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HYPERSPACES OF FINITE SUBSETS

OF NON-SEPARABLE HILBERT SPACES

By

Masato Yaguchi

Abstract. Let l2ðtÞ be the Hilbert space with weight t and l
f

2 be

the linear span of the canonical orthonormal basis of the separable

Hilbert space l2. In this paper, we prove that if a metric space X is

homeomorphic to l2ðtÞ or l2ðtÞ � l
f

2 then the hyperspace FinHðXÞ
of non-empty finite subsets of X with the Hausdor¤ metric is

homeomorphic to l2ðtÞ � l
f

2 .

1. Introduction

Let CldHðXÞ be the space of all non-empty closed subsets of a metric space

X ¼ ðX ; d Þ which admits the (infinite-valued) Hausdor¤ metric dH : CldHðXÞ2 !
½0;y� defined as follows:

dHðA;BÞ ¼ max sup
x AB

dðx;AÞ; sup
x AA

dðx;BÞ
� �

;

where dðx;AÞ ¼ inffdðx; aÞ j a A Ag. By FinHðX Þ, we denote the subspace of

CldHðXÞ consisting of all finite subsets of X , where the topology of FinHðXÞ
coincides with the Vietoris topology. For an infinite cardinality t, let l2ðtÞ be the

Hilbert space with weight t, that is,

l2ðtÞ ¼ ðxaÞa A t A Rt

����
X

a A t
x2
a < y

� �
:

Let l
f

2 be the linear span of the canonical orthonormal basis of the separable

Hilbert space l2 ¼ l2ð@0Þ, that is,

l
f

2 ¼ fðxiÞi AN A l2 j xi ¼ 0 except for finitely many i A Ng:
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In [5], D. Curtis and Nguyen To Nhu proved that FinHðXÞ is homeomorphic to

ðAÞ the space l
f

2 if and only if X is non-degenerate, strongly countable-

dimensional, connected, locally path-connected and s-compact. Recently, the

hyperspace FinAW ðX Þ with the Attouch-Wets topology and FinW ðX Þ with the

Wijsman topology have been studied. In [11], it has been shown that if X is

an infinite-dimensional Banach space with weight wðXÞ ¼ t then FinAW ðXÞA
l2ðtÞ � l

f
2 , and in [6] that if X is an infinite-dimensional separable Banach space

then FinW ðXÞAl2 � l
f

2 .

Let CompHðXÞ be the subspace of CldHðXÞ consisting of all compact sets in

X . In [4], it is proved that CompHðl2ÞAl2.

In this paper, we prove the following:

Theorem 1.1. Let t be an infinite cardinal. If a metric space X is homeo-

morphic to l2ðtÞ or l2ðtÞ � l
f

2 then FinHðXÞAl2ðtÞ � l
f

2 . Moreover, in case

XAl2ðtÞ, CompHðX ÞAl2ðtÞ and FinHðX Þ is homotopy dense in CompHðX Þ.

2. The Characterization of l2ðtÞ � l
f

2

Let SX be the unit sphere in a normed linear space X ¼ ðX ; k � kÞ. For each

x A X and r A ð0;yÞ, let Bðx; rÞ ¼ fx 0 A X j kx� x 0k < rg. For a subset AHX ,

cl A is the closure of A, card A is the cardinarity of A, and diam A ¼
supfka� bk j a; b A Ag.

To prove Theorem 1.1, we use the characterization of the space l2ðtÞ � l
f

2

which is obtained in [10]. Before introducing this characterization, we need

several definitions.

A s-completely metrizable space is a metrizable space which is a countable

union of completely metrizable closed subsets.

For each open cover U of Y , two maps f ; g : X ! Y are U-close (or f is

U-close to g) if each f f ðxÞ; gðxÞg is contained in some U A U. When Y ¼ ðY ; d Þ
is a metric space, there exists a map a : Y ! ð0;yÞ such that each open ball

Bðy; aðyÞÞ ¼ fz A Y j dðy; zÞ < aðyÞg is contained in some U A U, whence if g

is a-close to f , that is, dð f ðxÞ; gðxÞÞ < að f ðxÞÞ for each x A X , then g is U-close

to f .

