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ON INVARIANT SUBMANIFOLDS OF
CONTACT METRIC MANIFOLDS

By

Mukut Mani TRIPATHI, Toom SASAHARA and Jeong-Sik KIM

Abstract. Invariant submanifolds of $(\kappa,\mu)$ -manifolds and $(\kappa,\mu)$ -space
forms are studied.

1 Introduction

A differentiable l-form $\eta$ on a differentiable manifold $M^{2m+1}$ is called a
contact form if $\eta\wedge(d\eta)^{m}\neq 0$ everywhere on $M^{2m+1}$ , and $M^{2m+1}$ equipped with
a contact form is a contact manifold. It is well-known that there exist a unique
global vector field $\xi$ , called the characteristic vector field, a $(1, 1)$ -tensor field
$\varphi$ and a Riemannian metric $\langle, \rangle$ satisfying certain relations. The structure
$(\eta, \xi, \varphi, \langle, \rangle)$ is called a contact metric structure and the manifold $M^{2m+1}$ endowed
with such a structure is said to be a contact metric manifold. A contact metric
manifold is called a K-contact manifold if the structure vector filed $\xi$ is Killing.
A normal contact metric manifold is a Sasakian manifold. A Sasakian manifold
is always a K-contact manifold and in dimension three a K-contact manifold
is Sasakian. In [3], Blair, Koufogiorgos and Papantoniou introduced the class of
contact metric manifolds, in which the structure vector field belongs to the $(\kappa,\mu)-$

nullity distribution. A contact metric manifold belonging to this class is called a
$(\kappa,\mu)$ -manifold. Characteristic examples of non-Sasakian $(\kappa,\mu)$ -manifolds are the
tangent sphere bundles of Riemannian manifolds of constant sectional curvature
not equal to one and certain Lie groups [5]. Recently, T. Koufogiorgos intro-
duced the notion of $(\kappa,\mu)$ -space form [11], which contains the well known class of
Sasakian space forms for $\kappa=1$ . For more details about contact geometry we
refer to [2].
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In this paper we study invariant submanifolds of $(\kappa,\mu)$ -manifolds. The paper
is organized as follows. In the section 2 we give a brief account of contact metric
manifolds, $(\kappa,\mu)$ -manifolds and $(\kappa,\mu)$ -space forms. Essential details for sub-
manifolds are also given. In the section 3, first we prove that each totally
umbilical submanifold of a contact metric manifold tangent to the structure
vector field of the ambient manifold is minimal and consequently totally geodesic.
Then, we give some basic equations for invariant submanifolds in a $(\kappa,\mu)-$

manifold. As a consequence, every invariant submanifold of a $(\kappa,\mu)$ -manifold
becomes a $(\kappa,\mu)$ -manifold. Next, we classify invariant submanifolds in a $(\kappa,\mu)-$

manifold with parallel second fundamental form. Then, using a theorem of D.
Blair, we give a classification of invariant submanifolds with parallel second
fundamental form in a contact metric manifold whose structure vector field
belongs to the $\kappa$-nullity distribution. A corollary for invariant submanifolds in a
Sasakian manifold is also given. Ricci tensor and scalar curvature for invariant
submanifolds in a $(\kappa,\mu)$ -space form are given in the section 4. Using these ex-
pressions, we find necessary and sufficient conditions for invariant submanifolds
in a $(\kappa,\mu)$ -space form to be totally umbilical and totally geodesic. Then a
corollary for invariant submanifold of a Sasakian space form is given. In section
5, we study invariant submanifolds in a $(\kappa,\mu)$ -space form such that the normal
connection is trivial. Among other results, it is proved that for an invariant
submanifold in a $(\kappa,\mu)$ -space form $\tilde{M}(c)$ with codimension greater than two, the
normal connection of the submanifold is trivial provided the submanifold is
totally geodesic and $c=1$ . As a consequence, we have some corollaries for
invariant submanifolds of Sasakian space forms. In the last section, a Simons’
type formula for a compact invariant submanifold of a $(\kappa,\mu)$ -space form $\tilde{M}(c)$ is
established.

2 $(\kappa,\mu)$-Contact Manifolds

A $(2m+1)$ -dimensional differentiable manifold $\tilde{M}$ is called an almost contact
manifold if either its structural group can be reduced to $U(m)\times 1$ or equiv-
alently, there is an almost contact structure ( $\tilde{\varphi},$

$\xi_{\tilde{\eta})}$ consisting of a $(1, 1)$ tensor
field $\tilde{\varphi}$ , a vector field $\tilde{\xi}$ , and a l-form $\tilde{\eta}$ satisfying

$\tilde{\varphi}^{2}=-I+\tilde{\eta}\otimes\tilde{\xi}$ , $\tilde{\eta}(\xi)=1$ , $\tilde{\varphi}\xi=0$ , $\tilde{\eta}\circ\tilde{\varphi}=0$ . (2.1)

First and one of the remaining three relations of (2.1) imply the other two re-
lations of (2.1). An almost contact structure $(\tilde{\varphi},\tilde{\xi},\tilde{\eta})$ on $\tilde{M}$ is said to be normal if
the induced almost complex structure $P$ on the product manifold $\tilde{M}\times R$ defined
by
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$P(\tilde{X},$ $\lambda\frac{d}{dt})=(\tilde{\varphi}\tilde{X}-\lambda\xi_{\tilde{\eta}(\tilde{X})\frac{d}{dt}})$ (2.2)

is integrable, where $\tilde{X}$ is tangent to $\tilde{M},$ $t$ the coordinate of $R$ and $\lambda$ a smooth
function on $\tilde{M}\times R$ . The condition for being normal is equivalent to vanishing of
the torsion tensor $[\tilde{\varphi},\tilde{\varphi}]+2d\tilde{\eta}\otimes\xi$ , where $[\tilde{\varphi},\tilde{\varphi}]$ is the Nijenhuis tensor of $\tilde{\varphi}$ . Let
$\langle, \rangle$ be a compatible Riemannian metric with ( $\tilde{\varphi},$

