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SCATTERING FOR NONLINEAR SYMMETRIC
HYPERBOLIC SYSTEMS

By

Atsushi SATOH

- 0 Introduction

In this paper we shall investigate the Cauchy problem and scattering for the
following nonlinear symmetric hyperbolic system of first order

. du n ou
E(u E_ ;Aj(u)—a;;+F(t,X’ u), (01)

where x € R”, te R', u = u(t,x) is a real m x 1 matrix. E(u) is an m x m matrix
which is real, symmetric and positive definite, 4;(u) (j=1,...,n) are m xm
matrices which are real and symmetric. Moreover we assume that E(u), 4;(u),
F(u) e C*(R™).

First, in order to obtain the existence of the time global solution of the
Cauchy problem for the equation (0.1}, we consider the following Cauchy
problem for a linear symmetric hyperbolic system of first order with constant
coefficients;

an_uo = iAQQ_lfO_
ot ) 7 an (0_2)

UO(O, X) = ¢0(X),

=49t x) and ¢@y(x) are real m x 1 matrices and

where xeR", teR', u
9o(x) € CP(R"). E® is a m x m matrix which is real, symmetric and positive
definite. A]‘.) (j=1,...,n) are m x m matrices which are real, symmetric and
constant. We assume that the eigenvalues 4;(&) of > 7, A}’fj are non zero, real,
distinct and their slowness surfaces are strictly convex. S. Lucente and G. Ziliotti
obtain the decay estimate of the solutions of the Cauchy problem (0.2) as
t — +00. By using their estimate and the existence of the local solution (cf: [3]),
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we can prove the existence of the time global solution to the following Cauchy
problem

ou " ou
E(M)E— FEIA](u)a_xJ_*_F(tax,u)) (03)

u(0,x) = p(x),

where ¢(x) is a real m x 1 matrix, ¢(x) e W/'NH!, I >lh+2 and [ = [f] +1,
and we get the decay estimate of the solution.
Throughout this paper, we assume the following assumption.

ASSUMPTION 0.1

* E(u) : m x m matrix which is real, symmetric and positive definite.

* Aj(u) (j=1,...,n) : m x m matrices which are real and symmetric.
* E(u),4;(u) e C*(R™) and F(t,x,u) e C*(R'™ x R™)
- EO Aj‘.) (j=1,...,n) : m x m matrices which are real, symmetric and con-

stant. Moreover E° is positive definite, the roots 4;(¢) of the equation
H(A) = det(E°A — 3_7, 4%,;) = 0 are non zero, real and distinct and the
slownness surface {&;4;(¢) = +1} are strictly convex.

+ E(u) — E® = O(jul?), |u] — 0.

 Aw) - 49 = O(ul?), |u] — 0.

- 0JOX(F(t,x,u) — F(t,x,0)) = O(lu)"*"), umiformly in (r,x) e R™" |u| — 0,
for each (j,a).

We get the following theorem under the above assumption.
THEOREM 0.2. Let us assume that o€ WH'NH! |o|lyi + ol <6, a
positive integer p >"tl and F(t,x,0) € C%((—o0,00); H'N WHY(R™)) satisfying

”F(t" ’O)HW’»‘ + ”F(t, 70)“11’ S5<t>_ﬂ(a > l),

where 0 is a small positive constant, | > lo+2 and Iy = [3] + 1. Then the Cauchy
problem (0.3) has a time global solution

u(t) € C%((—o0,0); H'NWH*(R")) N C((—o0, 0); H"'NL®(R")). (0.4)

Moreover the solution of the Cauchy problem (0.3) has the following decay es-
timate;

4| g gy < ICEEY~"D2, te R, (0.5)

where {t>=1/1+ |¢|>.
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Furthermore we shall prove the existence of the scattering operator among
the nonlinear equation and the linear equation (0.2). The result is the
following theorem.

