claim 4. There is no infinite 4 = @ such that for all distinct n,me 4 we
have U,UU,, = X.

If Claim 4 is false, then there is an infinite 4 < w such that for any pair
of distinct m,ne A we have U,UU, = X; let V,, = X\U, for any ne A. The
collection {¥V, : n e A} is pairwise disjoint so the set S, = X\ J{V;:ie 4,i <n}
is connected for every n by Proposition 3.5. It follows from countable com-
pactness and normality of X that S =X\({J _, Vi) =(),., Un is connected.
We have X\S =) _,V, and V,U{x,} =V, is connected for every ne 4 (see
Proposition 3.5). Now, x, € S and hence V,US is connected for every n; this is
again a contradiction with Claim 1. A

In what follows we will need the sets Ey = {p € [w]*: if m,ne p and m <n
then x,, € U,} and E; = {p e [w]2: if mnep and m <n then x, € U,} as well
as E> = [w]*\(Eo U E;). The following three Claims show that, for any i € {0, 1,2}
there is no infinite homogeneous set for E; which contradicts Ramsey’s theorem
(see [Ru, Chapter II, page 8]). Thus our proof will be complete after we establish
Claims 5-7.

Claim 5. There is no infinite homogeneous set for Ej.

Indeed, if 4 — w is an infinite homogeneous set for E; then it follows
from Proposition 3.5 that [A]2 = EpUEy where Eyp={pe [A]z: if mnep
and m <n then U, = U,} and Ey ={pe[d]* if mnep and m < n then
U,UU, = X}. Now apply Ramsey’s theorem to find an infinite B = A such that
B is homogeneous either for Eyy or for Ey,.

If B is homogeneous for Ey, then we have a collection {U, : n € B} such that
U, c U, whenever n,me B and n<m. If V, = X\U, then V,\V, = {x,} so
V,, <V, for all m,ne B such that n < m. As a consequence, we obtain a set
S=({Van:neB}=(\{V,:neB} which is a connected zero-set of countable
outer character in X. Using normality of X it is easy to construct a continuous
function ¢ : X — I as in Theorem 3.3 which is a contradiction with maximal
Tychonoff connectedness of X.

Now, if B = A4 is an infinite homogeneous set for Ey; then {U, : n € B} is an
infinite family for which U,U U,, = X for any distinct m,n € B; this contradicts
Claim 4. A
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Claim 6. There is no infinite homogencous set for Ej.

Indeed, if 4 < w is an infinite homogeneous set for E; then it follows
from Proposition 3.5 that [4]? = EygUE;, where Ejg={peld]* if mnep
and m <n then U, = U,} and E; ={pel|d]* if mnep and m <n then
U,UU, = X}. Now apply Ramsey’s theorem to find an infinite B = A such that
B is homogeneous either for Ejy or for Ejj.

If B is homogeneous for Ejy then we have a collection {U, : n € B} such that
U,, = U, whenever n,me B and n < m. As a consequence, we obtain a set S =
(W{U,:ne B} = (\{U,:ne B} which is a connected zero-set of countable outer
character in X. Using normality of X it is easy to construct a continuous function
¢ : X — 1 satisfying the hypothesis of Theorem 3.3 and hence X is not maximal
Tychonoff connected.

Now, if B = 4 is an infinite homogeneous set for Ej; then again {U, : n € B}
is an infinite family for which U,U U,, = X for any distinct m,n € B; this con-
tradicts Claim 4. A

Claim 7. There is no homogeneous infinite set for F,.