$\xi_{\tilde{\eta})}$ , that is,

$\langle\tilde{X},\tilde{Y}\rangle=\langle\tilde{\varphi}\tilde{X},\tilde{\varphi}\tilde{Y}\rangle+\tilde{\eta}(\tilde{X})\tilde{\eta}(\tilde{Y})$ (2.3)

or equivalently,

$\tilde{\Phi}(\tilde{X},\tilde{Y})\equiv\langle\tilde{X},\tilde{\varphi}\tilde{Y}\rangle=-\langle\tilde{\varphi}\tilde{X},\tilde{Y}\rangle$ and $\langle\tilde{X},\tilde{\xi}\rangle=\tilde{\eta}(\tilde{X})$ (2.4)

for all $\tilde{X},\tilde{Y}\in T\tilde{M}$ . Then, $\tilde{M}$ becomes an almost contact metric manifold equipped
with an almost contact metric stmcture $(\tilde{\varphi}, \xi_{\tilde{\eta}}, \langle, \rangle)$ .

A differentiable l-form $\tilde{\eta}$ on a $(2m+1)$ -dimensional differentiable manifold
$\tilde{M}$ is called a contact form if $\tilde{\eta}\wedge(d\tilde{\eta})^{m}\neq 0$ everywhere on $\tilde{M}$ , and $\tilde{M}$ equipped
with a contact form is a contact manifo $ld$. An almost contact metric structure
becomes a contact metric structure if $\tilde{\Phi}=d\tilde{\eta}$ . A normal contact metric manifold
is a Sasakian manifold. An almost contact metric manifold is Sasakian if and only
if

$(\tilde{\nabla}_{\tilde{X}}\tilde{\varphi})\tilde{Y}=\langle\tilde{X},\tilde{Y}\rangle\tilde{\xi}-\tilde{\eta}(\tilde{Y})\tilde{X}$ , $\tilde{X},\tilde{Y}\in T\tilde{M}$ , (2.5)

where $\tilde{\nabla}$ is Levi-Civita connection, while a contact metric manifold $\tilde{M}$ is Sasakian
if and only if the curvature tensor $\tilde{R}$ satisfies

$\tilde{R}(\tilde{X},\tilde{Y})\xi=\tilde{\eta}(\tilde{Y})\tilde{X}-\tilde{\eta}(\tilde{X})\tilde{Y}$ , $\tilde{X},\tilde{Y}\in T\tilde{M}$ . (2.6)

In a contact metric manifold $\tilde{M}$ , the $(1, 1)$ -tensor field $\tilde{h}$ defined by $2\tilde{h}=\mathfrak{L}_{\overline{\xi}}\tilde{\varphi}$

is symmetric and satisfies

$\tilde{h}\tilde{\xi}=0$ , $\tilde{h}\tilde{\varphi}+\tilde{\varphi}\tilde{h}=0$ , $\tilde{v}_{\tilde{X}}\xi=-\tilde{\varphi}\tilde{X}-\tilde{\varphi}\tilde{h}\tilde{X}$ , trace $(\tilde{h})=trace(\tilde{\varphi}\tilde{h})=0$ . (2.7)

The $(\kappa, \mu)$ -nullity distribution of a contact metric manifold $\tilde{M}$ is a distribution [3]

$N(\kappa,\mu)$ : $p\rightarrow N_{p}(\kappa,\mu)=\{\tilde{Z}\in T_{p}M|\tilde{R}(\tilde{X},\tilde{Y})\tilde{Z}=\kappa(\langle\tilde{Y},\tilde{Z}\rangle\tilde{X}-\langle\tilde{X},\tilde{Z}\rangle\tilde{Y})$

$+\mu(\langle\tilde{Y},\tilde{Z}\rangle\tilde{h}\tilde{X}-\langle\tilde{X},\tilde{Z}\rangle\tilde{h}\tilde{Y})\}$ ,

where $\kappa$ and $\mu$ are constants. If $\mu=0$ , the $(\kappa,\mu)$ -nullity distribution $N(\kappa,\mu)$ is
called the $\kappa$-nullity distribution $N(\kappa)$ . If $\xi\in N(\kappa,\mu)$ , that is

$\tilde{R}(\tilde{X},\tilde{Y})\xi=\kappa(\tilde{\eta}(\tilde{Y})\tilde{X}-\tilde{\eta}(\tilde{Z})\tilde{Y})+\mu(\tilde{\eta}(\tilde{Y})\tilde{h}\tilde{X}-\tilde{\eta}(\tilde{Z})\tilde{h}\tilde{Y})$ , (2.8)
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then $\overline{M}$ is called a $(\kappa,\mu)$ -manifold. If $\xi\in N(\kappa)$ , then

$\tilde{R}(\tilde{X},\tilde{Y})\tilde{\xi}=\kappa(\tilde{\eta}(\tilde{Y})\tilde{X}-\tilde{\eta}(\tilde{Z})\tilde{Y})$ , (2.9)

and $\tilde{M}$ will be called an $N(\kappa)$ -contact metric manifold. In a $(\kappa,\mu)$ -manifold the
covariant derivatives of $\tilde{\varphi}$ and $\tilde{h}$ satisfy

$(\tilde{\nabla}_{\tilde{X}}\tilde{\varphi})\tilde{Y}=\langle\tilde{X}+\tilde{h}\tilde{X},\tilde{Y}\rangle\xi_{-\tilde{\eta}(}\tilde{Y})(\tilde{X}+\tilde{h}\tilde{X})$ , (2.10)

$(\tilde{\nabla}_{\tilde{X}}\tilde{h})\tilde{Y}=\{(1-\kappa)\langle\tilde{X},\tilde{\varphi}\tilde{Y}\rangle-\langle\tilde{X},\tilde{\varphi}\tilde{h}\tilde{Y}\rangle\}\xi$

