ON AN ALGEBRA ASSOCIATED WITH A CIRCULAR QUIVER AND ITS PERIODIC PROJECTIVE BIMODULE RESOLUTION

By

Takahiko Furuya

Abstract. In this paper, we describe the structure of a subalgebra $B_s^k(t)$ of a basic self-injective Nakayama algebra B_s^k , and we give a periodic projective bimodule resolution for $B_s^k(t)$.

Introduction

Let K be a field, s a positive integer and Γ the circular quiver (or cyclic quiver, oriented cycle) with s vertices e_1, e_2, \ldots, e_s and s arrows a_1, a_2, \ldots, a_s such that a_i starts at e_i and ends at e_{i+1} . Hence $a_i = e_{i+1}a_ie_i$ holds for each $1 \le i \le s$ in the path algebra $K\Gamma$, where we regard the subscripts i of e_i as modulo s. If we set $X = a_1 + a_2 + \cdots + a_s (\in K\Gamma)$, then $K\Gamma$ is the algebra generated by the elements e_1, e_2, \ldots, e_s, X , that is, $K\Gamma = K[e_1, e_2, \ldots, e_s, X]$. It is known that a basic self-injective Nakayama algebra over the field K is of the form $K\Gamma/J^k$, where $k \ge 2$ and K is the two-sided ideal of $K\Gamma$ generated by all arrows: K (see [EH]). As in [EH], we denote $K\Gamma/J^k$ by K, In that paper, Erdmann and Holm give a periodic projective bimodule resolution of K, and compute the Hochschild cohomology ring K (BLM]). In this paper, we describe the structure of a subalgebra of K, and give a projective bimodule resolution.

Let $B_s(t)$ be the subalgebra of $K\Gamma$ generated by the elements e_1, e_2, \ldots, e_s , X^t for $t \ge 1$, that is, $B_s(t) = K[e_1, e_2, \ldots, e_s, X^t]$. We define a subalgebra $B_s^k(t) = \pi(B_s(t))$, where $\pi: K\Gamma \to B_s^k$ is the natural map. If $t \ge k$ then $X^t = 0$ in B_s^k , so we assume t < k. Since $\ker \pi|_{B_s(t)} = B_s(t) \cap J^k$, we have $B_s^k(t) \simeq B_s(t)/(B_s(t) \cap J^k)$. Therefore the paths whose length is a multiple of t and less than k

²⁰⁰⁰ Mathematics Subject Classification. 16E05, 16E40, 16D20; 16G10.

Key words and phrases. Circular quiver, periodic projective bimodule resolution, Hochschild cohomology, basic self-injective Nakayama algebra. Received January 13, 2004.

give a basis of $B_s^k(t)$. Clearly $B_s^k(1) = B_s^k$ holds. In Section 1, we show that $B_s^k(t)$ is isomorphic to a direct sum of basic self-injective Nakayama algebras (Theorem 1). In Section 2, we give a periodic projective bimodule resolution of $B_s^k(t)$, which is given by means of some exact sequences of $B_s^k(t)$ -bimodules (Theorem 2).

§ 1. The Structure of $B_s^k(t)$

Let K be a field and we fix two integers $s \ge 1$ and $k \ge 2$. If t is an integer such that $1 \le t < k$, then we put k = qt + r for some integers q and r such that $0 \le r < t$. If $r \ne 0$ then we have

$$B_s^k(t) \simeq B_s^{(q+1)t}(t),$$

since $B_s(t) \cap J^k = B_s(t) \cap J^{(q+1)t}$. So it suffices to consider the case that k is a multiple of t: k = qt for $q \ge 2$.

EXAMPLE 1.1. If s = 6 and t = 10, then we have $B_6^k(10) \simeq B_6^{30}(10)$ for all k such that $21 \le k \le 30$.

In this section, we will show that $B_s^{qt}(t)$ is isomorphic to a direct sum of copies of a self-injective Nakayama algebra. Let $d = \gcd(s, t)$, and we set s = s'd, t = t'd for $s' \ge 1$, $t' \ge 1$. We regard the subscripts i of e_i as modulo s.

LEMMA 1.2. The set $\{X^{nt}e_{i+xt} | 0 \le n < q, 1 \le i \le d, 0 \le x < s'\}$ gives a K-basis of $B_s^{qt}(t)$.