A closed set AHX is called a (strong) Z-set in X provided, for each open

cover U of X , there is a map f : X ! X such that f is U-close to idX and

f ðX ÞVA ¼ q ðcl f ðXÞVA ¼ qÞ. The union of countably many (strong) Z-sets

in X is called a (strong) Zs-set in X . When X itself is a (strong) Zs-set in X ,

we call X a (strong) Zs-space. A Z-embedding is an embedding whose image is a

Z-set.

182 Masato Yaguchi



A space X is said to be universal for a class C (simply, C-universal ) if every

map f : C ! X of C A C is approximated by Z-embeddings, that is, for each

C A C, each map f : C ! X , and for each open cover U of X , there is a

Z-embedding g : C ! X such that g is U-close to f .

It is said that X is strongly universal for C (simply, strongly C-universal ) when

the following condition is satisfied:

(suC) for each C A C and each closed set DHC, if f : C ! X is a map such

that f jD is a Z-embedding, then, for each open cover U of X , there is

a Z-embedding h : C ! X such that hjD ¼ f jD and h is U-close to f .

Let M1ðtÞ be the class of completely metrizable spaces with weighta t. The

next proposition is the characterization of l2ðtÞ � l
f

2 :

Proposition 2.1. A metrizable space X is homeomorpic to l2ðtÞ � l
f

2 if and

only if X is a strongly M1ðtÞ-universal AR, which is a s-completely metrizable

strong Zs-space of wðX Þ ¼ t.

3. AR-property

The following is due to D. Curtis and Nguyen To Nhu. In fact, it is a

combination of Lemmas 3.5, 2.3 and the proof of Theorem 2.4 in [5].

Proposition 3.1. The hyperspace FinHðXÞ is an ANR (an AR) if and only if

X is locally path-connected (and connected ).

Here, we shall prove a result stronger than Proposition 3.1 above. In [8],

Michael introduced uniform AR’s and uniform ANR’s. A uniform ANR is a

metric space X with the property: for an arbitrary metric space Z ¼ ðZ; d Þ
containing X isometrically as a closed subset, there exist a uniform neighborhood

U of X in Z (i.e., U ¼ NðX ; gÞ for some g > 0) and a retraction r : U ! X which

is uniformly continuous at X , that is, for each e > 0, there is some d > 0 such

that if x A X , z A U and dðx; zÞ < d then dðx; rðzÞÞ < e. When U ¼ Z in the above,

X is called a uniform AR.

Proposition 3.2. The hyperspace FinHðXÞ is a uniform ANR (a uniform AR)

if and only if X is uniformly locally path-connected (and connected ).

Proof. Since FinHðX Þ is a Lawson semilattice, by Theorem 3.4 in [7],

it su‰ces to show that FinHðXÞ is uniformly locally path-connected (and

connected) if and only if so is X .
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To see the ‘‘if ’’ part, let e > 0. Then we have d > 0 such that each d-close

points x; y A X can be connected by a path with diam < e=2. If A;B A FinHðXÞ
with dHðA;BÞ < d then for each a A A there is ba A B such that dða; baÞ < d,

hence we have a path fa : ½0; 1� ! X such that f ð0Þ ¼ a, f ð1Þ ¼ ba A B and

diam fað½0; 1�Þ < e=2. Now we define f : ½0; 1� ! FinHðXÞ as follows:

f ðtÞ ¼ BU f faðtÞ j a A Ag for each t A ½0; 1�:

Since A is finite, it is easy to see that f is continuous. Note that f ð0Þ ¼ AUB

and f ð1Þ ¼ B. Thus, f is a path from AUB to B with diam < e=2. Similarly, we

can construct a path f 0 in FinHðXÞ from AUB to A with diam < e=2. Therefore,

by connecting f and f 0, we have a path in FinHðX Þ from A to B with diam < e.

