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HYPERSPACES OF FINITE SUBSETS
OF NON-SEPARABLE HILBERT SPACES

By

Masato YAGUCHI

Abstract. Let /»(7) be the Hilbert space with weight 7 and /-zf be
the linear span of the canonical orthonormal basis of the separable
Hilbert space /. In this paper, we prove that if a metric space X is
homeomorphic to /(t) or /»(t) X /zf then the hyperspace Finy (X)
of non-empty finite subsets of X with the Hausdorff metric is
homeomorphic to />(7) x /Zf .

1. Introduction

Let Cldy(X) be the space of all non-empty closed subsets of a metric space
X = (X,d) which admits the (infinite-valued) Hausdorff metric dy : Cldy (X)? —
[0, co] defined as follows:

dy(A,B) = max{sup d(x,A),sup d(x, B)},
xeB xeA
where d(x,A) = inf{d(x,a)|ae A}. By Finyg(X), we denote the subspace of
Cldy(X) consisting of all finite subsets of X, where the topology of Fing(X)

coincides with the Vietoris topology. For an infinite cardinality 7, let />(7) be the
Hilbert space with weight 7, that is,

a0 = { (), v

errxi < oo}.

Let /-zf be the linear span of the canonical orthonormal basis of the separable
Hilbert space /> = /2(Rg), that is,

1] = {(x;);ox €72 Xi = 0 except for finitely many i N}.
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In [5], D. Curtis and Nguyen To Nhu proved that Fing(X) is homeomorphic to
(~) the space /2/ i and only if X is non-degenerate, strongly countable-
dimensional, connected, locally path-connected and o-compact. Recently, the
hyperspace Fingy (X) with the Attouch-Wets topology and Finy (X) with the
Wijsman topology have been studied. In [11], it has been shown that if X is
an infinite-dimensional Banach space with weight w(X) =17 then Fin,y (X) =
(H(T) x fzf , and in [6] that if X is an infinite-dimensional separable Banach space
then Finy (X) = £, x fzf.

Let Compy (X) be the subspace of Cldy(X) consisting of all compact sets in
X. In [4], it is proved that Compy(42) = /3.

In this paper, we prove the following:

THEOREM 1.1. Let T be an infinite cardinal. If a metric space X is homeo-
morphic to (1) or (»(7) x/'zf then Fing(X) ~ />(7) x/'zf. Moreover, in case
X ~ (1), Compy(X) ~¢2(t) and Fing(X) is homotopy dense in Compy(X).

2. The Characterization of />(7) x /{

Let Sy be the unit sphere in a normed linear space X = (X, || - ||). For each
xeX and re(0,0), let B(x,r) ={x" € X|||x —x'|| <r}. For a subset 4 = X,
cl A4 is the closure of A, card A is the cardinarity of A4, and diam 4 =
sup{|la — b|| |a,b € A}.

To prove Theorem 1.1, we use the characterization of the space /»(t7) x /{ '
which is obtained in [10]. Before introducing this characterization, we need
several definitions.

A ag-completely metrizable space is a metrizable space which is a countable
union of completely metrizable closed subsets.

For each open cover  of Y, two maps f,g: X — Y are %-close (or f is
U-close to g) if each {f(x),g(x)} is contained in some U € %. When Y = (Y,d)
is a metric space, there exists a map a: Y — (0,00) such that each open ball
B(y,a(y)) ={ze Y|d(y,z) <a(y)} is contained in some U € %, whence if ¢
is a-close to f, that is, d(f(x),g(x)) < a(f(x)) for each x € X, then g is %-close
to f.

A closed set 4 < X is called a (strong) Z-set in X provided, for each open
cover % of X, there is a map f: X — X such that f is #-close to idy and
f(X)NA=g (cl f(X)NA= ). The union of countably many (strong) Z-sets
in X is called a (strong) Z,-set in X. When X itself is a (strong) Z,-set in X,
we call X a (strong) Zs-space. A Z-embedding is an embedding whose image is a
Z-set.
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A space X is said to be universal for a class € (simply, €-universal) if every
map f:C— X of Ce% is approximated by Z-embeddings, that is, for each
Ce®%, each map f:C — X, and for each open cover # of X, there is a
Z-embedding g : C — X such that g is %-close to f.

