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CONTINUITY OF INTERPOLATIONS

By

Toshiji TERADA

Abstract. An interpolation function for a set of finite input-output
data is a function which fits the data. Let us say that a topological
space X has a continuous interpolation if interpolation functions can
be selected continuously, more precisely, if there is a continuous map
from a certain subspace of the hyperspace F(X x R) of finite subsets
of X x R to the Banach space C(X) of bounded real-valued continuous
functions on X. The concept of weakly continuous interpolation is
also introduced. The real line has a continuous interpolation. Every
metrizable space has a weakly continuous interpolation. On the other
hand, w; and fw do not have weakly continuous interpolations.

1. Introduction

All topological spaces considered here are Tychonoff. Basic terminology is
found in [2], [4]. The space of real numbers is denoted by R. Let X be a
topological space. The space C(X) is the Banach space of all bounded real-
valued continuous functions, with the sup norm: || f||., = sup{|f(x)| : x € X} for
f € C(X). The space F(X x R) is the hyperspace consisting of all finite subsets of
the product space X x R, with the Vietoris topology [5]. Hence basic neigh-
borhoods of {(xi,r1), (x2,72),. .., (Xu,74)} € F(X x R) are given by:

<U1 X V],UZX Vz,...,UnX Vn>
k=1

:{DEF(XXR):DC U U X Vi, DO(Up X Vi) # & (k:l,2,...,n)},

where Uy is a neighborhood of x; in X and ¥V} is a neighborhood of r; in R for
k=1,2,...,n. Let S(X) be the subspace of F(X x R) defined by
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SX) = {{(x1.r), .oy (oayrn)} 2y # x5 for i # j}.
For each n=1,2,..., define F,(X x R) and S,(X) by:
F, (X xR)={De F(X xR): D has at most n points},
Sp(X) = S(X)NF,(X xR).

Notice that S,_;(X) is closed in S,(X).
For a point D = {(x1,r1), (x2,72), ..., (Xn, )} € S(X), a function fp in C(X)
is called an interpolation function for D if

So(x1) =11, fo(x2) =12,y fp(xn) = 1

are satisfied [1]. Suppose that X is the input space and R is the output space of
some system. Then the point D is considered as a set of finite input-output
data. The interpolation function fp is a function which fits the given data. It is
obvious that for every D € S(X) there is an interpolation function fp for D, since
X is Tychonoff. Hence we can consider the map @ : S(X) — C(X) defined by
O(D) = fp. Since similar maps under the statistical frameworks are called learning
algorithms in learning theory [6], this map ® might be called an interpolation
algorithm in a vague sense. Further we are interested in the case when this in-
terpolation algorithm has some kind of continuity or stability. Let us call the map
® to be a continuous interpolation of X if ® is continuous as a map between the
topological spaces S(X) and C(X). In case ® satisfies the weaker condition that
the restriction ®|g, y)_s, ,(x) is continuous for each n=1,2,..., we call © to be
a weakly continuous interpolation. That is, the interpolation ® is weakly con-
tinuous if for any D = {(x1,7r),..., (X, 74)} € S(X) and any ¢ > 0, there is a
neighborhood W = (U; x V1,..., U, x V,,> of D such that || fp — fpl|,, < ¢ for
any D' = {(x{,r{),...,(x,,r)} € WNS,(X). Hence this weak continuity can be
called a topological stability of interpolation algorithms like the stabilities of
learning algorithms [6]. Our purpose of this paper is to discuss whether a given
topological space has a (weakly) continuous interpolation or not. The following
are obvious, but fundamental in our argument.

THEOREM 1. Every discrete space has a (weakly) continuous interpolation.

THEOREM 2. If X has a (weakly) continuous interpolation, then every subspace
of X has a (weakly) continuous interpolation.

THEOREM 3. Let 7\ and t, be topologies on a set X. If ©| is weaker than
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7y and (X, t1) has a (weakly) continuous interpolation, then (X, 1) has a (weakly)
continuous interpolation.
2. Metrizable Spaces and Continuous Interpolations

In our framework, the following simple fact is also fundamental.
THEOREM 4. The real line R has a continuous interpolation.
Proor. Let
D= {(X], r1)7 (x2772)5 R (Xn, rn)}
be an arbitrary point in S(R). We can assume that
X <X < - < Xp.

Let us consider the function fp e C(R) defined by

L8| for x < xi
rizri- ; —
So(x) =< riq+ (x— xifl)x,-fx,,l] forx, 1 <x<x;,i=2,...,n
'y for x, < x.