Indeed, if A < w is an infinite homogeneous set for E, then x, ¢ U, and
Xm ¢ U, for all distinct m,ne A. Then the collection {U, :ne€ A} is pairwise
disjoint for otherwise there are distinct m,ne A with U,NU,, # & and hence
U,NU,=U,NU, (we have to recall that x, # x,, and apply Proposition 3.6)
is a clopen non-empty proper subset of X, which is impossible by connectedness
of X. This contradiction with Claim 3 shows that Claim 7 is settled. A

Thus we obtained a decomposition [w]2 = EyU E; U E, with no homogeneous
infinite set for all i € {0, 1,2}. This contradiction with Ramsey’s theorem finishes
our proof. O

3.10. REMARK. Perhaps the reader feels that a better theorem would be that
Uy is empty. This would indeed be the case. However, we do not know whether
there is a normal, countably compact, maximal Tychonoff connected space. It is
worth noting, however, that if there is a normal, countably compact, maximal
Tychonoff connected space X with an endpoint then there is one for which
Ux # &.

Proor. Let X be a normal, countably compact maximal Tychonoff con-
nected space with a endpoint x. Consider the disjoint topological sum of two
copies of X, i.e.,
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(X > {0} U (X x {1}),
and identify the points (x,0) and (x,1). The resulting space Y is again normal,
countably compact, maximal Tychonoff connected and %y # . O

A similar trick cannot be repeated infinitely often, since then it is clear that
one loses countable compactness. So it seems that, in a sense, Theorem 3.9 is the
best possible.

3.11. COROLLARY. Let X be a non-trivial, normal, countably compact, maxi-
mal Tychonoff connected space. Then every disjoint family of non-trivial connected
subsets of X is finite.

ProoF. Let .7 be a countably infinite family of pairwise disjoint non-trivial
connected sets in X. By Theorem 3.9, the family %y is finite, say %y =
{Uy,...,U,}. If no U; contains infinitely many elements from .o/ then we may
pick distinct 4, B e o/ such that A\U; # J # B\U; for every i < n. Since this
contradicts Proposition 3.6, we may assume, without loss of generality, that every
element of .o/ is contained in Uy. Proposition 3.6 implies that all the pairs of
elements of <7 can be ‘separated’ by an element of the collection Zx\{Uy} so we
can repeat the same reasoning to throw out one more element of %y; after at
most n steps this evidently leads to a contradiction. O

3.12. REMARK. Every non-trivial continuum X contains an infinite pairwise
disjoint family of non-trivial subcontinua. To see it, take an infinite family
U < v*(X) such that the collection {U : U € %} is disjoint. For any U € % choose
xy € U and observe that the component Cy of the point xy in the space U is
non-trivial because it has to intersect the boundary of U (see [En, Lemma 6.1.25]).
Thus Corollary 3.11 implies that no non-trivial continuum is maximal Tychonoff
connected providing, therefore, another method for the proof of Theorem 2 of
[STTWW] for the compact case.

3.13. COROLLARY. Let X be a non-trivial, normal, countably compact, maxi-
mal Tychonoff connected space. Then X contains a dense open totally disconnected
subspace.

Proor. Every non-empty open subset of X contains an infinite disjoint
family of non-empty open subsets of X. This means that one of them is totally
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disconnected by Corollary 3.11. So, a maximal family of totally disconnected
open subspaces of X has dense union and is, clearly, totally disconnected. []

4. Classes in which Connected Tychonoff Topologies can be Strengthened

The results of this section show that many local properties of a connected
space X imply that X is not maximal Tychonoff connected. The analogous global
properties discovered so far imply, in some sense, that there exist “large’” compact
subsets in the space X.

4.1. THEOREM. Let X be a non-trivial connected Tychonoff space containing
at least one point of countable character. Then X admits a strictly stronger con-
nected Tychonoff topology.

Proor. Let X be first countable at the point x. It is easy to find a continuous
surjective function ¢ : X — I such that ¢(x) =0 and {U, = ¢~!([0,1/n)) : n e N}
is a local base at x in X. Now apply Theorem 3.3 to conclude the proof. [

4.2. THEOREM. Let X be a non-trivial connected Tychonoff space that is the
union of a family of fewer than ¢ compact subspaces. Then X admits a strictly
stronger connected Tychonoff topology.