Next, we show the ‘‘only if ’’ part. By the uniform local path-connectedness

of FinHðX Þ, for each e > 0, we have d > 0 such that each d-close A;B A FinHðXÞ
can be connected by an e-path in FinHðXÞ. Now, let x; y A X with dðx; yÞ < d.

Then, there is a path f : ½0; 1� ! FinHðX Þ such that diamdH f ð½0; 1�Þ < e=2,

f ð0Þ ¼ fxg and f ð1Þ ¼ fyg. It su‰ces to show that x and y can be connected by

a path in 6 f ð½0; 1�Þ ¼ 6
t A ½0;1� f ðtÞ because diamd 6 f ð½0; 1�Þ < e. By Lemma

2.2 in [5], 6 f ð½0; 1�Þ is compact and locally connected. Moreover, 6 f ð½0; 1�Þ
is connected. Otherwise, there would be disjoint open sets U and V in X such

that both U and V meet 6 f ð½0; 1�Þ and 6 f ð½0; 1�ÞHU UV . Then, ½0; 1� could

be separated into non-empty open sets U 0 ¼ ft A ½0; 1� j f ðtÞHUg and V 0 ¼
ft A ½0; 1� j f ðtÞVV 0qg, which contradicts to the connectedness of ½0; 1�. Thus,

6 f ð½0; 1�Þ is a Peano continuum, so x; y A 6 f ð½0; 1�Þ are connected by a path in

6 f ð½0; 1�Þ.
By replacing e by y, it is shown that X is path-connected if and only if

FinHðXÞ is path-connected. r

For a normed linear space X , FinHðXÞ is a uniform AR by 3.2. Observe

that FinHðXÞ is dense in CompHðXÞ. Then, by Theorem 2 in [9], we have the

following:

Corollary 3.3. For every normed linear space X , FinHðXÞ and CompHðXÞ
are uniform AR’s and FinHðX Þ is homotopy dense in CompHðX Þ.

4. Weight of FinHðX Þ

For each k A N, let FinkðXÞ ¼ fA A FinðXÞ j card Aa kg. The following

proposition is similarly proved as Proposition 5.1 of [11].
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Proposition 4.1. For every metric space X , FinHðX Þ has the same weight

as X.

Proof. Let D be a dense set in X with card D ¼ wðXÞ. Then,

card FinðDÞ ¼ wðXÞ because

card Da card FinðDÞ ¼ card 6
k AN

FinkðDÞa@0 card D ¼ wðX Þ:

For each A A FinHðXÞ and e > 0, we have B A FinðDÞ such that dHðA;BÞ < e.

Therefore FinHðDÞ is dense in FinHðXÞ. Thus FinHðXÞ has the same weight

as X . r

Since FinHðX Þ is dense in CompHðXÞ, we have the following:

Corollary 4.2. For every metric space X , CompHðXÞ has the same weight

as X.

5. s-complete Metrizablity

In this section, we show that the hyperspace FinHðXÞ is s-completely

metrizable.

Proposition 5.1. Let X ¼ ðX ; d Þ be a complete metric space. Then the

hyperspace FinHðXÞ is s-completely metrizable.

Proof. Note that CldHðXÞ is complete if X is complete [2, Theorem 3.2.4].

Since FinHðX Þ ¼ 6
k AN FinkðXÞ, it is enough to prove that Fink

HðX Þ is closed in

CldHðXÞ. For each B A CldHðXÞnFinkðXÞ, we have k þ 1 many distinct points

b1; . . . ; bkþ1 A B and r > 0 such that Bðbi; rÞVBðbj; rÞ ¼ q if i0 j. If C A CldHðXÞ
satisfies dHðB;CÞ < r then there are c1; . . . ; ckþ1 A C such that dðbi; ciÞ < r, whence

ci 0 cj if i0 j. Then card Cb cardfc1; . . . ; ckþ1g > k. This implies that C A

CldHðXÞnFinkðX Þ, hence the complement of FinkðX Þ is open in CldHðXÞ. r

For each closed subset Y of a metric space X , CldHðY Þ can be regarded as a

closed subspace of CldHðX Þ.