PROOF. Since $\{X^{jt}e_i \mid 1 \le i \le s, 0 \le j < q\}$ gives a K-basis of $B_s^{qt}(t)$, we have $\dim_K B_s^{qt}(t) = qs$. So we will show that the elements of $\{X^{nt}e_{i+xt} \mid 0 \le n < q, 1 \le i \le d, 0 \le x < s'\}$ are distinct each other. It suffices to prove that e_{i+xt} are distinct for $1 \le i \le d$ and $0 \le x < s'$. If $e_{i+xt} = e_{j+yt}$ for $1 \le i, j \le d$ and $0 \le x$, y < s', then we have $i + xt \equiv j + yt \pmod{s}$. Hence, $(j-i) + (y-x)t \equiv 0 \pmod{s}$. Since $d \mid s$, it follows that $(j-i) + (y-x)t \equiv 0 \pmod{d}$. From $t \equiv 0 \pmod{d}$, we have $j-i \equiv 0 \pmod{d}$, which implies that i=j. Then we have $xt \equiv yt \pmod{s}$. Since $\gcd(s',t')=1$, we have $y-x \equiv 0 \pmod{s'}$. Hence we have x=y.

Next, we consider $B_s^{qd}(d)$. In order to distinguish the vertices and the arrows of $B_s^{qd}(d)$ from ones of $B_s^{qd}(t)$, we denote the idempotents of $B_s^{qd}(d)$ by f_i and the sum of all arrows of $B_s^{qd}(d)$ by Y.

LEMMA 1.3. The set $\{Y^{nd}f_{i+xd} | 0 \le n < q, 1 \le i \le d, 0 \le x < s'\}$ gives a K-basis of $B_s^{qd}(d)$.

PROOF. Since $\dim_K B_s^{qd}(d) = qs$, we will show that the elements of $\{Y^{nd}f_{i+xd} \mid 0 \le n < q, 1 \le i \le d, 0 \le x < s'\}$ are distinct each other. It suffices to prove that f_{i+xd} are distinct for $1 \le i \le d$ and $0 \le x < s'$. If $f_{i+xd} = f_{j+yd}$ for $1 \le i, j \le d$ and $0 \le x, y < s'$, then we have $i + xd \equiv j + yd \pmod{s}$. Thus $(j-i)+(y-x)d \equiv 0 \pmod{s}$. Since d|s, we have $(j-i)+(y-x)d \equiv 0 \pmod{d}$. So $j-i \equiv 0 \pmod{d}$ which implies i=j. Then we have $xd \equiv yd \pmod{s}$. So it follows that $x \equiv y \pmod{s'}$. Thus we have x = y.

By Lemmas 1.2 and 1.3, we have the isomorphism of K-vector spaces $\Phi: B_s^{qt}(t) \to B_s^{qd}(d); X^{nt}e_{i+xt} \mapsto Y^{nd}f_{i+xd} \quad (0 \le n < q, 1 \le i \le d, 0 \le x < s').$

PROPOSITION 1.4. Φ is an isomorphism of K-algebras.

Proof. We will show that

(1.1)
$$\Phi((X^{rt}e_{i+xt})(X^{pt}e_{j+yt})) = \Phi(X^{rt}e_{i+xt})\Phi(X^{pt}e_{j+yt})$$

for $X^{rt}e_{i+xt}, X^{pt}e_{j+yt} \in B_s^{qt}(t)$ where $0 \le r, p < q, 1 \le i, j \le d$ and $0 \le x, y < s'$. Since $(X^{rt}e_{i+xt})(X^{pt}e_{j+yt}) = (X^{rt}e_{i+xt})(e_{j+(p+y)t}X^{pt}e_{j+yt})$, we consider the following two cases.

(i) Case $e_{i+xt} = e_{j+(p+y)t}$. The left hand of (1.1) equals

$$\begin{split} \Phi((X^{rt}e_{j+(p+y)t})(X^{pt}e_{j+yt})) &= \Phi(X^{(r+p)t}e_{j+yt}) \\ &= \begin{cases} Y^{(r+p)d}f_{j+yd} & \text{if } r+p < q, \\ 0 & \text{if } r+p \ge q. \end{cases} \end{split}$$

By the assumption, we have $i + xt \equiv j + (p + y)t \pmod{s}$. By the similar argument as in Lemma 1.2, we have i = j, so $xt \equiv (p + y)t \pmod{s}$. Hence we have $(p + y - x)t' \equiv 0 \pmod{s'}$. By $\gcd(s', t') = 1$, it follows that $p + y - x \equiv 0 \pmod{s'}$, so $xd \equiv (p + y)d \pmod{s}$. Thus we have $i + xd \equiv j + (p + y)d \pmod{s}$, which implies $f_{i+xd} = f_{j+(p+y)d}$. Then the right hand of (1.1) equals

$$(Y^{rd}f_{i+xd})(Y^{pd}f_{j+yd}) = (Y^{rd}f_{j+(p+y)d})(Y^{pd}f_{j+yd})$$

$$= \begin{cases} Y^{(r+p)d}f_{j+yd} & \text{if } r+p < q, \\ 0 & \text{if } r+p \ge q. \end{cases}$$