Obviously fp is an interpolation function for D. It must be checked that the map
0:S(X) — C(X) defined by O(D) = fp is continuous.
For D = {(x1,r1),...,(xn, 1)} € S(R), let

m=min{|x; — x2|,...,|[Xp—1 — Xu|}, M =max{|r],..., ||}

In case n=1, let m be an arbitrary positive number. For any ¢ such that

0<e(<l) leto :% min{%,%}. Now, consider the following neighborhood
of D:

W = (Us(x1) x Vyya(r), ..., Us(xn) x Viya(ra),

where Us(x;) is the d-neighborhood of x; and V,/3(r;) is the &/3-neighborhood
of r; for i=1,...,n. We will show that | fp — fp|,, <¢ for any D' e W. Let
D' = {(x{,r{)s-..,(x,, 1)}, where x| <---<x/ is satisfied. Then there is the
increasing map o:{l,...,m} — {l,...,n} which satisfies (x],7}) € Us(x,(;) x
Vi/3(rg(;)) for any j=1,...,m. Since it suffices to show that |fp(x) — fp/(x)| <e
for any x € R, let x be an arbitrary point in R. (1) First, assume that x < x; — .
Then fp(x) = ri. Further it must be satisfied that x < xj, and hence fp/(x) = r].
Since |r; —r{| < ¢&/3, it is obvious that |fp(x) — fp/(x)| < e/3. In the case that
X > x, + 0, similar argument above implies that |fp(x) — fp/(x)| < &/3. (2) Next,
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we consider the case when there is some 7 such that |x — x;| < J. Notice that for

each k =2,... n the absolute value of the slope % of the line connecting
(Xk—1,rk—1) and (xg,rg) is less than M Therefore if x;,_1 < y <z < x; and

|y —z| <0 are satisfied, then we obtam that |fp(y) — fp(z)| < 33 7y 2%1“) =
¢/9. Hence in the present case |fp(x) — r;| < ¢&/9 is satisfied. On the other hand,
there is some j such that x/ <x<x/,,. If o(j)=0(j+1)=1i, then [r] —rl,
|r}yy —ri| <e/3. Since r; —&/3 <min{rj,rj, } < fp(x) <max{r/,rj, } <ri+e/3,
the inequality |fp/(x) —r;| < e/3 is also satisfied. Hence |fp(x) — fp/(x)| < 2¢/3.
If o(j)=i and o(j+1)=i+1, then |xj—x/ | >m—26>2m/3. Hence the
absolutﬁe/:[ \;alue of the slope of the line connecting (x},r/) and (x/,;,r/,) is less
than 22D 1t follows that |/p(x) —ri| < &/6. This implies that |/p(x) — fp/(x)]
< |fp(x ) —ril+ i =il +1rj = for(x)| <&/9+¢/3+¢/6 <e Similarly, if o(j) =
i—1and o(j+ 1) =1, it is proved that |fp(x) — fp/(x)| < &. (3) Finally, assume
that x; +J0 < x < x;;; —6 for some i =1,...,n— 1. The number k = max ¢~ (i)
is settled and it must be satisfied that g(k+ 1) =i+ 1. Since x; < x; +6 and
Xip1 — 0 < xp,,, it is satisfied that x; < x < xj,,. Let x/ = max{x;,x;}, x| =
min{x;;1, X, }. Since |x/ — x|, |x/,, — xi1| < 8, it follows that |fp(x}) — fp(x])],
|fp(xly) = for(xl ) < e by usmg the result of the case (2). Since fp, fp: are
linear on the interval x/ < x < x/_,, it is obvious that |fp(x) — fp/(x)| < & for any

x such that x; +0 < x < x4 — 0.

COROLLARY 1. The Sorgenfrey line and the Michael line have continuous
interpolations.

It seems difficult to extend the result of Theorem 4 to higher dimensional
Euclidean spaces R”. However, we can show that R” has a weakly continuous
interpolation. More generally the following is obtained.

THEOREM 5. Every metrizable space has a weakly continuous interpolation.