Corollary 5.2. If a metric space X is s-completely metrizable, then so is

FinHðXÞ.
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Proof. We can denote X ¼ 6
n AN Xn, where Xn is a completely metrizable

closed subset of X with Xn HXnþ1. By Propositon 5.1, Fink
HðXkÞ is a completely

metrizable closed subset of CldHðXkÞ. Since CldHðXnÞ is closed in CldHðX Þ, it

follows that FinHðXÞ ¼ 6
k AN Fink

HðXkÞ is s-completely metrizable. r

The following is well-known. For completeness, we give a proof.

Proposition 5.3. For every complete metric space X ¼ ðX ; d Þ, CompHðXÞ is

complete.

Proof. Since CldHðXÞ is complete, it su‰ces to show that CompHðX Þ is

closed in CldHðXÞ. Let A A CldHðX ÞnCompHðXÞ. Since A is complete, A is not

totally bounded. Then there exist e > 0 and ai A A ði A NÞ such that dðai; ajÞ > e

if i0 j. If B A CldHðXÞ and dHðA;BÞ < e=3 then we have bi A B ði A NÞ such that

dðbi; aiÞ < e=3 for each i A N, whence dðbi; bjÞ > e=3 if i0 j. Thus, B is not

totally bounded, hnce B is not compact. Therefore, CldHðXÞnCompHðX Þ is open.

r

6. Strong Zs-space

Proposition 6.1. Let X be a normed linear space with dim X b 1. Then,

FinHðXÞ is a strong Zs-space.

Proof. Since FinHðX Þ ¼ 6
k AN FinkðXÞ, it is su‰cient to prove that each

FinkðXÞ is a strong Z-set in FinHðX Þ. As shown in the proof of Proposition 5.1,

Fink
HðXÞ is a closed subset in FinHðXÞ. Let a : FinHðX Þ ! ð0; 1Þ be any map.

Take v A SX and define a map f : FinHðXÞ ! FinHðXÞ as follows:

f ðAÞ ¼ aþ j

k þ 1
aðAÞv j a A A; j ¼ 0; . . . ; k

� �
:

Then it is easy to see that card f ðAÞb k þ 1 and f is a-close to id.

We will show that FinkðX ÞV cl f ðFinHðX ÞÞ ¼ q. Assume the contrary,

that is, there is a sequence Ai A FinHðX Þ ði A NÞ such that the sequence f ðAiÞ
has a limit point A A FinkðX Þ. If lim inf aðAiÞ ¼ 0 then by taking a subsequence,

we can assume that aðAiÞ ! 0. Since f is a-close to id, it follows that

dHðAi; f ðAiÞÞ ! 0, which implies that Ai converges to A. But this contradicts the

continuity of a and aðAÞ > 0. Therefore, we have b ¼ lim inf aðAiÞ > 0. By taking

a subsequence, we can assume that aðAiÞ ! b. For each i A N, let
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A 0
i ¼ aþ j

k þ 1
bv j a A Ai; j ¼ 0; . . . ; k

� �
:

Then, A 0
i ! A because dHð f ðAiÞ;A 0

i Þ < jaðAiÞ � bj.
Let h ¼ b=ðk þ 1Þ > 0. Then we have an open neighborhood Ua for each

a A A diam Ua < h and Ua VUa 0 ¼ q if a0 a 0. Since dHðA 0
i ;AÞ ! 0, there is

i A N such that A 0
i H6

a AA Ua. Take any x A Ai. Then

xþ j

k þ 1
bv j j ¼ 0; . . . ; k

� �
HA 0

i H 6
a AA

Ua:

Since card Aa k, there are a A A and j0 j 0 a k such that

xþ j

k þ 1
bv; xþ j 0

k þ 1
bv A Ua:

Then, it follows that

h ¼ 1

k þ 1
ba xþ j

k þ 1
bv

� �
� xþ j 0

k þ 1
bv

� �����
����a diam Ua < h:

But this is a contradiction. r

7. Universality

The following is Proposition 2.4 of [11]:

Proposition 7.1. An ANR X with weight t is strongly M1ðtÞ-universal if

every open set in X is M1ðtÞ-universal.

The following is well-known (cf. [3, Chapter VI, Theorem 5.1]):

Lemma 7.2. The unit sphere SX of an infinite-dimensional Banach space X

with weight t is homeomorphic to XAl2ðtÞ. r

Proposition 7.3. Let X be an infinite-dimensional Hilbert space with weight

t. Then FinHðXÞ is strongly M1ðtÞ-universal.

Proof. By Corollary 3.3 and Propositon 7.1, it su‰ces to show that every

open subset W HFinHðX Þ is M1ðtÞ-universal. Let Y A M1ðtÞ, f : Y ! W and

a : W ! ð0; 1Þ be maps. Our purpose is to construct a Z-embedding g : Y ! W

which are a-close to f . Define b : W ! ð0; 1Þ by
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bðAÞ ¼ 1

2
minfaðAÞ; dHðA;FinHðXÞnWÞg:

Note that if g : Y ! FinHðX Þ is 2b-close to f then g is a-close to f and

gðY ÞHW . Each v A SX has an open neighborhood U in SX such that

hv1; v2i > 0 for each v1; v2 A U , where hv1; v2i is the inner product. Since

SX Al2ðtÞ is M1ðtÞ-universal, we have a closed embedding h : Y ! SX such that

hhðyÞ; hðy 0Þi > 0 for each y; y 0 A Y .

First, we define p : Y ! FinHðRÞ by

pðyÞ ¼ fhhðyÞ; ai j a A f ðyÞg for each y A Y :

To see the continuity of p, let e > 0 and y A Y . For each a A f ðyÞ, there is da > 0

such that

v A SX ; b A X ; khðyÞ � vk; ka� bk < da ) jhhðyÞ; ai� hv; bij < e:

Since f ðyÞ is finite, we have d ¼ minfda j a A f ðyÞg > 0. By the continuity of h

and f , we have h > 0 such that if y 0 A Y and dðy; y 0Þ < h then

khðyÞ � hðy 0Þk < d and dHð f ðyÞ; f ðy 0ÞÞ < d:

The last inequality implies that for each a A f ðyÞ, there is ba A f ðy 0Þ with

ka� bak < da da, whence

dðhhðyÞ; ai; pðy 0ÞÞa jhhðyÞ; ai� hhðy 0Þ; baij < e:

Conversely, for each b A f ðy 0Þ, there is ab A f ðyÞ with kb� abk < da dab , whence

dðhhðy 0Þ; bi; pðyÞÞa jhhðy 0Þ; bi� hhðyÞ; abij < e:

Therefore, dðy; y 0Þ < h implies dHðpðyÞ; pðy 0ÞÞ < e, so p is continuous.