THEOREM 0.3. Assume that Assumption 0.1 is valid. Let |1 > 2(ly+ 1) and
F(t,x,0) = 0. For Vo_e W'INH" and |lp_||g: + llo_|lwi <6 < 1, there exists

u(f) e C°((=00, 0); HYN C((—o0, 00); HY), (0.6)
satisfying (0.3) and
lu(t) = e™og_|| g < CY™V2, (1 <0). (0.7)
Moreover, there exists
9, € H', (0.8)
such that

u(t) — 't L < CY D2 (1> 0), 0.9
P+ llH

where p > %, the constant C depends only on & and p.

This paper is organized as follows: In the section 1 we shall prove the
existence of the time global solution and derive the decay estimate of the solu-
tion for the Cauchy problem (0.3). Intertwining the equation and a linear
symmetric hyperbolic system with constsnt coefficients (0.2), the existence of

scattering operator for the equation is proved in the section 2.

1 Global Solutions and Decay Estimates

Let’s consider the Cauchy problem (0.2). Multiplying the equation (0.2) by
(E®)™" from left-hand side, then we have
ou®

= — iHwu®
ot 0% (1.1)

uO(O, x) = (00(X),

where xe R", teR', Hy= (E°)™! Y1 4Dy, D, =1 6ix,-’ i=+—1. E® is an
m x m matrix which is real, symmetric, and positive definite, Aj‘-) (J=1,...,n)
are m x m matrices which are real, symmetric and constant, and u® = u%(¢,x) is a
real m x 1 matrix. Let us assume that gy(x) € C°(R"). For gy(x), we see that the

solution of the Cauchy problem (1.1) can be written in the following way:
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u® (1, x) = (e"™opp)(x). (1.2)

For (1.1), we obtain the following proposition.

PROPOSITION 1.1. The solution e"og, of (1.1) satisfies

lle ™ @oll i (gmy < C<t>_(n_l)/2”¢0“W’+'0v'(R")’ (1.3)

where py(x) € Wl (RYNH'(R"), Ip = [n/2] + 1 and | is a non negative integer.

This result will be used to prove the existence of time global solution for the
nonlinear case. The proof of this proposition is just the same one as Theorem 0.1
in [I].

Using [Proposition 1.1, we can solve the Cauchy problem (0.3). We assume
that E(u), A;j(u), F(u) satisfy Assumption 0.1. The existence theorem of local
solution is as follows.

PROPOSITION 1.2. Let pe H°, se N, s>541, g1 :=Kllolly. and g2 > g
arbitrary but fixed. Then there is a T > 0 such that there exists a unique classical
solution ue C'([0,T] x R") of the Cauchy problem (0.3) with

sup |u(t, x)| < g2 (1.4)
(t,x)el0, T)xR"

and

ue C%[0, T H)NC([0, T); H), (1.5)

where T is a function of ||¢||y. and g».
(ProOF OF ProPOSITION 1.2). See R. Racke [3].

In order to have the decay estimate of the solution of [0.1), we use the
following Gagliardo-Nirenberg type inequalities.

LemMma 1.3. (1) For the functions uy,uy, ... Um, if |a| =al + - -+ a™, then

1 2 m n
107 w10% uz -+ - 07 tml| L2(gmy < CZ(H Iluille(m)) etk | (1.6)

k=1 \i#k
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(2) For the functions uy,uy,... .Uy, if |6 =a' + -+ a™, then

1 1‘12 am
103 w107 uz -+ 07 |l L1 gy < CZ(H ””i”Loo(R")) 24| i |24t e~ (1.7)

J#k \i#j,k

(3) Let us assume f(x,u) € C°(R™; B*(R")) and f(u) = O(|u|?), |u| — O,
where an integer p > 1. Then ~

1 @)l e < Cllael gy 2l (1.8)

where C depends only on f and ||ul| = gn)-
(4) Let us assume f(x,u) e C*(R™;B*(R")) and f(u) = O(|u|’), |u| — 0,
where an integer p > 2. Then

Lf @)llwer < Cllull=fgen lull 7, | (1.9)

where C depends only on f and |||« gn.-
(ProoF OF LEMMA 1.3). See M. E. Taylor [4].