Proor. Let (X,d) be a metric space. For any D = {(x1,7r1),...,(Xu,74)} €
S(X), let
M =max{|r|,...,|r|}, m=min{d(x;,x;):i# j}.
Then the function fp e C(X) is defined by

0 if d(x,x;) >m/4dforeachi=1,....n
o) =93 Vo 4 -
ri —5id(x,x;) if d(x,x;) <m/4 for some i=1,...,n.
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In case D = {(x1,r1)} € S1(X), let m = o0 and hence fp(x) =r for each x e X.
It is obvious that fp is an interpolation function for D. We will show that the
map O : S(X) — C(X) defined by O(D) = fp is weakly continuous. Since the
continuity of ®|g, y is obvious, we can assume that n > 1. For the above D and
an arbitrary (1 >)e >0, let 6 >0 be a real number such that

o <mind 2,
8'32(M+1)f

Since the absolute value || of the coefficient of d(x,x;) used in the definition of
fp is less than W, the inequality W% < ¢/4 implies the following.
Claim. If x, y e X satisfy d(x, y) <29, then |fp(x) — fp(»)| < ¢/4.
It suffices to show that || fp: — fpl|,, < &for D' = {(x],r]),..., (x}, 1))} € Sp(X)

which satisfies
d(x!,x;) <0, |ri—r|<e/4 fori=1,...,n.

For this D', the numbers M'=max{|r{|,....[r,|}, m'=min{d(x], x]):i# j}
are also defined. The inequalities M’ < M + 1, m—25 <m’ <m+ 20 are ob-
vious. Let x be an arbitrary point in X. Assume that d(x,x;) >m/4 for
each 7, then fp(x)=0. On the other hand, for this point x it is satisfied
that fp/(x) =0 or 0 < |fp/(x)] < )r{—%d(x,x{) for some i. Even in the
latter case, since % > d(x,x]) > d(x,x;) — d(x/,x;) > — 36 and hence |fp/(x)| <
=2 _3s)| < 'fn—a <M 5 < e/4, it follows that |fp(x) — fpr(x)| < &/4.
Next, assume that d(x,x;) < m/4 for some i. If |r;] <¢/4, then |fp(x)| <e/4.
Further the inequlity |r/] <e&/2 is satisfied. Then |fp/(x)| <e&/2, and hence
|/p(x) — fpr(x)| < 3¢/4. The remaining is the case |r;| > &/4. Let

a:Vi_%d(xaxi)v b:Vi—%d(anf%
C:r,-—méyizéd(x,x,{), c/zi’i—m‘_‘:i25d(x7x;)7
di=r, —8/4—%d(x,x;), di = r,—+s/4—4(,:;;§/54)d<x,x,-’),
dy=ri— ot =S gt = rivea - g ),

Since fp(x) =a and either d| < fp/(x) <d] or dr < fp/(x) < dj are satisfied
according to r; > ¢/4 or r; < —e/4, if it is proved that |a —d]|,|a — d|, |a — da],
la — dj] < & then we have |fp(x) — for(x)] <e.
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1) |a—b| < e/8: In fact, |a—b| = [*(d(x,x;) —d(x,x]))| < 5 < ¢/8.

(
(2) |b—c| <e/8: This follows from |b—c| = |ri|d(x,x]) | — 25| =
(x, < (M + 1) =8

|rild

)mm 20) 8 m— m/4 32(M+l)

( ) |b - C/| < 8/8 |b - C,| = |71|d( ) m m—aZ(S = |V[|d(x, le) m(,,?j_z(;) <
(M +1)3n m 32(M+1 <¢/8.

@) |c—d| <3 8 lc —di| = | s (x,x[)| <eld+ |ﬁ‘d(x,x{) <
8/4+%%"=8/4+8/2_38/4

(5) ¢’ —dj| < 3e ¢/ —d]| = |—¢/4 — i55d(x,x])| < /4 + 5 d(x,x]) <

/444 3m < 3¢ /4.
6) ¢ —db] = |c—di| < 3¢/4.
(7) |c—d;] = |c" —d]| < 3¢/4.
Hence |a —d]|,|a —di|,|a — d»|,|a — d;] < &/8 +¢/8 + 3¢e/4 =e.

COROLLARY 2. Let X be a space whose topology is stronger than a metrizable
topology. Then X has a weakly continuous interpolation.

3. Spaces without Continuous Interpolations

As we see in this section, it is delicate whether a given space has a (weakly)
continuous interpolation or not.

THEOREM 6. The ordered space w\ of the first uncountable ordinal does not
have a weakly continuous interpolation.