(ii) Case $e_{i+xt} \neq e_{j+(p+y)t}$. Since $e_{i+xt}e_{j+(p+y)t} = 0$, the left hand of (1.1) equals $\Phi(0) = 0$. We will show $f_{i+xd} \neq f_{j+(p+y)d}$. If $f_{i+xd} = f_{j+(p+y)d}$, then $i+xd \equiv j+(p+y)d \pmod{s}$. So we have i=j by the similar argument as in Lemma 1.3. Hence $xd \equiv (p+y)d \pmod{s}$, which implies $xt \equiv (p+y)t \pmod{s}$. So $i+xt \equiv j+(p+y)t \pmod{s}$ which means $e_{i+xt} = e_{j+(p+y)t}$. This is contradiction. Then the right hand of (1.1) equals $(Y^{rd}f_{i+xd})(Y^{pd}f_{j+yd}) = (Y^{rd}f_{i+xd})(f_{j+(p+y)d}Y^{pd}f_{j+yd}) = 0$.

Hence (1.1) is proved. Also, by the definition of Φ , we have $\Phi(\sum_{i,x} e_{i+xt}) = \sum_{i,x} f_{i+xd}$, the identity of $B_s^{qd}(d)$, where i, x range over $1 \le i \le d$, $1 \le x < s'$, respectively. Thus Φ is an isomorphism of K-algebras.

Let

$$A_i = \bigoplus_{\substack{0 \le n < q \\ 0 < x < s'}} KY^{nd} f_{i+xd}$$

for $1 \le i \le d$. Each A_i is a K-subspace of $B_s^{qd}(d)$, and it is easy to see that A_i is a two-sided ideal of $B_s^{qd}(d)$. Thus $B_s^{qd}(d)$ is the direct sum of all the two-sided ideals A_i :

$$(1.2) B_s^{qd}(d) = \bigoplus_{i=1}^d A_i.$$

We will show that each A_i is isomorphic to a basic self-injective Nakayama algebra. In the following, in order to distinguish A_i from $B_{s'}^q$, we will denote the idempotents of $B_{s'}^q$ by g_i and the sum of all arrows of $B_{s'}^q$ by Z.

PROPOSITION 1.5. There exists an isomorphism of K-algebras $A_i \simeq B_{s'}^q$ for every i $(1 \le i \le d)$.

PROOF. Fix *i* such that $1 \le i \le d$. Since the set $\{Y^{nd}f_{i+xd} \mid 0 \le n < q, 0 \le x < s'\}$ is a *K*-basis of A_i and the set $\{Z^ng_x \mid 0 \le n < q, 1 \le x \le s'\}$ is a *K*-basis of $B_{s'}^q$, the map

$$\Psi: B_{s'}^q \to A_i; \quad Z^n g_x \mapsto Y^{nd} f_{i+(x-1)d} \quad (0 \le n < q, 1 \le x \le s')$$

is an isomorphism of K-vector spaces. We will show that

(1.3)
$$\Psi((Z^r g_x)(Z^p g_y)) = \Psi(Z^r g_x)\Psi(Z^p g_y)$$

for $0 \le r, p < q, 1 \le x, y \le s'$. Since $(Z^r g_x)(Z^p g_y) = (Z^r g_x)(g_{p+y}Z^p g_y)$, we consider the following two cases.

(i) Case $g_x = g_{p+y}$. The left hand of (1.3) equals

$$\Psi((Z^{r}g_{p+y})(Z^{p}g_{y})) = \Psi(Z^{r+p}g_{y})
= \begin{cases} Y^{(r+p)d}f_{i+(y-1)d} & \text{if } r+p < q, \\ 0 & \text{if } r+p \ge q. \end{cases}$$

By the assumption, we have $x \equiv p + y \pmod{s'}$. Hence $(x-1)d \equiv (p+y-1)d \pmod{s}$, so $i+(x-1)d \equiv i+(p+y-1)d \pmod{s}$. Thus we obtain $f_{i+(x-1)d} = f_{i+(p+y-1)d}$. Then the right hand of (1.3) equals

$$(Y^{rd}f_{i+(x-1)d})(Y^{pd}f_{i+(y-1)d}) = (Y^{rd}f_{i+(p+y-1)d})(Y^{pd}f_{i+(y-1)d})$$

$$= \begin{cases} Y^{(r+p)d}f_{i+(y-1)d} & \text{if } r+p < q, \\ 0 & \text{if } r+p \ge q. \end{cases}$$