(ProOF OF THEOREM 0.2). Let us introduce E' and 4/ as follows:

El u) = E(u _EO

Then the equation can be written in the following way:
06“ Z °a“+F1(u | (1.11)

where

Fi(u) = Fi(t,x,u) = F(t,x,u) — E'(u) a“+§n:,41( ax

= F(u) — EV(W)E(u)~ (ZA,(u F(t,x, u))+ZA (u )_— (1.12)

Moreover, using the new function Fij(u) defined by

Fi(u) = (E°)' Fi(u), (1.13)



290 Atsushi SATOH

1.11) can be written in the following way

ou

P = iHy(D)u + F\(u). (1.14)

Applying the representation formula for [1.14), we obtain
u(t) = ey +j =)o [ (u(7)) dr. (1.15)

Now let us introduce the following norm;

M(21) = M(u(t)) = Sslil;t{@)(” Y21u() | e gy + 8@ |- (1.16)

Then, from [Proposition 1.1, we deduce that

C +1/2, ! F /2
||(0“W'<1) ’/22' J I l(“)“w’ol'ﬂzl dr. (1.17)
eytr=/ o <t -yl

Taking account of the condition on F(z, x,0), from (1.12) and (4) we
have

“u(t) ” Wi/2,© <

E'WEG)™ Y ) 2
]

j=1

”Fl (u)||W10+1/z,l < C(||F(u)||W10+l/2,1 +

Wwilo+/2.1

> 4wz
wlo+/2,1

2l )

+ [|E (u) E ()" F () || gt +

< C(lullZ="llul Fywrr + NullE= Nael Fyerre + el
+ C||F(¢,-,0)] Wl+/2.1

< C(lull = Nl ooz + Nl 25l Fronran + 6<E72), (1.18)
where C = C(M(?)). From and the definition of M(¢), we compute
1EL @) | o < C(llull 2" ullFperssn + Ul Nl g +<E577)  (1.19)
< C(<T>—(("—1)/2)(P—1)M(t)p+1

+ (o~ (@=D/D@e=D pr 2+ | 5¢py0y (1.20)
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because of Iy + 1 +4 < 1. Applying (1.19) to (1.17), we can obtain the following
estimate.

t
14Dl 2.0 gry < €Y~V + CM(£)P* J (t = 75~ =D/2 (= (=1/D(p=1) gy
0
+ CM(t)2p+l Jt <t _ T>—(n—1)/2<T>—((n—l)/2)(2p—1) drt
0

t
+ C§ J (=Y~ =D2¢eN=0 ge, (1.21)
0

where C = C(M(¢)). We caluculate the integrals in the right-hand side of
as follows;

t
J (= T~V (DD L (150) dr < CCry" D2 (1.22)
0

where p >l Thus we can obtain

(| o gy < C<EY™ODR(EE 4+ M(2)P* + M()PH). (1.23)
Hence, it follows that

O DN u(@0)] s oy < CE+ MOPH + M()**). (1.24)

Operating D? to the equation (0.1), we have

E() aDa —iA(u)a Div | Ry, (1.25)
where
Fy(u) =D << )D“ « F( )D“'g‘t‘
+;Z<( ,)D“ “ 4;(u) D a‘j (1.26)

Putting u, = D%u, |a| < I, we have

E(u )a““ iAj(u) g‘;°f+Fa(u). (1.27)
j=1 j

Now we compute
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%(E (), ) 2 gmy = (VuE (u)E()™" (Z Aj(u) % +F (u)) Ua, ua)
s=1 ’ LY(R")

" 0A;(u
—2Re (ua, E 4( )ua) +2 Re(Fa,ua)Lz(Rn). (1.28)
L2(R")

j=1 axj

Therefore it follows that

d _
= (Bt ) sy < 3 ()(E(u)ua,ua>;é§m)+ 1EG@) ™2 Full p2ory, (1.29)

and

c(t) = sup|V,E(u)E(u)™" (Z A;(u) % + F(u)) E@)™ ‘
X j=1 j

E@)™ Z 04,w)| (1.30)