Proor. Let 4 be the family of all compact dense-in-themselves subspaces
of X, and consider the set F = () #". If F = X then we can apply Lemma 2 and
Theorem 1 of [STTWW] to obtain the desired result. So assume that U = X\ F is
non-empty and pick a non-empty open subset ¥ of X such that V¥ < U. Then V

is the union of fewer than ¢ compact subspaces that all have to be scattered.

We claim that ¥ is zero-dimensional; to see it, pick an arbitrary continuous
function f: ¥ — R. Since for every scattered compact E < V the set f(E) is
scattered and hence countable, the space f (V) has size strictly less than ¢. The
space V' being Tychonoff, it has to be zero-dimensional. But no open subset of a
connected space is zero-dimensional, which is a contradiction. OJ

4.3. COROLLARY. Let X be a non-trivial connected a-compact Tychonoff
space. Then X admits a strictly stronger connected Tychonoff topology.

Recall that a space X is of pointwise countable type if it is a union of a family
of compact subspaces each having a countable outer base in X. It is not hard
to prove that every Cech-complete space is of pointwise countable type. It was
shown in Theorem 4 in [STTWW] that if X is a connected Tychonoff space of
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pointwise countable type and ¢(X) = w then X admits a strictly stronger con-
nected Tychonoff topology. The following result shows that there is no need to
assume the Souslin property of X and answers Problem 2 of [STTWW].

4.4. THEOREM. Let X be a non-trivial connected Tychonoff space of pointwise
countable type. Then X admits a strictly stronger connected Tychonoff topology.

Proor. Again, let ¢ be the family of all compact dense-in-themselves sub-

spaces of X, and put F = U.%f . If F=X then we can apply Lemma 2 and
Theorem 1 of [STTWW] to obtain the desired result. So we assume that U = X\F
is non-empty. Pick x € U, and a compact subspace K 3 x of X with a countable
neighbourhood base. In addition, let V' be an open neighbourhood of x such
that ¥V < U. Then V' NK is compact and scattered. Hence the non-empty open
subspace V' NK of ¥ NK has an isolated point, say y. But then y is an isolated
point of K so X is first countable at y because K has a countable outer base in
X. Now apply Theorem 4.1 to complete the proof. O

4.5. THEOREM. If X is a non-trivial Tychonoff connected and locally connected
space then there exists a strictly stronger connected Tychonoff topology on X.

Proor. Fix a continuous ¢: X — I such that F =¢ '(0) # & and U =
X\F # . Consider the sets B, = ¢~ ' (), 0, =¢7'([0,1)) and P, = 0,U B, for
any neN. We will also need the sets C;" = ¢~ '((L,1)) and D" = ' ([L,1])
for any m,n e N with n < m. Furthermore, No = {n:neN and »n is even} and
Ny ={n:neN and n is odd}. Observe first that

(i) if G is a clopen subset of U and GN C*! # ¢ then GN By # & for any

k > n,
because otherwise G\Ox = G\Py is a clopen non-empty proper subset of X.
Furthermore,
(i) if G is a clopen subset of U and x € GNF then xe ( J{GNB; :i e A} for
any infinite 4 < N.

To see that (ii) is true assume that W is an open connected neighbourhood
of x such that WNP = ¢ where P=|J{GN B, :ie A}. Take any m € 4; since
W NOo,, is a neighbourhood of x, we have O,,N W NG # & so there is k > m
and a point y € C,f“ NGN W. Since A is infinite, we can take / € A with k + 1 <
I. Tt is immediate that we have ye C.NGNW =D, NGNW so W' =Cl N
W NG is a non-empty proper clopen subset of GN W. Besides, W/ NF = & and
hence W’ is a clopen non-empty proper subset of W; this contradiction with
connectedness of W shows that (ii) holds.

Next note that # = é is a continuous function on U such that {#(B,) : n € N}
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is a discrete family of singletons in R. An evident consequence is that there exists
a continuous function g : U — I for which g(B;) = {0} for any i € Ny and ¢g(B;) =
{1} whenever ie N;. Let f(x) =g¢g(x) for any xe U and f(x) =0 if xe F.