$-\tilde{\eta}(\tilde{Y})\{(1-\kappa)\tilde{\varphi}\tilde{X}+\tilde{\varphi}\tilde{h}\tilde{X}\}-\mu\tilde{\eta}(\tilde{X})\tilde{\varphi}\tilde{h}\tilde{Y}$ . (2.11)

Moreover, we have

$\tilde{Q}\xi=2m\kappa\xi$ , $\tilde{h}^{2}=(\kappa-1)\tilde{\varphi}^{2}$ ,

where $\tilde{Q}$ is Ricci operator. Obviously, $\kappa\leq 1$ , equality holds if and only if the
manifold is Sasakian. Characteristic examples of non-Sasakian $(\kappa,\mu)$ -manifolds
are the tangent sphere bundles of Riemannian manifolds of constant sectional
curvature not equal to one and certain Lie groups [5]. For more details we refer
to [2], [3] and [11].

The sectional curvature $\tilde{K}(\tilde{X},\tilde{\varphi}\tilde{X})$ of a plane section spanned by a unit
vector $\tilde{X}$ orthogonal to $\xi$ is called a $\tilde{\varphi}$-sectional curvature. If the $(\kappa,\mu)$ -manifold
$\tilde{M}$ has constant $\tilde{\varphi}$-sectional curvature $c$ then it is called a $(\kappa,\mu)$ -space form and is
denoted by $\tilde{M}(c)$ . The curvature tensor of $\tilde{M}(c)$ is given by [11]

$\tilde{R}(\tilde{X},\tilde{Y})\tilde{Z}=\frac{c+3}{4}\{\langle\tilde{Y},\tilde{Z}\rangle\tilde{X}-\langle\tilde{X},\tilde{Z}\rangle\tilde{Y}\}$

$+\frac{c-1}{4}\{2\langle\tilde{X},\tilde{\varphi}\tilde{Y}\rangle\tilde{\varphi}\tilde{Z}+\langle\tilde{X},\tilde{\varphi}\tilde{Z}\rangle\tilde{\varphi}\tilde{Y}-\langle\tilde{Y},\tilde{\varphi}\tilde{Z}\rangle\tilde{\varphi}\tilde{X}\}$

$+\frac{c+3-4\kappa}{4}\{\tilde{\eta}(\tilde{X})\tilde{\eta}(\tilde{Z})\tilde{Y}-\tilde{\eta}(\tilde{Y})\tilde{\eta}(\tilde{Z})\tilde{X}$

$+\langle\tilde{X},\tilde{Z}\rangle\tilde{\eta}(\tilde{Y})\xi-\langle\tilde{Y},\tilde{Z}\rangle\tilde{\eta}(\tilde{X})\tilde{\xi}\}$

$+\frac{1}{2}\{\langle\tilde{h}\tilde{Y},\tilde{Z}\rangle\tilde{h}\tilde{X}-\langle\tilde{h}\tilde{X},\tilde{Z}\rangle\tilde{h}\tilde{Y}$

$+\langle\tilde{\varphi}\tilde{h}\tilde{X},\tilde{Z}\rangle\tilde{\varphi}\tilde{h}\tilde{Y}-\langle\tilde{\varphi}\tilde{h}\tilde{Y},\tilde{Z}\rangle\tilde{\varphi}\tilde{h}\tilde{X}\}$

$+\langle\tilde{\varphi}\tilde{Y},\tilde{\varphi}\tilde{Z}\rangle\tilde{h}\tilde{X}-\langle\tilde{\varphi}\tilde{X},\tilde{\varphi}\tilde{Z}\rangle\tilde{h}\tilde{Y}$

$+\langle\tilde{h}\tilde{X},\tilde{Z}\rangle\tilde{\varphi}^{2}\tilde{Y}-\langle\tilde{h}\tilde{Y},\tilde{Z}\rangle\tilde{\varphi}^{2}\tilde{X}$
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$+\mu\{\tilde{\eta}(\tilde{Y})\tilde{\eta}(\tilde{Z})\tilde{h}\tilde{X}-\tilde{\eta}(\tilde{X})\tilde{\eta}(\tilde{Z})\tilde{h}\tilde{Y}$

$+\langle\tilde{h}\tilde{Y},\tilde{Z}\rangle\tilde{\eta}(\tilde{X})\xi-\langle\tilde{h}\tilde{X},\tilde{Z}\rangle\tilde{\eta}(\tilde{Y})\xi\}$ (2.12)

for all $\tilde{X},\tilde{Y},\tilde{Z}\in T\tilde{M}$ , where $ c+2\kappa=-1=\kappa-\mu$ if $\kappa<1$ .
Let $M$ be a submanifold in a manifold $\tilde{M}$ equipped with a Riemannian metric

$\langle, \rangle$ . The Gauss and Weingarten formulae are given respectively by

$\tilde{\nabla}_{X}Y=\nabla_{X}Y+\sigma(X, Y)$ and $\tilde{\nabla}_{X}N=-A_{N}X+\nabla_{X}^{\perp}N$

for all $X,$ $Y\in TM$ and $N\in T^{\perp}M$ , where $\tilde{\nabla},$ $\nabla$ and $\nabla^{\perp}$ are Riemannian, induced
Riemannian and induced normal connections in $\tilde{M},$ $M$ and the normal bundle
$T^{\perp}M$ of $M$ respectively, and $\sigma$ is the second fundamental form related to the
shape operator $A_{N}$ in the direction of $N$ by $\langle\sigma(X, Y), N\rangle=\langle A_{N}X, Y\rangle$ . More-
over, if $\tilde{J}$ is any $(1, 1)$ -tensor field on $\tilde{M}$ , then we have [13]

$(\tilde{\nabla}_{X}\tilde{J})Y=((\nabla_{X}J)Y-A_{F_{\tilde{J}}Y}X-t_{\tilde{J}}\sigma(X, Y))$