Next, define q; r : Y ! FinHðRÞ by

qðyÞ ¼ f0gU fsi � si�1 j 2a iamg;

rðyÞ ¼ f0; bð f ðyÞÞgU fx A qðyÞ j xa bð f ðyÞÞg;

where s1 < � � � < sm with pðyÞ ¼ fsi j iamg. For each y A Y , let

uðyÞ ¼ minfx > 0 j x A rðyÞg:

To see the continuity of q, let e > 0 and y A Y . Assume that y 0 A Y

is su‰ciently close to y so that pðy 0Þ satisfies dHðpðyÞ; pðy 0ÞÞ < h, where h ¼
minfe=2; uðyÞ=3g > 0. Denote pðy 0Þ ¼ ftj j ja ng, where t1 < � � � < tn. Then, for
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each iam, we have ja n such that jsi � tj j < h. Since pðy 0ÞH6
iam

Bðsi; hÞ and

h-balls Bðsi; hÞ are pairwise disjoint, for each iam, there is ka n such that

k ¼ maxf ja n j tj A Bðsi; hÞg ¼ minf ja n j tj A Bðsiþ1; hÞg � 1:

Then, it follows that

jðsiþ1 � siÞ � ðtkþ1 � tkÞja jsiþ1 � tkþ1j þ jtk � sij < 2ha e:

This means that dððsiþ1 � siÞ; qðy 0ÞÞ < e. On the other hand, for each ja n,

we have i; i 0 am such that jtj � sij; jtjþ1 � si 0 j < h. Then, it is easy to see that

ia i 0 a i þ 1. If i 0 ¼ i then

jðtjþ1 � tjÞ � 0j ¼ jtjþ1 � tjja jtjþ1 � si 0 j þ jtj � sij < 2ha e:

If i 0 ¼ i þ 1 then

jðtjþ1 � tjÞ � ðsiþ1 � siÞja jtjþ1 � si 0 j þ jsi � tjj < 2ha e:

These mean that dððtjþ1 � tjÞ; qðyÞÞ < e. Thus, we have dHðqðyÞ; qðy 0ÞÞ < e.

Consequently, q is continuous.

To see the continuity of r, let e > 0 and y A Y . By the continuity of q and b,

we have d > 0 such that if y 0 A Y and dðy; y 0Þ < d then

jbð f ðyÞÞ � bð f ðy 0ÞÞj < e and dHðqðyÞ; qðy 0ÞÞ < e:

For each a A qðyÞ with a < bð f ðyÞÞ, there is ba A qðy 0Þ such that ja� baj < e.

If aa bð f ðy 0ÞÞ � e then ba a bð f ðy 0ÞÞ, whence dða; rðy 0ÞÞa ja� baj < e. If

bð f ðy 0ÞÞ � e < a then dða; rðy 0ÞÞa ja� bð f ðy 0ÞÞj < e because a < bð f ðyÞÞ <
bð f ðy 0ÞÞ þ e. On the other hand, for each b A qðy 0Þ with b < bð f ðy 0ÞÞ, there

is ab A qðyÞ such that jb� abj < e. If ba bð f ðyÞÞ � e then ab a bð f ðyÞÞ, i.e.,

ab A rðyÞ. Hence, dðb; rðyÞÞa jb� abj < e. If bð f ðyÞÞ � e < b then dðb; rðyÞÞa
jb� bð f ðyÞÞj < e because b < bð f ðy 0ÞÞ < bð f ðyÞÞ þ e. Therefore, dðy; y 0Þ < d

implies dHðrðyÞ; rðy 0ÞÞ < e, hence r is continuous.

Next, we define a map g : Y ! FinHðX Þ as follows:

gðyÞ ¼ faþ bhðyÞ j a A f ðyÞ; b A rðyÞg:

Since f and r are continuous, it is easy to see that g : Y ! FinHðXÞ is con-

tinuous. Since diam rðyÞ ¼ bð f ðyÞÞ, it follows that dHð f ðyÞ; gðyÞÞ < 2bð f ðyÞÞ. It

should be remarked that

ð*Þ hhðyÞ; xi� min pðyÞ A f0gU ½uðyÞ;yÞ for each x A gðyÞ:

Indeed, let x ¼ aþ bhðyÞ A gðyÞ, where a A f ðyÞ and b A rðyÞ. Then,
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min pðyÞa hhðyÞ; aia hhðyÞ; aiþ bkhðyÞk ¼ hhðyÞ; aþ bhðyÞi ¼ hhðyÞ; xi:

Since b ¼ 0 or bb uðyÞ > 0, we have ð*Þ.
To see that g is injective, assume that there are y0 y 0 A Y with gðyÞ ¼ gðy 0Þ.