The space X being connected, the set U is not closed in X so there is
xe UNF. Applying (ii) with G = U and 4 = N; we can see that xe {B; :ie A}
and hence the function f is discontinuous at the point x. We claim that the graph
G(f) of the function f is connected.

To arrive at a contradiction assume that E’ and G’ are non-empty disjoint
clopen subsets of G(f) such that E'UG’' = G(f). If z: X x I — X is the natural
projection then it is a homeomorphism if restricted to any of the sets F’' =
(FxDNG(f) and U' = (U xI)NG(f). Let G ==n(G') and E = n(E'); we can
assume, without loss of generality, that GN U # (J.

Suppose first that U < G; then E < F. Since n|F’ — F is a homeomorphism,
the set E is closed in F and hence in X. Therefore it is impossible that E <
Int(F) because otherwise E is a clopen non-empty proper subset of X. Therefore
we can take x e H = F\Int(F) such that xe E. Applying (ii) to the set B =
(J{B.:ne Ny} we conclude that xe B; the map f|(BUF) is constant so
(x,0) € B x {0} which, together with B x {0} = G', shows that (x,0)e E'NG’
which is a contradiction.

Thus we can assume that £y = ENU # . Therefore G = GNU and E,;
are non-empty disjoint clopen subsets of the space U such that E;UG; = U.
If ExNO, = for some neN then E; = E1\O,41 = E1\P,11 is a clopen non-
empty proper subset of X, a contradiction. Analogously, it is impossible that
GiNO, = for some neN.

Furthermore, ENF and GN F are disjoint closed subspaces of F' and hence
of X. It follows from connectedness of X that ENG # J so either GiNE # &
or E{NG # . The two cases are similar so take an arbitrary point x € G; N E.
It is clear that x € F so we can apply (ii) again to conclude that BN G, contains x
in its closure. But BU F is homeomorphic to (BUF) x {0} = G(f) which shows
that (x,0) € E’ is in the closure of (BN Gp) x {0} = G' which again provides a
contradiction. Finally, apply Proposition 3.1 to conclude that X fails to be maxi-
mal Tychonoff connected. U

4.6. REMARK. It is worth noting that the proof of Theorem 4.5 is valid for
a slightly larger class of spaces than the locally connected ones. To see it observe
that we only used local connectedness of X at the points of the boundary of the
set F. Thus we have actually proved that if X is a Tychonoff connected space in
which there is a zero-set F < X such that & # F # X and X is locally connected
at all points of F\Int(F) then X is not maximal Tychonoff connected.
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5. Open Problems

The most intriguing problem is the existence of maximal Tychonoff connected
spaces. Being convinced that they do exist, we also ask about their properties.

5.1. PROBLEM. Does there exist a maximal Tychonoff connected space?

5.2. PROBLEM. Is it true that any connected space is a continuous image of a
maximal Tychonoff connected space?

5.3. PROBLEM. s it possible to strengthen the topology of R to a maximal
Tychonoff connected topology? How about an arbitrary connected space?

5.4. PROBLEM. Does there exist a maximal Tychonoff connected countably
compact space? Does it help to assume additionally that X is normal?

5.5. PROBLEM. Does there exist a maximal Tychonoff connected pseudo-
compact space?

5.6. PROBLEM. Does there exist a maximal Tychonoff connected Lindelof
space?

5.7. PROBLEM. Does there exist a maximal Tychonoff connected Fréchet—
Urysohn space? How about maximal Tychonoff connected spaces which are se-
quential or k-spaces?

5.8. PROBLEM. Is it true that all compact subsets of a maximal Tychonoff
connected space are zero-dimensional? Is it possible to prove, at least, that a
maximal Tychonoff connected space cannot contain a copy of 1?

5.9. PROBLEM. Let X be a maximal Tychonoff connected space. Does there
exist a cut point in X, ie., a point xe X for which X\{x} is disconnected?

5.10. PROBLEM. Must every maximal Tychonoff connected space be (strongly)
o-discrete?
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