=

+ 2 sup
P

Applying the Gronwall type inequality to (1.29), we get

(EWta, 1) oy < (E()11(0), 4(0)) 2, exp (J; (2) dt)

t t
+J ”E(u)_l/zFa“LZ(Rn) exp(J c(s) ds) dr. (1.31)
0 T

Using the equation [(0.1) and [Lemma 1.3, we see after a simple calculation that

1E()™"2 Fa(u)l| 2ggry < CIFa()]l 2y

o o—! ' au

< C|IDZF ()|l L2(rr) +CZ D" Eu)D; -
a'<a L2(R"™)
+CY Y| pre Wy 2
/ * ax 2"

j=1 a'<a JUL2(R")
< C(”””H’”“”wlﬂ ot ”F(t’ ' 10)”11’)
< Il . o Il + 6. (132)

Combining (1.31) and (1.32), we have
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1/2 1/2 '
(B0t 10) ey S (E1(0),00)) ey exp( | (6 )

ol xp( [ ) ) . (139

Taking the sum with respect to a up to / and using the equivalence of norms, we
obtain

Il s < Clla(O) 1 p(JO o(s) d)

t t
4 Wil il exp([ ety as) @ (130
Moreover from (1.10) and we deduce
c(t) = sup VL.E(u)E(u)~ (Z A;( u)) E(u)™!
+ 2 sup|E(u)™ 04, (u)

=< C(”u”Lw(R")”u”Wl w(gmy T ”u”WI o (R") + 1F (2,0 =)
< Cllullfyr. o gry + 12l 31 gy +KE>7). (1.35)

From the definition of M(f) we have
t t
J, 0 de <€ [ Uty + Wil g + 5557
t t
< C(M(z)”J ey~ =D/2p g 4 M(t)ZPJ (e~ =0p gr +5)
0 0

< C(M(t)? + M()% +9). (1.36)

where 2%51p > 1, (n—1)p > 1 and o > 1. Consequently we find that

ull s < Cllu(®)l] 1 exp (jo (s de)

t t
C |l s 50 ct0) ) e

< C5 exp(CM(1)” + CM(1)%)
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t
+ CM(2)P*! exp(CM (2)” + CM(t)2P)J ()~ (=D/2p gy
0

< C8 exp(CM(1)? + CM(1)®)

+ CM (1)t exp(CM(1)? + CM(£)%). (1.37)
Combining and (1.37) and taking the supremum on 0 <7<, we obtain
M(t) < C6+ M@ + M) + Co exp(CM(1)? + CM(1)¥)

+ CM ()" exp(CM(1)F + CM(1)*?). (1.38)
Set M(t) = x. Then inequality can be written in the following way
x < C(6 4 xPT1 4 xWH1 4 §eCH+OF 4 xptl gOF+Cx¥y (1.39)

Finally, from M(0) <J « 1, we can see x < C6. This means that
M(t) < Co. (1.40)
This completes the proof of Theorem 0.2 Q.E.D.

2 Scattering for the Nonlinear Symmetric Hyperbolic Systems
In this chapter we shall prove Theorem 0.3 First we construct a solution
satisfying

u)——~ Zn:Aj(u)————i—F(u) xeR", t<0, o

Jim (u() =) =0 in H',

where we denote
u(t) = efog_. (2.2)

Now we set w(?) = u(t) — u°(¢), then we have

E() Sw(t) = E(u)%(u(z) ~u%(0)

= Z Aj( u(t) + F(u) — iE(u)Hou®(2)

=3 4w aixjwm + Y (40 ~ EG(E) ™ 4,0) 55°0) + F )
j=1 =1
(2.3)
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Therefore, the following equation is equivalent to (2.1):

E(w(0)+10(0) G w(0) = D Aw(0) + °(0) 3 w(0) + FOw(8) + 1),

=1 (2.4)

lim w(f)=0 in H’,

t——0o0

where
F(w(t) +u°(1)) = Xn:{Aj(W(t) +u’(1)) — E(w(t) + u° () (E®) ™' 4;(0)} aixju"(t)
j=1

+ F(w(t) + u°(2)). (2.5)

In order to solve (2.4), we consider the linearlized equation of (2.4). We define the
function space X 5’ as follows