Since hðyÞ0 hðy 0Þ, it follows that

0 < khðyÞ � hðy 0Þk2 ¼ khðyÞk2 þ khðy 0Þk2 � 2hhðyÞ; hðy 0Þi

¼ 2ð1 � hhðyÞ; hðy 0ÞiÞ;

hence 0 < hhðyÞ; hðy 0Þi < 1. Let a A f ðyÞ with hhðyÞ; ai ¼ min pðyÞ. Note

a A gðy 0Þ because f ðyÞH gðyÞ ¼ gðy 0Þ. If a B f ðy 0Þ then there are a 0 A f ðy 0ÞH
gðy 0Þ ¼ gðyÞ and 0 < ba bð f ðy 0ÞÞ such that a ¼ a 0 þ bhðy 0Þ, whence

hhðyÞ; a 0i ¼ hhðyÞ; ða� bhðy 0ÞÞi ¼ hhðyÞ; ai� bhhðyÞ; hðy 0Þi < min pðyÞ:

This contradicts to ð*Þ. Therefore, a A f ðy 0Þ, hence aþ uðy 0Þhðy 0Þ A gðy 0Þ ¼ gðyÞ.
On the other hand, we have no points c A gðyÞ with min pðyÞ < hhðyÞ; ci <

min pðyÞ þ uðyÞ by ð*Þ. Then,

min pðyÞ þ uðyÞa hhðyÞ; ðaþ uðy 0Þhðy 0ÞÞi

¼ hhðyÞ; aiþ uðy 0ÞhhðyÞ; hðy 0Þi

¼ min pðyÞ þ uðy 0ÞhhðyÞ; hðy 0Þi:

Therefore, 0 < uðyÞ=uðy 0Þa hhðyÞ; hðy 0Þi < 1. By replacing y and y 0 by each

others, we get 0 < uðy 0Þ=uðyÞ < 1 but this is impossible.

To see that g is a closed map, let AHY be a closed set in Y and yi A A,

i A N, such that gðyiÞ converges to G A W . Then lim inf bð f ðyiÞÞ > 0. Otherwise,

by taking a subsequence, we could assume that diam rðyiÞ ¼ bð f ðyiÞÞ ! 0,

hence dHð f ðyiÞ; gðyiÞÞ ! 0 ði ! yÞ. In this case, f ðyiÞ converges to G, hence

bð f ðyiÞÞ ! bðGÞ > 0, which is a contradiction. Now, for each i A N, let

xi A f ðyiÞ and x 0
i ¼ xi þ bð f ðyiÞÞhðyiÞ A gðyiÞ:

Since xi A gðyiÞ and gðyiÞ ! G, we have zi A G such that dðxi; ziÞ ! 0. Since G is

finite, by taking a subsequence, it can be assumed that all zi are the same point

z A G, whence xi ! z. By the same way, we can assume that there is z 0 A G such

that x 0
i ! z 0. Note that z0 z 0 because lim inf bð f ðyiÞÞ > 0. Hence, this implies

that hðyiÞ converges to ðz 0 � zÞ=kz 0 � zk A SX . Since h is a closed embedding, yi

converges to some y A A, which implies that G ¼ gðyÞ A gðAÞ.
To see that gðY Þ is a Z-set in W , for each a map a : W ! ð0; 1Þ, take y0 A Y

and let
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gðAÞ ¼ 1

2
minfaðAÞ; dHðA;FinHðXÞnWÞ; uðy0Þg > 0:

Define maps p 0; q 0; r 0 : W ! FinHðRÞ and j : W ! W as follows:

p 0ðAÞ ¼ fhhðy0Þ; ai j a A Ag;

q 0ðAÞ ¼ f0gU fsi � si�1 j 2a iamg;

r 0ðAÞ ¼ f0; gðAÞgU fx A q 0ðAÞ j xa gðAÞg;

jðAÞ ¼ faþ bhðy0Þ j a A A; b A r 0ðyÞg;

where s1 < � � � < sm with p 0ðAÞ ¼ fsi j iamg. If gðYÞV jðWÞ0q then this

intersection is fgðy0Þg by the same way as above which shows the injectivity of g.