It is said that X is strongly universal for € (simply, strongly €-universal) when
the following condition is satisfied:

(sug) for each C € ¥ and each closed set D = C, if f: C — X is a map such

that f|D is a Z-embedding, then, for each open cover % of X, there is
a Z-embedding 5 : C — X such that 4D = f|D and A is %-close to f.

Let M, (z) be the class of completely metrizable spaces with weight < 7. The

next proposition is the characterization of />(7) x /zf E

PROPOSITION 2.1. A metrizable space X is homeomorpic to /,(t) X /{ if and
only if X is a strongly I (t)-universal AR, which is a a-completely metrizable
strong Zg-space of w(X) =r.

3. AR-property

The following is due to D. Curtis and Nguyen To Nhu. In fact, it is a
combination of Lemmas 3.5, 2.3 and the proof of Theorem 2.4 in [5].

ProPOSITION 3.1.  The hyperspace Fing(X) is an ANR (an AR) if and only if
X is locally path-connected (and connected).

Here, we shall prove a result stronger than Proposition 3.1 above. In [§],
Michael introduced uniform AR’s and uniform ANR’s. A uniform ANR is a
metric space X with the property: for an arbitrary metric space Z = (Z,d)
containing X isometrically as a closed subset, there exist a uniform neighborhood
Uof XinZ (ie., U= N(X,y) for some y > 0) and a retraction r : U — X which
is uniformly continuous at X, that is, for each ¢ > 0, there is some ¢ > 0 such
that if x e X, ze U and d(x,z) < J then d(x,r(z)) < &. When U = Z in the above,
X is called a uniform AR.

PROPOSITION 3.2.  The hyperspace Fing (X) is a uniform ANR (a uniform AR)
if and only if X is uniformly locally path-connected (and connected).

Proor. Since Fing(X) is a Lawson semilattice, by Theorem 3.4 in [7],
it suffices to show that Fing(X) is uniformly locally path-connected (and
connected) if and only if so is X.
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To see the “if” part, let £ > 0. Then we have J > 0 such that each J-close
points x, y € X can be connected by a path with diam < ¢/2. If A4, B € Fing(X)
with dp(A4,B) <o then for each ae€ A there is b, € B such that d(a,b,) <9,
hence we have a path f,:[0,1] — X such that f(0)=a, f(1)=b,€B and
diam f,([0,1]) < ¢/2. Now we define f :[0,1] — Fing(X) as follows:

f(t)=BU{f,(t)|ae A} for each r€[0,1].

Since A is finite, it is easy to see that f is continuous. Note that f(0) = AUB
and f(1) = B. Thus, f is a path from AU B to B with diam < &/2. Similarly, we
can construct a path f’ in Fing(X) from AU B to A with diam < ¢/2. Therefore,
by connecting f and f’, we have a path in Fing(X) from 4 to B with diam < e.

Next, we show the “only if” part. By the uniform local path-connectedness
of Fing(X), for each ¢ > 0, we have J > 0 such that each J-close 4, B € Fing(X)
can be connected by an e-path in Fing(X). Now, let x,y e X with d(x, y) < 9.
Then, there is a path f:[0,1] — Fing(X) such that diamg, f(]0,1]) < &/2,
f(0) ={x} and f(1) = {y}. It suffices to show that x and y can be connected by
a path in () f([0,1]) = Ute[O.l] f(7) because diamy | ) £([0,1]) <e. By Lemma
2.2 in [5], | f([0,1]) is compact and locally connected. Moreover, | f([0,1])
is connected. Otherwise, there would be disjoint open sets U and V' in X such
that both U and ¥ meet | ) /([0,1]) and () f([0,1]) = UU V. Then, [0, 1] could
be separated into non-empty open sets U' ={re[0,1]|f(t) = U} and V' =
{te[0,1]]| f(r)NV # I}, which contradicts to the connectedness of [0, 1]. Thus,
(J f([0,1]) is a Peano continuum, so x, y € | J ([0, 1]) are connected by a path in

U ([0, 1)).
By replacing ¢ by oo, it is shown that X is path-connected if and only if
Fing(X) is path-connected. U

For a normed linear space X, Fing(X) is a uniform AR by 3.2. Observe
that Fing(X) is dense in Comp(X). Then, by Theorem 2 in [9], we have the
following:

COROLLARY 3.3.  For every normed linear space X, Fing(X) and Compy (X)
are uniform AR’s and Fing(X) is homotopy dense in Compy(X).