(ii) Case $g_x \neq g_{p+y}$. Clearly the left hand of (1.3) equals $\Psi(0) = 0$, since $g_x g_{p+y} = 0$. We will show $f_{i+(x-1)d} \neq f_{i+(p+y-1)d}$. If $f_{i+(x-1)d} = f_{i+(p+y-1)d}$, then we have $i + (x-1)d \equiv i + (p+y-1)d \pmod{s}$. Hence $(p+y-x)d \equiv 0 \pmod{s}$, which means $p+y-x \equiv 0 \pmod{s'}$. Thus $x \equiv p+y \pmod{s'}$, so we have $g_x = g_{p+y}$. This contradicts the assumption. Then the right hand of (1.3) equals $(Y^{rd}f_{i+(x-1)d})(Y^{pd}f_{i+(y-1)d}) = (Y^{rd}f_{i+(x-1)d})(f_{i+(p+y-1)d}Y^{pd}f_{i+(y-1)d}) = 0$.

Hence (1.3) is proved. Also, we have $\Psi(\sum_{x=1}^{s'} g_x) = \sum_{x=1}^{s'} f_{i+(x-1)d}$, the identity of A_i . Therefore, Ψ is an isomorphism of K-algebras.

By the discussion in the beginning of this section, (1.2) and Propositions 1.4 and 1.5, we have the following structure theorem of $B_s^k(t)$ for any $s \ge 1$, $k \ge 2$ and t such that $1 \le t < k$:

THEOREM 1. Let s, t and k be integers satisfying $s \ge 1$, $k \ge 2$ and $1 \le t < k$, and let $d := \gcd(s,t)$ and s' := s/d. If q is the least integer such that $k/t \le q$, then we have the following isomorphism of K-algebras

$$B_s^k(t) \simeq \bigoplus_{i=1}^d B_{s'}^q$$
 (the direct sum of d copies of $B_{s'}^q$).

PROOF. By the discussion in the beginning of this section, we have $B_s^k(t) \simeq B_s^{qt}(t)$. Moreover we have

$$B_s^{qt}(t) \simeq B_s^{qd}(d)$$
 by Proposition 1.4
$$= \bigoplus_{i=1}^d A_i \quad \text{by (1.2)}$$

$$\simeq \bigoplus_{i=1}^d B_{s'}^q \quad \text{by Proposition 1.5.}$$

REMARK 1.6. If $d = \gcd(s, t) = 1$, then $B_s^k(t)$ is isomorphic to the basic self-injective Nakayama algebra B_s^q , where q is the least integer such that $k/t \le q$.

In [EH, Section 4.2], Erdmann and Holm give a projective bimodule resolution of B_s^k of period $2 \cdot \text{lcm}(k, s)/k$, where $s \ge 1$ and $k \ge 2$. From this result and Theorem 1, we have the following:

COROLLARY 1.7. Let $s \ge 1$, $k \ge 2$ and t be integers such that $1 \le t < k$, and let $d = \gcd(s,t)$ and s' = s/d. If q is the least integer such that $k/t \le q$, then $B_s^k(t)$ has a projective bimodule resolution of period $2 \cdot \operatorname{lcm}(q,s')/q$, and the Hochschild cohomology ring $HH^*(B_s^k(t))$ is isomorphic to the direct sum of d copies of the Hochschild cohomology ring $HH^*(B_{s'}^q)$.

EXAMPLE 1.8. Let s = 28, k = 68 and t = 35. Then it follows that $d = \gcd(28, 35) = 7$, s' = 4 and q = 2. By Theorem 1, we have

$$B_{28}^{68}(35) \simeq \underbrace{B_4^2 \oplus \cdots \oplus B_4^2}_{7 \text{ copies}}.$$