Xj = {w(t) € C°((— o0, 0, H'); |w(t)l| g <5<t~ D2 ve <0} (2.6)
Let ve X/, and we put A,(f) = E(v(f) + u®(£))™" S Ai(o(e) + uo(t))a—%. Let

consider the following linear problem

d
Zw(0) = 4w + £(), | 2.7)

lim w(f)=0 in H’,

where f € L!((—0,0); H'). In order to solve (2.7) we shall consider the following

du) = 4,0u(), 1e R, xR, 28)
U(T) = Uop,

where ug € H' and 7 is a fixed number arbitary chosen. We can represent the
solution of (2.8) as

u(t) = Ey(t, 7)uo, (2.9)

where E,(t,7) is the fundamental solution which depends on v, that is, E,(¢,7) is a
solution for

% E,(t,7) = A,(DE,(1,7), (2.10)
Ey(z,7) =1,
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where I is the identity matrix, and the fundamental solution E,(¢,7) satisfies the
following property

E,(t,7)E\(z,r) = E,(t,r), Vt,1,r. (2.11)

Then we can obtain the following proposition.

PrOPOSITION 2.1. Assume p > % and ve X]. There is a positive constant
C such that for upe H', 1 >2(lp + 1), (E,(t,7)uo)(x) is a solution of (2.8) and
satisfies for any t,t € R!

| Eo(t, T)uol i < e’ ||uol|g:- (2.12)

(PROOF OF PROPOSITION 2.1). Operating D? to the equation (2.8), we have
d

2 Dru(e) = A(0)Dzu(c) + £.(0), @13)
where
70 = 32 (& ) D a0z w()) + D1 (1), (2.14)

Since ||u(t)l|f,1 is equivalent to -, |\ E(v+u°) ;‘u(t)lliz(m), we compute

% 3" (E(v+u®)D2u(t), DZu(f)) 12 gm,

] <!
d dE
=29 Re (E—D;u(z),p;:u(t)> + (—- Du(t), D;u(z))
;1 dt LZ(R") dt Lz(R")
(o]
=2 z Re(EA,(8)D3u(t), Diu(t)) 2 (gry + 2 Z Re(Ef, (1), Diu(t)) 12 (g
|| <1 lel <1
+ (d—E D%u(t), D;u(t)) : (2.15)
dt Lz(Rn)
Since

2) " Re(EA,()D2u(t), D3u(t)) 12(gm

lel <1

=2 Xn:Re (D;u(t), (a%A,-(u(z) + u°(t))>p;fu(z))

le| <1 j=1 L*(R")

< 2a(t)|Ju(®)|l71, (2.16)
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and

< Cllo(e) + u® (D)1= 110:(8) + tor(1)l] oo N1l

(‘;E Du(p), D“u(t))

L2(R"™)
< Gy VP u|

where a(f) = sup,cpr > L3

2 (4(0(0) +u (z)))] and
> Re(Ef, (1), D2u(t)) agmy < D |(Efult), DIu(t)) L2

e <! laf <!
< C Y 1Ol 2@y el g, (2.17)
le| <1

we have

—Ilu(t)llm < (a() + €~ 1/2)")Ilu(t)!|m+22 /el L2(rmy-  (2-18)

le| <1

On the other hand from we obtain
D IAD gy < €0 D DT Ao() DY u(t)|| L2(rn)

o <1 lo| <l o' <

I

lo<la'<i/2 j=1

DI 4 (v(t)+u°(t))———D°‘ u(t)

L2(R")

; D™ Al(v(t) + uo(t)) 6 D% u(?)
0x;j

+C>
o <li2<a’ <I-1 j=1

L2(R™)
=I+1I (2.19)

By using [Lemma 1.3, Assumption 0.1 and Sobolev’s lemma, we caluculate

rI<scd > Z

la|<la’<l/2 j=1

——D“ u(2) I1DF (4] (o(2) + u® ()l gy

L=(R")

< Cllu() |z« 10(2) + u® (D)17= (g l0(0) + u® (@)l
< Cllu(®) s 10(2) + u (O emy 10(0) + ()| s
< Cllu()l|gillo(®) + u* (= (g 10() + u* (Ol g

< €8Py~ =Dy (5)|| o, (2.20)