$+((\nabla_{X}F_{\overline{J}})Y+\sigma(X, JY)-J^{\perp}\sigma(X, Y))$ , (2.13)

$(\tilde{\nabla}_{X}\tilde{J})N=((\nabla_{X}t_{\overline{J}})N-A_{J^{\perp}N}X-JA_{N}X))$

$+((\nabla_{X}J^{\perp})N+\sigma(X, t_{\overline{J}}N)-F_{\overline{J}}A_{N}X))$ , (2.14)

where

$\tilde{J}X\equiv JX+F_{\tilde{J}}X$ , $X,JX\in TM,$ $F_{\tilde{J}}X\in T^{\perp}M$ ,

$\tilde{J}N\equiv t_{\overline{J}}N+J^{\perp}N$ , $t_{\overline{J}}N\in TM,$ $N,J^{\perp}N\in T^{\perp}M$ ,

$(\nabla_{X}J)Y\equiv\nabla_{X}JY-J\nabla_{X}Y$ , $(\nabla_{X}F_{\overline{J}})Y\equiv\nabla_{X}^{\perp}F_{\overline{J}}Y-F_{\overline{J}}\nabla_{X}Y$ ,

$(\nabla_{X}t_{\tilde{J}})N\equiv\nabla_{X}t_{\overline{J}}N-t_{\overline{J}}\nabla_{X}^{\perp}N$ , $(\nabla_{X}J^{\perp})N\equiv\nabla_{X}^{\perp}J^{\perp}N-J^{\perp}\nabla_{X}^{\perp}N$ .

From Gauss and Weingarten formulas, we obtain

$(\tilde{R}(X, Y)Z)^{T}=R(X, Y)Z+A_{\sigma(X,Z)}Y-A_{\sigma(Y,Z)}X$ , (2.15)

consequently, the Gauss equation is

$\tilde{R}(X, Y, Z, W)=R(X, Y, Z, W)-\langle\sigma(X, W), \sigma(Y, Z)\rangle$

$+\langle\sigma(X, Z), \sigma(Y, W)\rangle$ . (2.16)

The covariant derivative of $\sigma$ is defined by

$(\nabla_{X}\sigma)(Y,Z)=\nabla_{X}^{\perp}\sigma(Y, Z)-\sigma(\nabla_{X}Y, Z)-\sigma(Y, \nabla_{X}Z)$ . (2.17)
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Finally for normal vector fields $N$ and $V$ the equation of Ricci-K\"uhn is

$\tilde{R}(X, Y, N, V)=R^{\perp}(X, Y, N, V)-\langle[A_{N}, A_{V}]X, Y\rangle$ . (2.18)

The mean curvature vector $H$ is expressed by $H=trace(\sigma)/\dim(M)$ . The sub-
manifold $M$ is totally geodesic in $\tilde{M}$ if $\sigma=0$ , and minimal if $H=0$ . If
$\sigma(X, Y)=\langle X, Y\rangle H$ for all $X,$ $Y\in TM$ , then $M$ is totally umbilical.

3 Invariant Submanifolds

Let $\tilde{M}$ be an almost contact metric manifold with the structure $(\tilde{\varphi}, \xi_{\tilde{\eta}}, \langle, \rangle)$ .
For a submanifold $M$ of $\tilde{M}$ tangent to $\xi$ , we write the orthogonal direct de-
composition $TM=\mathscr{D}\oplus\{\xi\}$ , where $\xi$ is restriction of $\tilde{\xi}$ . Moreover, if the ambient
manifold is contact also, then

$\nabla_{\xi}\xi=0$ and $\sigma(\xi, \xi)=0$ . (3.1)

Thus, every totally umbilical submanifold $M$ of a contact metric manifold such
that $\xi\in TM$ is minimal and consequently totally geodesic. For $H=\langle\xi, \xi\rangle H=$

$\sigma(\xi, \xi)=0$ .
If in a submanifold $M$ of an almost contact metric manifold the structure

vector field $\xi$ is tangent to $M$ and $\tilde{\varphi}T_{p}M\subset T_{p}M$ , then $M$ is called an invariant
submanifold and inherits an almost contact metric structure $(\varphi, \xi, \eta, \langle, \rangle)$ by re-
striction. Moreover, in view of (2.13) and (2.14), we have

$(\tilde{\nabla}_{X}\tilde{\varphi})Y=(\nabla_{X}\varphi)Y+\sigma(X, \varphi Y)-\varphi^{\perp}\sigma(X, Y)$ , (3.2)

$(\tilde{\nabla}_{X}\tilde{\varphi})N=-A_{\varphi^{\perp}N}X-\varphi A_{N}X+(\nabla_{X}\varphi^{\perp})N$ . (3.3)

For a submanifold $M$ of a contact metric manifold to be invariant, the
condition $\tilde{\varphi}T_{p}M\subset T_{p}M$ is sufficient. In this case, $\xi$ becomes tangent to $M$ and the
induced structure $(\varphi, \xi, \eta, \langle, \rangle)$ becomes contact. Moreover, $h=\tilde{h}|_{M},$ $\sigma(X, \xi)=0$

and $M$ is minimal [2]. We also have

$(\tilde{\nabla}_{X}\tilde{h})Y=(\nabla_{X}h)Y+\sigma(X, hY)-h^{\perp}\sigma(X, Y)$ , (3.4)

$(\tilde{\nabla}_{X}\tilde{h})N=-A_{h^{\perp}N}X-hA_{N}X+(\nabla_{X}h^{\perp})N$ . (3.5)

Now, we prove the following

PROPOSITION 3.1. Let $M$ be a $(2n+1)$ -dimensional invariant submanifold of a
$(\kappa,\mu)$ -mamfold. Then, we have

$(\nabla_{X}\varphi)Y=\langle X+hX, Y\rangle\xi-\eta(Y)(X+hX)$ , (3.6)
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$\varphi^{\perp}\sigma(X, Y)=\sigma(X, \varphi Y)=\sigma(\varphi X, Y)$ , (3.7)