4. Weight of Fingy(X)

For each keN, let Fin*(X)= {4 eFin(X)|card 4 <k}. The following
proposition is similarly proved as Proposition 5.1 of [11].
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PROPOSITION 4.1.  For every metric space X, Fing(X) has the same weight
as X.

ProOF. Let D be a dense set in X with card D=w(X). Then,
card Fin(D) = w(X) because

card D < card Fin(D) = card | J Fin*(D) < X card D = w(X).
keN

For each 4 € Finy(X) and ¢ > 0, we have B e Fin(D) such that dy(4, B) < e.
Therefore Fing(D) is dense in Fing(X). Thus Fing(X) has the same weight
as X. O

Since Fing(X) is dense in Compy(X), we have the following:

COROLLARY 4.2. For every metric space X, Compy(X) has the same weight
as X.

5. o-complete Metrizablity

In this section, we show that the hyperspace Fing(X) is o-completely
metrizable.

ProposITION 5.1. Let X = (X,d) be a complete metric space. Then the
hyperspace Fing(X) is o-completely metrizable.

Proor. Note that Cldy(X) is complete if X is complete [2, Theorem 3.2.4].
Since Fing (X) = |, .n Fin*(X), it is enough to prove that Fin% (X) is closed in
Cldy (X). For each Be Cldy(X)\Fin®(X), we have k + 1 many distinct points
bi,...,bis1 € Band r > 0 such that B(b;,r) N B(b;,r) = Fif i # j. If C € Cldy(X)
satisfies dy (B, C) < r then there are ¢y, ..., ¢y € C such that d(b;, ¢;) < r, whence
ci#¢ if i# j. Then card C >card{ci,...,cx41} > k. This implies that Ce
Cldy (X)\Fin®(X), hence the complement of Fin*(X) is open in Cldy(X). O

For each closed subset Y of a metric space X, Cldy(Y) can be regarded as a
closed subspace of Cldy(X).

COROLLARY 5.2. If a metric space X is a-completely metrizable, then so is
FinH(X).
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Proor. We can denote X = UneNXn, where X, is a completely metrizable
closed subset of X with X, = X,.;. By Propositon 5.1, Fin,/;(Xk) is a completely
metrizable closed subset of Cldy(Xy). Since Cldgy(X,) is closed in Cldgy(X), it
follows that Fing(X) = J, .« Finlk{(Xk) is g-completely metrizable. O

The following is well-known. For completeness, we give a proof.

PROPOSITION 5.3.  For every complete metric space X = (X,d), Compy(X) is
complete.

Proor. Since Cldy(X) is complete, it suffices to show that Compy(X) is
closed in Cldy(X). Let 4 € Cldy(X)\Compy(X). Since A4 is complete, A is not
totally bounded. Then there exist ¢ > 0 and a; € A (i e N) such that d(a;,q;) > ¢
ifi # j. If Be Cldy(X) and dy (A4, B) < ¢/3 then we have b; € B (i € N) such that
d(b;i,a;) < e/3 for each ieN, whence d(b;,b;) >¢/3 if i# j. Thus, B is not
totally bounded, hnce B is not compact. Therefore, Cldy(X)\Comp(X) is open.

O

6. Strong Z,-space

PropoSITION 6.1. Let X be a normed linear space with dim X > 1. Then,
Fing(X) is a strong Z,-space.

Proor. Since Fing(X) = () keNFink(X ), it is sufficient to prove that each
Fin®(X) is a strong Z-set in Finy(X). As shown in the proof of Proposition 5.1,
Fin},(X) is a closed subset in Fing(X). Let o : Fing(X) — (0,1) be any map.
Take ve Sy and define a map f : Fing(X) — Fing(X) as follows:

£(4) = {a+kila(A)vaeA,j0,...,k}.
Then it is easy to see that card f(4) >k + 1 and f is o-close to id.

We will show that Fin*(X)Ncl f(Fing(X)) = . Assume the contrary,
that is, there is a sequence 4; € Fing(X) (i € N) such that the sequence f(4;)
has a limit point 4 € Fin*(X). If liminf «(4;) = 0 then by taking a subsequence,
we can assume that «(4;) — 0. Since f is a-close to id, it follows that
dy(A;, f(A4;)) — 0, which implies that 4; converges to A. But this contradicts the
continuity of « and a(A4) > 0. Therefore, we have f = liminf «(A4;) > 0. By taking
a subsequence, we can assume that a(4;) — f. For each i e N, let
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Ai’:{a—&—ki1[)’v|aeA,-,j:0,...,k}.