298 Atsushi SATOH

where | >2(lp+ 1), Ip = [2] + 1, and

L - 0 .
H<CY 3 D UDI™a} o)+ u ()l o a5 DEu()|
laj<ll/2<a’ <I-1 j=1 Xj L%(R")
< Cllo(®) + uo DIz wgm 14D | g1,
< C5p<,>—((n—1)/2)(p—1)||u(,)||H,. (2.21)
Hence we have
d
.7 (Ol e < BEONu(O || g1, (2.22)

where b(f) = a(t) + CoP (Y~ (("="D/D(P=1)  Therefore we can see that

ilee(-[s0 @) (0l <. (2.23)

Integrating (2.23) over [z,t], where 7 € (—o0, ], we have

oe(t) s < exp (j b(s) ds) () 0 (2.24)

Next we will estimate b(¢) = a(f) + C6”<t)~"T(P~1),

n

a(t) < Z

J=1

VA (0(0) +4(0) 52 ((0) + (0

L*(R")

< Cllo(1) + u®(1) 1§ = (g

0
?3?,-(”(’) +u°(1)) Lo

< C(Jlo()l griowr + ”uo(t)”th(R"))p
< C5P<t>—(("—1)/2)(1’—1), (2.25)

hence we get

! t
J b(s) ds < C5PJ ()~ (=172 (p=1) g

T T

0
< Cs? J (s>~ (=D/(-1) g

—00

< Co?, (2.26)
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where %51 (p — 1) > 1. Consequently, we have from (2.24)

2
(D)l e < e (@)l . (2.27)

Thus we can obtain (2.12). Q.E.D.

Now we shall turn to the investigation of (2.7). Applying E(0,¢) to the
equation (2.7), we have

EL(0,0) S w() = E(0,04,(0w(0) + E0,0/(2), (2.28)

and

d E,(0,)w(r))

;1;( (%E,,(O, t))w(t) + E,(0, t)g;w(t)

(g E,(0, t)) w(t) + Es(0, ) Au(t)w(t) + Eo(0,0f (1), (229)

By using the relation
E,(t,0)E,(0,2) =1, (2.30)
we have

(% E,,(t,O))EU(O, 1) + E,(1,0) %E,,(O, £) = 0. (2.31)

Combining the equation (2.10) and (2.31), we have

E,(1,0) iE,,(O, t) = — (%E,,(t, 0))Ev(0, tj,

dt
= —A,(1). (2.32)
Hence we get
d
EE"(O’ t) = —E,(0,0)A4,(¢). (2.33)
Insert into (2.29), we have
d
7 (Ev(0,)w(1)) = Ex(0,2)f(1). (2.34)

If w(f) — 0 as t — —oo in H'  then we can see that
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EQ0, )w(t) = J " E(0.5)/(s) ds. (2.35)

where f e L'((—00,00); H"). That is

w(t) = J:oo E,(t,5)f(s) ds. (2.36)

By using [Proposition 2.1, we can obtain

t

w(O)lr < j 1Eo(1,5) £ (5)ll e ds

-0

< e j_w 1)l dis. (237)

Since f(s) € L'((—00,0); H'), then we can see that |w(¢)|; — 0 as t — —o0.
Consequently, we have the following proposition.

PROPOSITION 2.2. Let ve X]. Assume that f(t) € L'((—o0, 0); H'). Then
w(t) = Jt E,(t,7)f(7) dz (2.38)
—
is a solution of (2.7) and satisfies the following estimate,
Ol < e [ 16l s 2.39)
Therefore w(t) = 0 in H' as t » —o0.
In order to solve (2.4), we consider the following linear equation

%w(t) = Ao (Ow(1) + F(o(2) + u°(2)),

(2.40)
lim w(f)=0 in H'.
t——00
By using the representation fomula of Proposition 2.2 we have
t
w(t) = J Eo(t,$)F(o(s) + u°(s)) ds. (2.41)
—0o0

Now we put the right side as
w(z) = ¥(v)(1), (2.42)
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for ve X! and define for v,5e X/,
S(t) =¥ (v)(r) —P(0)(2). (2.43)
From (2.40), we have