$ A_{\varphi^{\perp}N}=\varphi A_{N}=-A_{N}\varphi$ , (3.8)

$(\tilde{\nabla}_{X}\tilde{\varphi})N=0$ , (3.9)

$(\nabla_{X}h)Y=\{(1-\kappa)\langle X, \varphi Y\rangle-\langle X, \varphi hY\rangle\}\xi$

$-\eta(Y)\{(1-\kappa)\varphi X+\varphi hX\}-\mu\eta(X)\varphi hY$ , (3.10)

$\varphi^{\perp}h(X, Y)=\sigma(X, hY)=\sigma(hX, Y)$ , (3.11)

$A_{h^{\perp}N}=hA_{N}=A_{N}h$ , (3.12)

$(\tilde{\nabla}_{X}\tilde{h})N=0$ , (3.13)

$ Q\xi=2n\kappa\xi$ , $h^{2}=(\kappa-1)\varphi^{2}$ ,

where $Q$ is Ricci operator on the invariant submanifold.

PROOF. From (2.10), we have

$(\tilde{\nabla}_{X}\tilde{\varphi})Y=\langle X+hX, Y\rangle\xi-\eta(Y)(X+hX)$ . (3.14)

Equating tangential and normal parts of right hand sides of (3.2) and (3.14), we
get (3.6) and (3.7). Equation (3.8) is equivalent to (3.7). From (2.10) we have
(3.9). Similarly, we can prove $(3.10)-(3.13)$ . Using $\sigma(X, \xi)=0$ in (2.15), we get

$\tilde{R}(X, Y)\xi=R(X, Y)\xi$ ,

which in view of (2.8), gives

$R(X, Y)\xi=\kappa(\eta(Y)X-\eta(Z)Y)+\mu(\eta(Y)hX-\eta(Z)hY)$ .

This completes the proof. $\square $

In view of the previous discussion in this section, we can state the following

THEOREM 3.2. An invariant submamfold of a $(\kappa,\mu)$ -manifold is a $(\kappa,\mu)-$

mamfold.

We recall the following Lemma for later uses.

LEMMA 3.3 [7]. Let $M$ be an invariant submamfold of a contact metric

mamfold. Then, we have
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$\varphi A_{N}=-A_{N}\varphi$ , $A_{N}\xi=0$ , (3.15)

$A_{N}=A_{N}h$ $\iota f$ and only $\iota f$ $(\nabla_{X}A_{N})\xi=0$ . (3.16)

Now, we prove the following

THEOREM 3.4. Let $M$ be an invariant submanifold in a $(\kappa,\mu)$ -manifold. If
$\nabla\sigma=0$ , then either $\kappa=0$ or $M$ is totally geodesic.

PROOF. For any submanifold in a Riemannian manifold, first we note that

$\langle(\nabla_{X}\sigma)(Y, Z), N\rangle=\langle(\nabla_{X}A_{N})Y-A_{\nabla^{\perp}N}Y, Z\rangle$ .

Thus taking in to account $\nabla\sigma=0$ and $A_{N}\xi=0$ , the above equation gives

$(\nabla_{X}A_{N})\xi=0$ ,

which in view of (3.16) implies that $A_{N}h=0$ . Thus we have

$(1-\kappa)A_{N}X=(\kappa-1)A_{N}\varphi^{2}X=A_{N}h^{2}X=A_{N}X$ ,

which provides
$\kappa A_{N}=0$ .

Hence, either $\kappa=0$ or the invariant submanifold is totally geodesic. $\square $

The above theorem provides the following

COROLLARY 3.5 [9]. An invariant submanifold of a Sasakian manifold is
totally geodesic, provided the second fundamental form of immersion is covariantly
constant.

Now, we recall the following

THEOREM 3.6 [1]. Let $M$ be a $(2n+1)$ -dimensional mamfold endowed with a
contact metric structure $(\varphi, \xi, \eta, \langle, \rangle)$ such that

$R(X, Y)\xi=0$ , $X,$ $Y\in TM$ ,

where $R$ is the Riemann curvature tensor. Then, $M$ is locally isometric to
$E^{n+1}(0)\times S^{n}(4)$ for $n>1$ and flat for $n=1$ .

In view of Theorem 3.4 and Theorem 3.6, we have the following
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THEOREM 3.7. Let $\tilde{M}$ be a contact metric mamfold with its structure veclor

field belonging to the $\kappa$-nullity distribution. Let $M$ be a $(2n+1)$ -dimensional
invariant submamfold in $\tilde{M}$ , whose second fundamental form is covariantly con-
stant, then either $M$ is totally geodesic or $M$ is locally isometric to $E^{n+1}(0)\times S^{n}(4)$

for $n>1$ and flat for $n=1$ .

We close this section by proving the following

PROPOSITION 3.8. Let $M$ be a $(2n+1)$ -dimensional invariant submamfold in a
$(\kappa,\mu)$ -mamfold $\tilde{M}$ . Then

trace(hA
$2$ ) $=0$ , (3.17)

$($trace $(hA))^{2}\leq 2n(1-\kappa)$ trace $(A^{2})$ . (3. 18)

PROOF. Since $h^{2}=(\kappa-1)\varphi^{2}$ , therefore $h$ may be represented by

$h=\left(\begin{array}{lll}aI_{n} & & 0\\0 & -aI_{n} & 0\end{array}\right)$ ,

where $a=(1-\kappa)^{1/2}$ . Since (3.12) holds tme, we may take the same orthogonal
matrix to orthogonalize $A$ . Therefore, from (3.15), $A$ can be represented as

$A=\left\{\begin{array}{lllll}a_{1} & 0 & 0 & 0 & 0\\| & | & | & | & |\\0 & a_{n} & 0 & 0 & 0\\0 & 0 & -a_{l} & 0 & 0\\| & | & | & | & |\\0 & 0 & 0 & -a_{n} & 0\\0 & 0 & 0 & 0 & 0\end{array}\right\}$ .