Then, A/ — A because dy(f(4;),A]) < |a(4;) — Bl

Let =p/(k+1) > 0. Then we have an open neighborhood U, for each
aeAd diam U, <n and U,NU, =& if a #ad'. Since dy(A4],4) — 0, there is
ieN such that 4] = ], _, U, Take any x € 4;. Then

{x+k+1ﬁ”|]_o }CA/ Y, ve

aeA

Since card 4 <k, there are ae A and j # j' <k such that
/

Xt k+1

pv, x+ pve U,.

J
k+1
Then, it follows that

n= k+1 H(x—i— 1ﬁv>—(x+

But this is a contradiction. O

!
1ﬁv> H < diam U, < 7.

7. Universality
The following is Proposition 2.4 of [11]:

ProposITION 7.1. An ANR X with weight t© is strongly I (t)-universal if
every open set in X is I (t)-universal.

The following is well-known (cf. [3, Chapter VI, Theorem 5.1]):

LemMa 7.2.  The unit sphere Sy of an infinite-dimensional Banach space X
with weight t is homeomorphic to X =~ /(5(7). O

ProPOSITION 7.3. Let X be an infinite-dimensional Hilbert space with weight
7. Then Fing(X) is strongly M (z)-universal.

Proor. By Corollary 3.3 and Propositon 7.1, it suffices to show that every
open subset W < Fing(X) is 9 (z)-universal. Let Y € My(z), f: Y — W and
o: W — (0,1) be maps. Our purpose is to construct a Z-embedding g: ¥ — W
which are a-close to f. Define f: W — (0,1) by
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BA) = & min{a(d). dy (4. Fin (X)\ W)},

Note that if g: Y — Fing(X) is 2f-close to f then g is a-close to f and
g(Y) = W. Each veSy has an open neighborhood U in Sy such that
{vi,v23» >0 for each wvj,v; € U, where (vi,v;) is the inner product. Since
Sx ~ £>(t) is M (7)-universal, we have a closed embedding / : ¥ — Sy such that
<h(p),h(y")y > 0 for each y,y' e Y.

First, we define p: Y — Fing(R) by

p(») = {<h(y),ay|ae f(y)} for each yeY.

To see the continuity of p, let ¢ > 0 and y e Y. For each a € f(y), there is §, > 0
such that

veSy, beX, [h(y)=vl, la=>bl<di= [Kh(y),a)—<v,b)| <e.

Since f(y) is finite, we have 6 = min{d, |a € f(»)} > 0. By the continuity of A
and f, we have # > 0 such that if '€ Y and d(y,y’) <5 then

|A(y) —h(y")|| < and du(f(y),f(y)) <9

The last inequality implies that for each ae f(y), there is b, e f(y') with
|l = b4|| <0 <y, whence

d(<h(y), ay, p(y") < [<h(y), ay = <h(Y"), bad| <&
Conversely, for each b € f(y’), there is a, € f(y) with ||b — ap|| < 6 < J,,, Whence
d(<h(y"), by, p(y)) < [<h(¥'), b = <h(y), ap)] <.

Therefore, d(y,y’) < n implies dy(p(y), p(¥')) <&, so p is continuous.
Next, define ¢,r: Y — Fing(R) by

q(y) ={0}U{s; — si-1 12 < i< m},
r(y) ={0,8(f(»)}U{xeq(y) [x <B(f(»)}
where s; < --- < s, with p(y) = {s;|i <m}. For each ye Y, let
u(y) =min{x >0|xer(y)}

To see the continuity of ¢, let ¢>0 and ye Y. Assume that y' e Y
is sufficiently close to y so that p(y’) satisfies di(p(y), p(»')) <, where n =
min{e/2,u(y)/3} > 0. Denote p(y’) = {¢;|j < n}, where #; < --- < t,. Then, for
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B(s;,77) and
n-balls B(s;,#) are pairwise disjoint, for each i < m, there is k < n such that

each i < m, we have j < n such that |s; — ;] < #. Since p(y’) = | J

i<m

k= max{j <n|teB(si,n)} = min{j <1 e Blsir )} — 1.
Then, it follows that
|(siv1 = 1) = (et — t)] < Jsip1 — tesr| + |t — si] <2 <e.
This means that d((s;y; —$:),¢(»")) <e On the other hand, for each j <n,

we have i,i’ <m such that |t; —s;|,|t;y1 — si7| <n. Then, it is easy to see that
i<i'"<i+4 1. If i’ =i then

(G0 — ) = O] = |11 — 4 < g1 —so[ ]t —si| <2n <.
If i/ =i+ 1 then
[(ti1 — 4) = (i1 — 8i)| < |tjg1 —sir| + [si — 4] <2y <.