250 = A,)S() + GO), (244)
where
G(1) = S A () + () = A(5(0) + 1)} 3 ¥ D))
. j=1

+ F(o(1) + u®(0) — F(i(r) + u°(9))
= B(1)(v(1) - 8(2)), (2.45)

A;(o(r) + u®(2)) = E(o(1) +u°(1) ™ 4;(0(2) + u°(z)) and

n 1
BH=S" JO VA;(5() + u°(2) + 0(o(2) — B(2))) d@—%‘l‘(ﬁ)(r)
=1 J
+ Jl VE®(2) + u®(2) + 8(0(2) — B(2))) dO. (2.46)
0

Moreover, putting y() = v(¢) — #(¢) and taking a norm in H'~!, from
(1) we obtain :

NGO gi-r = 1B Y ()| g1
< CIBO g 1yl g (2.47)
where / — 1 = [y. Since

1
Z JO VA;(5(2) + u°(¢) + 0(v(2) — B(¢))) deailep(a)(t)

J=1

H!-1

n ol :
< CJZ:; L IVA;(3(2) + u°(2) + 8(v(2) — 5(1))) || 1= dg’ aixj\y(,;(,))“

Hi-1

< Cllo( o + 15O o + 1@l ) INE @) (Ol + N @ ar0)

< C87 (ry—(=D/D(e-1), (2.48)
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and

1
L VEG() + u0(8) + 0((2) — 5(¢))) df)‘

HI-1
1
< L 13(2) + u®(2) + O(u(z) = BONIZ="13(2) + u°(2) + O(v(e) — 5(1)))l| -1 4O

< C8P (Y~ =1/ (p=1) (2.49)
we have

| B(2)|| -1 < COPey~(n=D/D(p-1) (2.50)
Thus, from ¥()(¢) € X/, we can obtain from
IGO)| gi-r < €Y~ DD ip(r) — 5(8)|| 11 (2.51)

From (2.44), we have

S() = Ji E,(t,7)G(7) dz. (2.52)

Thus, by using and [Proposition 2.2, we can see

ISl gror < J 1E(t, 7)G() || s d
<e® Jt IG@) || -1 dz

t
<e [ coneey I ofe) - 5(0) 0 d

— Q0

< Ce®’ P ()~ ((=D/DP-D+L qup p(2) — B(7)|| 11, (2.53)

—oo<t<t?

where 25lp > 1. We assume that Ce®’6” <1, then we obtain for ¢ >0

sup II‘I’(v)(T)—‘I’(ﬁ)(f)llm—nS%<t>“(”‘”/2 sup [jo(7) — 5(7)| 1. (2.54)

—o0<LT<!t —oo<T<t

Thus we get the following proposition.

PROPOSITION 2.3. Let w(t) =W¥(v)(t) be a solution of (2.40) in X} and
I >2(ly+1). Then there exists a positive constant & such that ¥ is a mapping
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¥ X/ - X/ (2.55)

and satisfies (2.54).

The inequality (2.54) implies that ¥ is a contraction mapping and we can see the
existence of the fixed point of W. In fact, we put

Wy = 01
= T(O),
. (2.56)
wi = ¥ (Wg-1),
where wy € Xél, Vk, then, from [Proposition 2.3, we can see
w= lim wy in H'", (2.57)
k—o0
and from the definition of X},
Wi ()l < 8012, vk, (2.58)

Hence we obtain that {w(f)} involves a subsequence {wy,(#)}, which weakly
converge in H'. Therefore we have w(t) e H' satiafying

W@l < lim supllwi (O]l < 8<™"D2, 1 <0. (2.59)
J© )

Now we can define u_(t) = w(z) + e"¢p_. The above inequality yields that
lu_(t) — eg_||; < Co¢Y~ D2 <o, (2.60)

and that u_(¢) satisfies the equation in < 0. Next we want to extend u_(z)
to [0, 0) as follows. To do so, we shall find a solution u,(f) € C%(]0, +0); H')
such that