Thus, we have

trace(hA) $=2(1-\kappa)^{1/2}(a_{1}+\cdots+a_{n})$ and trace(hA $2$ ) $=0$ .
Hence,

$($trace $(hA))^{2}=4(1-\kappa)(a_{1}+\cdots+a_{n})^{2}$

$\leq 4n(1-\kappa)(a_{1}^{2}+\cdots+a_{n}^{2})$

$=2n(1-\kappa)trace(A^{2})$ , (3.19)

which completes the proof. $\square $
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4 Ricci Tensor and Scalar Curvature

In a $(\kappa,\mu)$ -space form $\tilde{M}(c)$ , from (2.12), we obtain
$\tilde{R}(\tilde{X}, \xi)\xi=-\kappa\tilde{\varphi}^{2}X+\mu\tilde{h}X$ .

Consequently, if $\kappa=0\neq\mu$ , then $\tilde{h}$ is determined completely in terms of the
Riemann curvature.

In view of (2.12) and (2.16) we are able to state the following

PROPOSITION 4.1. In a $(2n+1)$ -dimensional invariant submamfold in a $(\kappa,\mu)-$

space form $\tilde{M}(c)$ , the Ricci tensor and the scalar curvature are given respectively by

$ S(X, Y)=\frac{1}{2}((n+1)c+3(n-1)+2\kappa)\langle X, Y\rangle$

$-\frac{1}{2}\{(n+1)c+3(n-1)-2(2n-1)\kappa\}\eta(X)\eta(Y)$

$+(\mu+2n-2)\langle hX, Y\rangle-\sum_{i=1}^{2n+1}\langle\sigma(e_{j}, X), \sigma(Y, e_{j})\rangle$ , (4.1)

$r=n((n+1)c+3(n-1))+4n\kappa-\Vert\sigma\Vert^{2}$ , (4.2)
where

$\Vert\sigma\Vert^{2}=\sum_{i,j=1}^{2n+1}\langle\sigma(e_{j}, e_{j}), \sigma(e_{i}, e_{j})\rangle$ .

The equations (4.1) and (4.2) give the following

THEOREM 4.2. For a $(2n+1)$ -dimensional invariant submanifold in a $(\kappa,\mu)-$

space form $\tilde{M}(c)$ , the following statements are equivalent:
1. $M$ is totally umbilical,
2. $M$ is totally geodesic,
3. Ricci tensor is given by

$ S(X, Y)=(\mu+2n-2)\langle hX, Y\rangle+\frac{1}{2}\{(n+1)c+3(n-1)+2\kappa\}\langle X, Y\rangle$

$-\frac{1}{2}\{(n+1)c+3(n-1)-2(2n-1)\kappa\}\eta(X)\eta(Y)$ , (4.3)

4. Scalar curvature is given by

$ r=n((n+1)c+3(n-1))+4n\kappa$ . (4.4)

As an immediate consequence, we have the following
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COROLLARY 4.3. For a $(2n+1)$ -dimensional invariant submamfold in a
Sasakian space form $\tilde{M}(c)$ , the following statemen $ts$ are equivalent:

1. $M$ is totafly umbilical,
2. $M$ is totafly geodesic,
3. Ricci tensor is given by

$ S(X, Y)=\frac{1}{2}((n+1)c+3n-1)\langle X, Y\rangle$

$-\frac{1}{2}(n+1)(c-1)\eta(X)\eta(Y)$ , (4.5)

4. Scalar curvature is given by

$r=n((n+1)c+3n+1)$ . (4.6)

In particular, a 3-dimensional totally geodesic invariant submamfold $M$ in a
Sasakian space form $\tilde{M}(c)$ has Ricci tensor $ S=(c+1)g+(1-c)\eta\otimes\eta$ .

REMARK 4.4. A Sasakian mamfold $M$ is $\eta$-Einstein $lf$ its Ricci tensor

satisfies
$S(X, Y)=a\langle X, Y\rangle+b\eta(X)\eta(Y)$ , $X,$ $Y\in TM$ ,

where $a$ and $b$ are some constants [10]. A 3-dimensional Sasakian mamfo $ld$ is
known to be $\eta$-Einstein [4] and its Ricci curvature is given by $S=(\frac{r}{2}-1)g+$

$(3-\frac{r}{2})\eta\otimes\eta$ . Thus from (4.5), we see that $M$ is $\eta$-Einstein.

5 Invariant Submanifolds with Trivial Normal Connection

In this section, we assume that for an invariant submanifold $M$ in a $(\kappa,\mu)-$

space form $\tilde{M}(c)$ , the normal connection is trivial. Then, for a unit vector
$N\in T^{\perp}M$ and $X,$ $Y\in TM$ , from (2.12) we get

$ 2\tilde{R}(X, \varphi Y, N,\tilde{\varphi}N)=(1-c)\langle\varphi X, \varphi Y\rangle$ . (5.1)

On the other hand, from the equation of Ricci-K\"uhn, we also have

$\tilde{R}(X, \varphi Y, N,\tilde{\varphi}N)=\langle\sigma(A_{N}X, \varphi Y),\tilde{\varphi}N\rangle-\langle\sigma(X, A_{N}\varphi Y),\tilde{\varphi}N\rangle$

$=\langle A_{N}X, A_{\tilde{\varphi}N}\varphi Y\rangle-\langle A_{\tilde{\varphi}N}X, A_{N}\varphi Y\rangle$

$=\langle A_{N}X, \varphi A_{N}\varphi Y\rangle+\langle\varphi A_{N}X, \varphi A_{N}Y\rangle$

$=2\langle\varphi A_{N}X, \varphi A_{N}Y\rangle=2\langle A_{N}X, A_{N}Y\rangle$ , (5.2)
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where (3.8) and (3.15) are used. Thus, we obtain

$(1-c)\langle\varphi X, \varphi Y\rangle=4\langle A_{N}X, A_{N}Y\rangle$ . (5.3)

Moreover, if $U,$ $V\in T^{\perp}M$ are mutually perpendicular unit vectors, then
$(U+V)/\sqrt{2}$ is another unit vector. Thus, in view of (5.3), we obtain

$\langle A_{U}A_{V}X, Y\rangle+\langle A_{V}A_{U}X, Y\rangle=0$ ,
which gives

$A_{U}A_{V}=-A_{V}A_{U}$ . (5.4)

Now, in view of (5.3), we are able to state the following

THEOREM 5.1. For an invariant submamfold $M$ in a $(\kappa,\mu)$ -space form $\tilde{M}(c)$

with trivial normal connection, we have $c\leq 1$ with equality condition $lf$ and only if
$M$ is totally geodesic.