PrOOF. Assume that there is a weakly continuous interpolation © : S(w;) —
C(wn). Let 09 = 0 and W, be the set of all limit ordinals in w;. For each 1 € W,
let DY = {(2,0),(4,1)} € So(w1). Then the function f =®O(D?) is obtained.
Since this function is continuous at 4 and f(4) = 1, there exists 4 <  such that
|/2(x) — 1] < 1/4 for any x which satisfies 4! < x < 1. Using the pressing down
lemma [4] for the function 4+ p, there exist an ordinal o; and a stationary
subset W, of W, such that 4 = oy for any 4 € W,. Repeat the similar procedures.
Then we obtain a sequence

o <oy < -

of points in w; and a sequence
W() ) Wl )

of stationary sets in w; such that for any i = 1,2,... and any 1 € W}, the function
£ =0({(2-1,0), (4,1)}) satisfies
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) =1 < 174 (%)
for any x such that o; < x < 4. Now, let & =lim,_, o,. We can take another
sequence of ordinals (& <)f, < ff; <--- such that f;e W; for each i. Let
B =1lim,_.. B, in w. Then for D = {(&,0),(B,1)} € S>(w)) there is the corre-
sponding function fj; = ®(D). Since O] Sy(1)—Sy () 1S continuous at D, there are
neighborhoods Uj; of & and Vi of f which satisfy the following: For any a € Uy
and f € I, the function f; = ~®({(oc,0), (B,1)}) satisfies || f.p — fpll,, < 1/4 and
hence [f,p(a)| < 1/4 and [f,;5(B) — 1| < 1/4. Since a, € Uz and B, € V; for suf-
ficiently large n, it follows that |f, s (&) < 1/4 for sufficiently large n. But this is
a contradiction, since the above condition (x) implies that |f, s (&) — 1] < 1/4.

COROLLARY 3. FEvery topological space containing w, does not have a weakly
continuous interpolation.

The space w; is first-countable and countably compact. On the other hand,
every countably compact space which has a weakly continuous interpolation must
be nearly first-countable in the following sense.

THEOREM 7. Let X be a countably compact space which has a weakly
continuous interpolation. Then the tightness t©(X) of X is countable.

PrOOF. Assume that 7(X) > @ and that X has a weakly continuous in-
terpolation ® : D — fp. Then there are a subset 4 of X and a point p € c/y 4
such that p ¢ c/y B for any countable subset B of 4. We can assume further that
cly B < A for any countable subset B of A.

Let xo be an arbitrary point in 4 and let Dy = {(xo, 1), (p,0)} € S2(X). Then
there is a point x| € fp, '(0)N 4, since X is countably compact and has the
property futher assumed above. Next, let D = {(x;,1),(p,0)}. Then there is a
point x; € f51(0) N f51(0) N A. Continuing this procedure, we obtain a sequence
{x;:ie w} of points in A such that for any new

X € Xni1 € [, (0) N -0 £, 1(0),

where D; = {(x;,1),(p,0)} for each i€ w. Since X is countably compact, there
is an accumuration point x,, of {x;:iew}. The procedure of constracting
{x;:iew} implies that x, #p and x, € (){fp'(0):iew}. Consider the
point Dy, = {(x,1),(p,0)} € S2(X). Then there exists a neighborhood W =
Uy x V1,U, x Vo) of Dy, such that || fp — fp, ||, < 1/2 and hence especially
|/p(x0) — 1] < 1/2 for any D'e WN(S2(X)— Si1(X)). But this is a contra-
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diction, since there exists n such that D, € W N (S2(X) — S1(X)). In fact, for this
D, it must be satisfied that fp (x,)=0.

COROLLARY 4. The ordered space w) + 1 does not have a weakly continuous
interpolation.

For the discrete space D(w) of cardinality w;, let D(w;)U{o04} be the one-
point compactification of D(w), i.e. the complement of every neighborhood of
o0y is a finite subset of D(w;). The one-point Lindel6fication D(w;)U {oo,} of
D(w) is the space obtained by adding a point oo, with the neighborhood base
consisting of co-countable sets.

THEOREM 8. The one-point Lindeldfication D(w;)U{oor} has a continuous
interpolation.

ProOF. We can assume that the underlying set of D(w;)U{coL} is w; + 1 as
oor = wy. For D= {(ay,r1),..., (o, ra)} € S(D(w1)U{coL}), where oy < -+ < o,
let fp e C(D(w;)U{cor}) be the function defined by

ri foroa <o
fol@)=<r foro 1 <a<o,i=2,...,n—1
r, foro,_1 <o.

It is easy to see that the map ® defined by ®(D) = fp is a continuous inter-
polation of D(w;)U{co}.