These mean that d((#1 —1),9(y)) <e. Thus, we have dy(q(y),q()')) <e.
Consequently, ¢ is continuous.

To see the continuity of 7, let ¢ > 0 and y € Y. By the continuity of ¢ and f,
we have 0 > 0 such that if '€ Y and d(y, y') <o then

B () =BU(V)I <& and du(q(y),q(y)) <e.

For each aeq(y) with a < (f(»)), there is b, € q(y’) such that |a —b,| < e.
If a<p(f(y'))—e then b, <p(f(y’)), whence d(a,r(y")) <l|a—b, <e If
BUf(¥) —e<a then d(a,r(y') <la—pB(f(¥y))]<e because a<p(f(y)) <
B(f(»')) +¢& On the other hand, for each beq(y’) with b < p(f(»')), there
is ap € q(y) such that |b—ap| <e If b<pB(f(y)) —e then ap < p(f(y)), ie.,
ap €r(y). Hence, d(b,r(y)) <|b—ap| <& If B(f(y)) —e<b then d(b,r(y)) <

|b—PB(f(»)| <& because b < B(f(y')) <p(f(»)) +e Therefore, d(y,y") <o
implies dy(r(y),r(»')) <&, hence r is continuous.

~

Next, we define a map ¢g: Y — Fing(X) as follows:

g(y) ={a+bh(y)ae f(y),ber(y)}.

Since f and r are continuous, it is easy to see that g: Y — Fing(X) is con-

tinuous. Since diam r(y) = S(f(»)), it follows that dy(f(»),9(»)) <2B(f(»)). It
should be remarked that

(#)  <A(y),x) —min p(y) € {0} Ufu(y),0) for each xeg(y).

Indeed, let x = a+ bh(y) € g(y), where a € f(y) and b € r(y). Then,
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min p(y) < <h(y),ay < <h(y),ay +b||h(y)|| = <h(y),a+bh(y)> = {h(y), x).

Since b =0 or b > u(y) >0, we have (x).
To see that g is injective, assume that there are y # y’ € Y with g(y) = g(»').
Since h(y) # h(y'), it follows that

0 < [lh(y) = k(I = 1A + AP = 2<h(p), h(¥')>
=2(1 = <h(p), h(¥')>),

hence 0 < <h(y),h(y')> < 1. Let ae f(y) with {h(y),a) =min p(y). Note

aeg(y') because f(y) =g(y)=g(y'). If a¢ f(y') then there are a’ € f()') =
g(»")=g¢g(y) and 0 < b < B(f(»")) such that a =a’ + bh(y’), whence

Ch(y),ay = <h(y), (a—bh(y')> = <h(y),ay — b<h(y),h(y")) < min p(y).

This contradicts to (x). Therefore, a € f(y’), hence a + u(y")h(y’) € g(»’") = g(»).
On the other hand, we have no points ¢ € g(y) with min p(y) < {(h(y),c) <
min p(y) + u(y) by (x). Then,

min p(y) +u(y) < <h(y), (a+u(y)h(y")))
= {h(y),ay +u(y")<h(y),h(y'))
=min p(y) +u(y")<h(y),h(y')).

Therefore, 0 < u(y)/u(y’) < <h(y),h(y")> < 1. By replacing y and y’ by each
others, we get 0 < u(y')/u(y) <1 but this is impossible.

To see that g is a closed map, let A = Y be a closed set in Y and y; € A4,
i € N, such that g(y;) converges to G € W. Then liminf (f(y;)) > 0. Otherwise,
by taking a subsequence, we could assume that diam r(y;) = p(f(y;)) — 0,
hence dy(f(yi),9(y:)) = 0 (i — o). In this case, f(y;) converges to G, hence
p(f(y:))) — P(G) > 0, which is a contradiction. Now, for each ie N, let

xi€ f(yi) and x{=x;+B(f(yi)h(yi) € g(i).