When the codimension of the invariant submanifold is greater than two, we
have a stronger result in the form of following

THEOREM 5.2. Let $M$ be a $(2n+1)$ -dimensional invariant submamfold in a
$(\kappa,\mu)$ -space form $\tilde{M}(c)$ with codimension greater than two. Then the following
statements are equivalent:

(i) the normal connection of $M$ is trivial,
(ii) $M$ is totally geodesic and $c=1$ .

PROOF. In view of (2.12) and (2.18), it is easy to see that (ii) implies (i). Let
the normal connection be trivial and $M$ be not totally geodesic. Consider a $\varphi-$

basis $\{e_{1}, e_{2}, \ldots, e_{2n}, \xi\}$ for $T_{p}M$ with $e_{n+i}=\varphi e_{i},$ $i=1,$
$\ldots,$

$n$ . If $A_{U}e_{i}=0$ for
some unit vector $U\in T^{\perp}M$ , then from (5.3), $M$ is totally geodesic. So $A_{U}e_{j}\neq 0$

for any $N$ and $e_{i}$ . From (5.3), it follows that $A_{U}e_{1},$
$\ldots$ , $A_{U}e_{2n}$ are linearly in-

dependent. Using (5.4) in Ricci-K\"uhn equation, for mutually orthogonal unit
vectors $U,$ $V\in T^{\perp}M$ we obtain

$\tilde{R}(X, Y, U, V)=2\langle A_{U}X, A_{V}Y\rangle$ ,

while in view of (2.12), we get

$ 2\tilde{R}(X, Y, U, V)=(1-c)\langle X, \varphi Y\rangle\langle\varphi^{\perp}U, V\rangle$ .

From the above two equations, we have

$(1-c)\langle X, \varphi Y\rangle\langle\varphi^{\perp}U, V\rangle=4\langle A_{U}X, A_{V}Y\rangle$ .
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If codimension is greater then two, we may take $V$ orthogonal to $U$ and $\varphi^{\perp}U$ ;
thus the above equation gives

$\langle A_{U}X, A_{\nabla}Y\rangle=0$ , $X,$ $Y\in TM$ .

By assumption, $A_{V}e_{j}\neq 0,$ $i=1,$ $\ldots,$
$2n$ . Therefore, $A_{U}e_{i}$ are orthogonal to $A_{V}e_{j}$ ,

$i,$ $j=1,$
$\ldots,$

$2n$ . Thus, $A_{U}e_{1},$
$\ldots,$

$A_{U}e_{2n},$ $A_{V}e_{1},$
$\ldots,$

$A_{V}e_{2n}$ are linearly indepen-
dent, which is a contradiction. Therefore, $M$ must be totally geodesic and hence
$c=1$ . $\square $

Theorem 5.1 and Theorem 5.2 provides the following two Corollaries.

COROLLARY 5.3 [10]. For an invariant submamfold $M$ in a Sasakian space
form $\tilde{M}(c)$ with trivial normal connection, we have $c\leq 1$ with equality condition $\iota f$

and only $lfM$ is totally geodesic.

COROLLARY 5.4 [10]. Let $M$ be an invariant submamfold in a Sasakian space
form $\tilde{M}(c)$ with codimension greater than two. Then the following statements are
equivalent:

(i) the normal connection of $M$ is trivial,
(ii) $M$ is totally geodesic and $c=1$ .

6 Simons’ Type Formula

Let $M$ be a $(2n+1)$ -dimensional invariant submanifold of a $(2m+1)-$

dimensional $(\kappa,\mu)$ -space form $\tilde{M}(c)$ . We choose a local field of orthonormal
frames $e_{1},$

$\ldots,$ $e_{2m+1}$ such that, restricted to $M,$ $e_{1},$
$\ldots,$

$e_{n},$ $e_{n+1}=\varphi e_{1},$ $\ldots,$ $e_{2n}=\varphi e_{n}$

are tangent to $\mathscr{D}$ and $ e_{2n+1}=\xi$ . We use the following convention on range of
indices:

$1\leq i,$ $j,$ $k,$ $\ldots\leq 2n+1$ ,

$2n+2\leq\alpha,\beta,$ $\gamma\cdots\leq 2m+1$ .
We put

$\sigma(e_{j}, e_{j})=\sum\sigma_{ij}^{\alpha}e_{\alpha}$ ,

$(\nabla_{e_{k}}\sigma)(e_{j}, e_{j})=\sum\sigma_{ijk}^{\alpha}e_{\alpha}$ ,

$ R_{jkl}^{i}=\langle R(e_{k}, e_{l})e_{j}, e_{j}\rangle$ ,

where $R$ is the curvature tensor of $M$ .
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Let $\Delta$ be the Laplace operator acting on $C^{\infty}(M)$ . Then we have the following
(see, (3.12) in [6]).