THEOREM 9. The one-point compactification D(w)U {04} does not have a
weakly continuous interpolation.

Proor. The underlying set of the space X = D(w;)U {004} is also the well-
ordered set w; +1 as above. Assume that D(w;)U{oo4} has a weakly con-
tinuous interpolation ® : D — fp. Since any real-valued continuous function on
D(w;)U{o0y} is constant on a co-countable set and ® is continuous on
SH(X) — S1(X), there exists yy, < w; such that

Ipy(04) =0

for any D,z = {(a,1),(f,0)} such that o < @ and f > y,.

Let f, € D(w;) be a point larger than y,. Consider Dy = {(f;,0), (004, 1)} in
$2(X). Then fp,(004) = 1. Since the restriction Olg, y)_g,(y) is continuous, there
is a neighborhood W of Dy in S»(X) such that
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1/ = folloe < 1/2

and hence |fp/(oo4) — 1] < 1/2 for any D’ e W. Since the complement of any
neighborhood of oo, in D(w;)U{o0,} is finite, there exists o9 < w such that
Dyyp, = {(By,0), (20,1)} € W. Then fp, , (504) > 1/2. However, since oy < » and
70 < By, the above condition of y, implies that fp, , (c04) = 0. This is a con-
tradiction.

For a point p in a space X, y(p,X) is the pseudo-character of X at p. A
similar argument to the proof above show the following.

THEOREM 10. Let X be a space with a point p such that Y(p,X) > w. Let
X Vo (0 + 1) be the quotient space of the topological sum X @ (w + 1), obtained
by the identification of p with w. Then X Vy, (@ + 1) does not have a weakly
continuous interpolation.

ProOF. In X v, (o + 1), let p,, be the point corresponding to the set {p, ®}
collapsed. Assume that X v,, (w+ 1) has a weakly continuous interpolation
® : D — fp. Since any Gjy-set of X containing p has an infinite number of points,
the weak continuity of ® at D;, = {(i,1),(p.,0)} for each i e w implies that
there exists an infinite Gs-set B of X containing p with the following property:
If xe B—{p} and i€ w, then

fD[x(pw) =0

where D; = {(i,1),(x,0)}. Let ge B be a point which is distinct from p.
Consider the point Dy, = {(¢,0), (pw, 1)}. Then fp, (p.) = 1. On the other hand,
any neighborhood W of D, in S»(X Vpe (0 +1)) —Si(X Ve (0 + 1)) contains
D, ={(i,1),(q,0)} for some i€ w. Since fp
tradicts the weak continuity of ©.

(pw) =0 for such Dj,, this con-

iq

COROLLARY 5. Let X be a space such that X x (w+1) has a weakly
continuous interpolation. Then the pseudo-character (X)) is countable.

PrOOF. Suppose that Y(p,X)>w for a point p in X. The space
X Vpo (0 +1) having no weakly continuous interpolation is embedded in
X x(w+1) as X x{o}U{p} x (w+1).

Let X be the one-point Lindeldfication D(w;)U{oo,} and ¥ = w + 1. Then
we obtain the following.
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THEOREM 11. There are spaces X, Y having continuous interpolations such
that X x Y does not have a weakly continuous interpolation.

A subset # < C(X) is called a separating family of X if for any distinct
points p, g in X there exists f/ € Z such that f(p) # f(q).

THEOREM 12. If an infinite space X has a weakly continuous interpolation,
then the density d(X) of X is larger than or equal to the minimum cardinality of
separating families of X.

Proor. There is a weakly continuous interpolation ® : D — fp of X. Assume
that |7 | > d(X) for every separating family % of X. Let B be a dense subset of
X such that |B| = d(X). Consider the subfamily

S"(X)={DeS(X): if (x,r)e D, then xe B,reQ},
where Q is the set of all rational numbers. Let 5 ={fp: De S’(X)}. Since
|75 < [S"(X)] = d(X),

Zp is not a separating family of X. Hence there are distinct points p, ¢ in X such
that f(p) = f(q) for any f e Zp. Take Dy = {(p,0),(g,1)} € S2(X). From the
weak continuity of O, it follows that there is a neighborhood W of Dy in
S$2(X) — S1(X) such that ©(W) is included in the 1/2-ball B/, (fp,) of fp, in
C(X). Since B x Q is dense in X x R, there is D; = {(p’,r),(¢',s)} € WNS'(X).
For this Dy,

||fDI _fDo”oc < 1/2

must be satisfied. But this is a contradiction, since

fDl(p):fDl(Q)a fDo(p):Ov fDo(Q):l-

“! does not have a weakly

COROLLARY 6. The uncountable product space {0, 1}
continuous interpolation. Hence every space containing {0,1}”" does not have a

weakly continuous interpolation.