If there is A A W such that jðAÞ ¼ gðy0Þ then for each a A A with hhðy0Þ; ai ¼
min pðy0Þ, we have a 0 ¼ aþ gðAÞhðy0Þ A jðAÞ. But this is impossible because

gðAÞ < uðy0Þ. r

Remark. In the above proof, when a is extended to a map ~aa : ~WW ! ð0; 1Þ
of an open set ~WW in CompHðX Þ such that W ¼ ~WW VFinHðX Þ, it can be seen

that gðY Þ is closed in ~WW as follows: In this case, b has the natural extension
~bb : ~WW ! ð0; 1Þ. If gðyiÞ converges to G A ~WW , we have lim inf bð f ðyiÞÞ > 0 by the

same arguments. Moreover, even if G is not finite, there is a subsequence of

ðziÞi AN converging to some z A G because G is compact. Then, the corresponding

subsequence of ðxiÞi AN converges to z. Thus, we can assume that xi ! z. Similarly,

we can assume that ðx 0
i Þi AN converges to some z 0 A G. Hence, we have G A gðYÞ

by the same way.

Proposition 7.4. Let X be an infinite-dimensional Hilbert space with weight

t. Then CompHðX Þ is strongly M1ðtÞ-universal.

Proof. The proof is similar to Propositon 7.3. Let f : Y ! W be a map

from Y A M1ðtÞ to an open set W HCompHðX Þ. For each open cover U of W ,

let V be an open star-refinement of U. Since FinHðXÞ is homotopy dense in

CompHðX Þ, it easily follows that W VFinHðXÞ is homotopy dense in W . Then, f

is V-close to a map f 0 : Y ! W VFinHðX Þ. By Propositon 7.3, f 0 is V-close to

a Z-embedding g : Y ! W VFinHðX Þ, where gðYÞ is closed in W by the above

remark. Then, it follows that g : Y ! W is a Z-embedding which is U-close to f .

r
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Theorem 7.5. If a metric space X is homeomorphic to l2ðtÞ then

FinHðXÞAl2ðtÞ � l
f

2 and CompHðXÞAl2ðtÞ:

Proof. Since the topology of CompHðX Þ coincides with the Vietoris to-

pology, we have FinHðXÞAFinHðl2ðtÞÞ and CompHðXÞACompHðl2ðtÞÞ. It has

been proved that FinHðl2ðtÞÞ satisfies the all conditions in Propositon 2.1. Then

FinHðXÞAl2ðtÞ � l
f

2 . On the other hand, CompHðl2ðtÞÞ is a strongly M1ðtÞ-
universal complete metric AR with weight t. By Toruńczyk’s characterization of

l2ðtÞ [12, Proposition 2.1] (cf. [13]), we have CompHðX ÞAl2ðtÞ. r

For a dense subspace Z ¼ l2ðtÞ � l
f

2 of l2ðtÞ � l2Al2ðtÞ, the unit sphere

SZ contains a copy Sl2ðtÞ � f0g of Sl2ðtÞ as closed set. Then there is a closed

embedding h : Y ! SZ for each Y A M1ðtÞ. By the same proof as Propositon 7.3,

we can show the M1ðtÞ-universality of FinHðZÞ. Consequently, we have the

following:

Theorem 7.6. If a metric space X is homeomorphic to l2ðtÞ � l
f

2 then

FinHðXÞAl2ðtÞ � l
f

2 . r
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