$\frac{1}{2}\Delta\Vert\sigma\Vert^{2}=\sum(\sigma_{ijk}^{\alpha})^{2}+\sum\sigma_{ij}^{\alpha}\Delta\sigma_{ij}^{\alpha}$ . (6.1)

The equation of Codazzi implies that

$\sigma_{ijk}=\sigma_{ikj}$ . (6.2)

Since $M$ is minimal, from (2.21) in [6] and (6.2) we obtain

$\sum\sigma_{ij}^{\alpha}\Delta\sigma_{ij}^{\alpha}=\sum\sigma_{ij}^{\alpha}\sigma_{km}^{\alpha}R_{ijk}^{m}+\sigma_{i/}^{\alpha}\cdot\sigma_{mi}^{\alpha}R_{kjk}^{m}-\sigma_{ij}^{\alpha}\sigma_{ki}^{\beta}R_{\beta jk}^{\alpha}$ . (6.3)

Moreover by using the Ricci-K\"uhn equation, we see that the right side of (6.3)
is equal to the following;

$\sum\sigma_{ij}^{\alpha}\sigma_{km}^{\alpha}\tilde{R}_{ijk}^{m}+\sigma_{ij}^{\alpha}\sigma_{mi}^{\alpha}\tilde{R}_{kjk}^{m}-\sigma_{ij}^{\alpha}\sigma_{ki}^{\beta}\tilde{R}_{\beta jk}^{\alpha}$

$+\sum_{\lambda,\mu}trace(A_{e_{\lambda}}A_{e_{\mu}}-A_{e_{\mu}}A_{e_{\lambda}})^{2}-\sum_{\lambda,\mu}($
trace $A_{e_{\lambda}}A_{e_{\mu}})^{2}$ , (6.4)

where $\tilde{R}$ is the curvature tensor of $\tilde{M}(c)$ .
In view of (3.7) and (3.8), we observe that the shape operator of invariant

submanifolds in contact metric manifolds has similar properties as that of Kaehler
submanifolds in [12]. Hence by applying Proposition 3.1, Lemma 3.4 and (6.10)
in [12], we have

$\sum_{\lambda,\mu}trace(A_{e_{\lambda}}A_{e_{\mu}}-A_{e_{\mu}}A_{e_{\lambda}})^{2}-\sum_{\lambda,\mu}($
trace $A_{e_{\lambda}}A_{e_{\mu}})^{2}$

$\geq-\Vert\sigma\Vert^{4}-\frac{1}{2}\Vert\sigma\Vert^{4}=-\frac{3}{2}\Vert\sigma\Vert^{4}$ . (6.5)

Also by a straightforward computation, we get

$\sum\sigma_{ij}^{\alpha}\sigma_{km}^{\alpha}\tilde{R}_{ijk}^{m}=c\Vert\sigma\Vert^{2}$ , (6.6)

$\sum\sigma_{ij}^{\alpha}\sigma_{mi}^{\alpha}\tilde{R}_{kk}^{m_{/}}=\{\frac{(c+3)(2n-1)}{4}+\frac{3(c-1)}{4}+\kappa\}\Vert\sigma\Vert^{2}$ , (6.7)

$\sum\sigma_{ij}^{\alpha}\sigma_{ki}^{\beta}\tilde{R}_{\beta jk}^{\alpha}=\frac{c-1}{2}\Vert\sigma\Vert^{2}$ , (6.8)
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and hence

$\sum(\sigma_{ij}^{\alpha}\sigma_{km}^{\alpha}\tilde{R}_{ijk}^{m}+\sigma_{ij}^{\alpha}\sigma_{mi}^{\alpha}\tilde{R}_{kjk}^{m}-\sigma_{ij}^{\alpha}\sigma_{ki}^{\beta}\tilde{R}_{\beta jk}^{\alpha})$

$=\{\frac{c(n+2)+3n}{2}+\kappa-1\}\Vert\sigma\Vert^{2}$ . (6.9)

Combining (6.1), (6.4), (6.5) and (6.9), we obtain

$\frac{1}{2}\Delta\Vert\sigma\Vert^{2}\geq\Vert\nabla\sigma\Vert^{2}+\{-\frac{3}{2}\Vert\sigma\Vert^{2}+\frac{c(n+2)+3n}{2}+\kappa-1\}\Vert\sigma\Vert^{2}$ . (6.10)

Now, we assume that $M$ is compact. Then by applying Green’s theorem, we
have

$\int_{M}\{\frac{3}{2}\Vert\sigma\Vert^{2}-\frac{c(n+2)+3n}{2}-\kappa+1\}\Vert\sigma\Vert^{2}dv_{M}\geq\int_{M}\Vert\nabla\sigma\Vert^{2}dv_{M}$ . (6.11)

Theorem 3.4 and (6.11) yield us the following.

THEOREM 6.1. Let $M$ be a compact $(2n+1)$ -dimensional invariant sub-
mamfold in a $(\kappa, \mu)$ -space form $\tilde{M}(c)$ . Then either $\kappa=0$ and $\Vert\sigma\Vert^{2}=\frac{c(n+2)+3n}{3}-\frac{2}{3}$ ,
or $M$ is totally geodesic, or at some point $p\in M$, we have

$\Vert\sigma\Vert^{2}(p)>\frac{c(n+2)+3n}{3}+\frac{2\kappa}{3}-\frac{2}{3}$ .

$obta^{P\infty F}in^{R}that||\sigma\Vert^{2}=^{2}\frac{c(n+2)\leq}{}\frac{2\kappa}{3}-and\nabla\sigma=0,or\sigma=0onMByIf||\sigma\Vert\frac{c(n+2)+3n}{3^{+3n}3_{+}}+\frac{2\kappa}{3_{\frac{2}{3}}}-\frac{2}{3}ateverypointofM^{2n+1},$$f.rom(6.ll)weapplying$

Theorem 3.4, we can prove the statement. $\square $

REMARK 6.2. We have the following remarks. (a) $\mu$ does not appear in
(6.10). (b) In case of $\kappa=1$ , our Theorem 6.1 becomes Theorem 4.1 of Endo [8]
or Theorem 2.1 of Kon [10]. But in case of $\kappa\neq 1$ and $n\neq 1$ , Theorem 6.1 does
not coincide with Theorem 4.1 of Endo [8].
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