Since x; € g(y;) and g(y;) — G, we have z; € G such that d(x;,z;) — 0. Since G is
finite, by taking a subsequence, it can be assumed that all z; are the same point
z € G, whence x; — z. By the same way, we can assume that there is z’ € G such
that x] — z’. Note that z # z’ because liminf §(f(y;)) > 0. Hence, this implies
that #(y;) converges to (z/ —z)/||z' — z|| € Sx. Since & is a closed embedding, y;
converges to some y € A, which implies that G = g(y) € g(4).

To see that g(Y) is a Z-set in W, for each a map «: W — (0,1), take yo€ Y
and let
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2(4) = = min{a(A), di (A, Fing (X)\ W), u(y0)} > 0.

N =

Define maps p’,q¢',r' : W — Fing(R) and ¢ : W — W as follows:

p'(4) = {<h(yo),a>|ae 4},

q'(4) ={0tU{s; —si1 |2 <i <m},
r'(4) ={0,9(4)} U{x e q'(4) |x < p(4)},
p(4) = {a+bh(yo)|ae A,ber'(y)},

where s <---<s, with p'(4) ={s;|i<m}. If g(Y)Np(W)# & then this
intersection is {g(yo)} by the same way as above which shows the injectivity of g.
If there is 4 € W such that ¢(A4) = g(yo) then for each a € A with {i(yy),a) =
min p(yo), we have a’ =a+ y(4A)h(y) € p(A). But this is impossible because
7(4) <u(yo). O

REMARK. In the above proof, when o is extended to a map a: W — (0,1)
of an open set W in Compy(X) such that W = W NFing(X), it can be seen
that g(Y) is closed in W as follows: In this case, § has the natural extension
B:W — (0,1). If g(y;) converges to G € W, we have liminf (f(y;)) > 0 by the
same arguments. Moreover, even if G is not finite, there is a subsequence of
(zi);en converging to some z € G because G is compact. Then, the corresponding
subsequence of (x;); N converges to z. Thus, we can assume that x; — z. Similarly,
we can assume that (x]);_n converges to some z’ € G. Hence, we have G € ¢g(Y)
by the same way.

PrOPOSITION 7.4. Let X be an infinite-dimensional Hilbert space with weight
7. Then Compy(X) is strongly I (7)-universal.

ProoF. The proof is similar to Propositon 7.3. Let f: Y — W be a map
from Y € M, (z) to an open set W < Compy(X). For each open cover % of W,
let ¥~ be an open star-refinement of %. Since Fing(X) is homotopy dense in
Compy, (X), it easily follows that W N Fing(X) is homotopy dense in W. Then, f
is #"-close to a map f’: Y — W NFing(X). By Propositon 7.3, f” is ¥ -close to
a Z-embedding g : Y — W NFing(X), where g(Y) is closed in W by the above
remark. Then, it follows that g : ¥ — W is a Z-embedding which is %-close to f.

O
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THEOREM 7.5. If a metric space X is homeomorphic to />(t) then

Fing (X) & /2(t) x /4 and Compy(X) ~ /(7).

Proor. Since the topology of Compy(X) coincides with the Vietoris to-
pology, we have Fing(X) ~ Fing(/2(7)) and Compy(X) ~ Compy(/2(t)). It has
been proved that Fing(/>(7)) satisfies the all conditions in Propositon 2.1. Then
Fing (X) ~ £2(7) x /-zf. On the other hand, Compy(/2(7)) is a strongly 9 (7)-
universal complete metric AR with weight 7. By Torunczyk’s characterization of
/() [12, Proposition 2.1] (cf. [13]), we have Compy(X) = /(7). O

For a dense subspace Z = /() x /2f of /5(t) x {» ~/»(7), the unit sphere
Sz contains a copy Sy ;) x {0} of S,(; as closed set. Then there is a closed
embedding 4 : Y — Sz for each Y € 9t (7). By the same proof as Propositon 7.3,
we can show the i (t)-universality of Fing(Z). Consequently, we have the
following:

THEOREM 7.6. If a metric space X is homeomorphic to ¢(>(7) x/*zf then
Fing (X) ~ (2(z) x /. O
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