E(“+)a—gti=if4j(u+)%+17(u+), : 2.61)
=1 . ~ .
(0) = u_(0),

but we can not know if the initial data u_ (O) is in WH1(R"). So, instead of the
equation (2.61) we consider the equation [2.65) below w1th zero initial data. Let
define uf(t) = ™oy for ¢ >0, where
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b=o [ el + B 400 a .62

and w(r) is the solution of (2.40). Then from (2.4) we can see that u(0) =
Y = w(0) + ¢_ = u_(0). Moreover noting that from Lemma 1.2 (4)

(AL + F(w(®) +u°(0)) | i
< 1A, w + uo)(w + uo)(2) + F(w(t) + u®(£)|| yian.
< Cl|(w + uo) (1) 15 o llw + ol s
< C3*ey~ (=AY, (2.63)

we can estimate

g ()l < c(<t>-<"-‘>/2||¢_uWi+,,1

+| "= DAl (1) 4 Fw(e) + 10(@)] i dr)
< Coy~ D12, (2.64)

We define u,(f) = wt(t) +uf(z) for 1 > 0, where w*(¢) satisfies

%WL(’) = A(x, w (1) + ug ()w (1) + A (o, w* (1) + ug () (1),
) . (2.65)
Lw+(0) = 0

which is equivalent to the equation (2.61). We can show the existence of the
solution w*(¢) of the equation applying to the equation [2.65),
because ¢ = 0 and f() = A'(x, u} (¢))u}(r) satisfies the condition of Theorem 0.3,
if we take o =251(p —1) > 1. Moreover u,(tf) = wt(f) +u}(s) satisfies (2.61).
Therefore u,(¢) is an extension to ¢ > 0 of u_(¢) and it follows from Proposition
5.4 with f =0 that there is C > 0 such that

s Dllgr < Cllur (Ol g = CllYll e < Clio_llg < €5, >0 (2.66)

and

s ()|l i < CEYD25, £> 0. (2.67)
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Hence we can define

_Ju (1), t=0,
u(t) = {u_(t), 1<0 (2.68)
satisfying
u(t) e CO((=o0,+00); H)N C'((—00,+00); H'™), (2.69)
and
iA,( +F(u) —00 < t < 400. (2.70)

Next, we seek ¢, € H' satisfying

I~ . Ou
Ewa—;4@£+m&

(2.71)
lim (u(z) — eHog, ) = 0.
t—+00
From (1.10), we rewrite the equation (2.71) as follows
E'= Ou ZAO Ou +F1(t (2.72)

where

Fi(t) = F(u) — EY W) E(u)™" (ZA](u) -l-F(u))—l—ZA‘ u)?-’-‘;. (2.73)

Multiplying the equation by (E°)"! from left-hand side, we have
= (E%~ ZA°—+F1(z (2.74)

where Fi(t) = (E°)"'Fy(¢). Now we put
iu(t) = e "Hoy(y), (2.75)

then we obtain

L a(t) = i ), (2.76)
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Integrating the equation (2.76) over ¢’ <7 <, we have

a(t) —a(t) = JI e ™ F (1) dr. (2.77)

t!

Taking a norm in H*-!, we find that

i) = 50 < | WAl . (278)

Combining (1.10), (2.73) and (1), we deduce that

u)E(u)” lA;(u)

ax} H[ 1

’
HI- I)

< C(llull % 14l o + Nell o Nl - (2.79)
Hence from (2.78) and we see

1 (Ol s < C(HF(

J=1

+ 1B () Eu) ™" F ()| - A‘(

ax,

t
l(t) — ()| s < J 1F ()| gror d,
t/

14
CJ lell Lo lotl] g2 (1 + lleallZe) dz,
tl

< C(<ey~ =D+ L (=124 yp ¢ 50, (2.80)

where 25!p > 1. Hence we find that {i(7)},,, is a Cauchy sequence in H'~! and
that there exists ¢, € H'~! such that

llu(r) — e"Hop ||y < CEY~D2 Ve 0. (2.81)

On the other hand, since {u(f)},5, is bounded in H’, then {u(#)},,, involve
{u(4)};2, which weakly converges to ¢, in H ! that is, u(t}) — @, (strong) in
H'™', and u(f;) - ¢, (weak) in H'. Therefore we can see ¢, € H'. Thus we

complete the proof of Theorem 0.3. Q.E.D.
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