Since D(w;)U {004} can be embedded in {0,1}*', this corollary is considered
also as a corollary of Theorem 9.

COROLLARY 7. The Stone-Cech compactification fw of the countably infinite
discrete space w does not have a continuous interpolation.
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Since the tightness of fw is uncountable, this corollary is also a corollary of
Theorem 7. There are more examples which show the delicacy of having weakly
continuous inerpolations. A family .o/ of infinite subsets of w is called an almost
disjoint family if the intersection of any two distinct element of .o/ is finite [3, 4].
A maximal almost disjoint family is an almost disjoint family .o/ with no almost
disjoint family 4 properly containing .o/. For each almost disjoint family .o/ we
can define the topological space ¥(«/) = wU .o/, with the following topology:
The points of w are isolated, while a neighborhood of a point 4 € o7 is any set
containing 4 and all but a finite number of points of A(c w) [3].

THEOREM 13. (1) There exists an almost disjoint family </ of cardinality 2%
such that Y(o7) has a weakly continuous interpolation.

(2) There exists an almost disjoint family M of cardinality 2° such that Y (M)
does not have a weakly continuous interpolation.

Proor. (1) Let us consider the following topology 7 on the upper half-
plane R x [0,00), which is similar to the Niemytzki tangent disc topology:
Neighborhoods of all points (x,y) with y #0 are unchanged from those of
the Euclidean topology and taking as a base at each point (r,0) the family
{{{@r0)}UU,(r):n=1,2,...}, where

U,(r) ={(x,y) eRx (0,00) : |x —r| < y < 1/n}.

Since 7 is stronger than the Euclidean topology, every subspace of this upper half-
plane with the topology 7 has a weakly continuous interpolation. Let {g, : n € ®}
be an enumeration of all rational numbers, and let ¢ : @ x Z — R x (0, c0) be the
one-to-one map defined by ¢(n,m) = (g, +m/(n+1),1/(n+ 1)), where Z is the
set of all integers. Then the subspace

X ={¢(n,m): (n,m)ewxZ}UR x {0}

of (R x [0,00),7) has a weakly continuous interpolation. Let }: @ — w x Z be
a bijection. For each reR, let 4, ={new:¢oy(n)e Ui(r)}. Then the family
o ={A,:reR} is an almost disjoint family. It is easy to see that W(«/) is
homeomorphic to X.

(2) It is well known that there exists a maximal almost disjoint family .# of
cardinality 2¢. Since the density of W(.#) is countable, it suffices to show that
the cardinality of every separating family of W(.#) is greater than w. Assume
that there is a countable separating family & of W(.#). Then the product map
nF ¥(M) — R” defined by 7.7 (x) = (f (x));c is one-to-one and continuous.
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Since W(.#) is pseudocompact and R” is metrizable, the image 7.7 (W(.#)) of
this continuous map must be compact. For any x € ¥(.#) and any neighborhood
U of x in W(.#), there is a real-valued continuous function f; ¢ : ¥(.#) — [0,1]
such that fy v(x) =0, fx vlw sy = 1. Now, consider the family #' = 7 U { £, v}
obtained by adding one more function f, y to %. Then there exists also the map
7' W(l)— R” and its compact image nZ'(WY(.#)), in which zZ'(U) is
a neighborhood of 7.7 '(x). Since the natural projection P:R” — R” is con-
(VM) : 2T (P(M)) — nF (Y(M)) is a one-to-one
continuous map between compact spaces and hence a homeomorphism. This
means that n% (U) is a neighborhood of n% (x) for any x e ¥ (.#) and any
neighborhood U of x. It follows that W (.#) is homeomorphic to n7 (W (.#)), but
this is a contradiction since W(.#) is neither compact nor metrizable.

tinuous, the restriction P

The following problems seem to be interesting.

PrROBLEM 1. Does every separable metrizable space have a continuous in-
terpolation?

This is equivalent to the problem: Does the Hilbert cube /“ or the countable
product R” have a continuous interpolation?

PROBLEM 2. Does every space contain a dense subspace which has a (weakly)
continuous interpolation?

ADDENDUM. The author was recently pointed out by K. Sakai that the
answer of Problem 1 is positive.
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