Also, by Corollary 1.7, there is a projective bimodule resolution of $B_{28}^{68}(35)$ of period $2 \cdot \text{lcm}(2,4)/2 = 4$. Moreover if K is a field with Char K = 0, then by Theorem in [EH, Section 4.8], it follows that the even Hochschild cohomology ring $HH^{ev}(B_4^2)$ is the commutative graded K-algebra with generators y_0 , y_2 and y_4 modulo the ideal generated by the elements y_0 , $y_2^2 - y_4 \cdot y_0$, y_2 and $y_2^2 - y_2^2 \cdot y_0$, where deg $y_i = i$. Hence we have $HH^{ev}(B_4^2) \simeq K[y_0, y_2, y_4]/(y_0, y_2^2 - y_4 \cdot y_0, y_2, y_2^2 - y_2^2 \cdot y_0) \simeq K[y_4]$. Thus $HH^{ev}(B_4^2)$ is isomorphic to the polynomial ring K[x]. Therefore we have the following isomorphism of graded rings:

$$HH^{ev}(B_{28}^{68}(35)) \simeq \underbrace{K[x] \oplus \cdots \oplus K[x]}_{7 \text{ copies}}, \quad \deg x = 4.$$

Note that $B_{28}^k(35) \simeq B_{28}^{68}(35)$ for all k such that $36 \le k \le 70$.

§2. A Periodic Projective Bimodule Resolution of $B_s^k(t)$

The projective bimodule resolution of B_s^k in [EH, Section 4.2] is given by means of the exact sequence which consists of four terms, where $s \ge 1$ and $k \ge 2$. But all maps of the exact sequence are not explicitly given there. In this section, we explicitly give the maps of the exact sequence. Since $B_s^k(1) = B_s^k$, we will consider a projective bimodule resolution of $B_s^k(t)$, in general, for integers $s \ge 1$, $k \ge 2$ and t such that $1 \le t < k$.

Let q be the least integer such that $k/t \le q$. Since $B_s^k(t) \simeq B_s^{qt}(t)$, we consider $B_s^{qt}(t)$. Denote $B_s^{qt}(t)$ by B, and set $qt = ns + \overline{qt}$ for some integer n and \overline{qt} such that $0 \le \overline{qt} < s$. We will denote \bigotimes_K by \bigotimes and the enveloping algebra $B \bigotimes B^{\mathrm{op}}$ of B by B^e . We regard the subscripts i of e_i as modulo s. Define left B^e -modules, equivalently B-bimodules,

$$Q_0 = \bigoplus_{i=1}^s Be_i \otimes e_i B, \quad Q_1 = \bigoplus_{i=1}^s Be_{i+t} \otimes e_i B,$$

and let $\beta: B \to B$ be the automorphism induced by the automorphism $B_s^{qt} \to B_s^{qt}$ defined by $e_i \mapsto e_{i-1}$ and $a_i \mapsto a_{i-1}$. Note that the order of β equals s. Moreover, we define a left B^e -module ${}_1B_{\beta^{-\overline{q}i}}$ as follows: ${}_1B_{\beta^{-\overline{q}i}}$ has the underlying space B, and the action on the left is the usual one. The action on the right is given by $b*x=b\beta^{-\overline{q}i}(x)$ for $b\in {}_1B_{\beta^{-\overline{q}i}}$ and $x\in B$. Here, note that $\beta^{-\overline{q}i}=\beta^{-qt}$.

LEMMA 2.1. We can define a left B^e -homomorphism $\phi: Q_1 \rightarrow Q_0$ by

$$\phi(e_{i+t} \otimes e_i) = e_{i+t}(X^t \otimes 1 - 1 \otimes X^t)e_i \text{ for } 1 \leq i \leq s.$$

And if we define a left B-homomorphism $\kappa: {}_1B_{eta^{-\overline{q_i}}} o Q_1$ by

$$\kappa(e_i) = e_i \left(\sum_{j=0}^{q-1} X^{jt} \otimes X^{(q-j-1)t} \right) e_{i-qt} \quad \text{for } 1 \le i \le s,$$

then κ is a right B-homomorphism. Thus κ is a left B^e -homomorphism.

PROOF. Since $X^t e_i = a_{i+t-1} \cdots a_{i+1} a_i = e_{i+t} X^t$, it follows that $\phi(e_{i+t} \otimes e_i)$ is an element of Q_0 for each $1 \leq i \leq s$. It is clear that we can make ϕ a left B^e -homomorphism. Also, since $X^{mt} e_i = a_{i+mt-1} \cdots a_{i+1} a_i = e_{i+mt} X^{mt}$ for each $1 \leq m \leq q-1$, it follows that $\kappa(e_i)$ is an element of Q_1 for each $1 \leq i \leq s$. We will show that κ is a right B-homomorphism. Since B is generated by e_i $(1 \leq i \leq s)$

and X^t , we show that $\kappa(e_i * e_j) = \kappa(e_i)e_j$ and $\kappa(e_i * X^t) = \kappa(e_i)X^t$ for each $1 \le i \le s$ and $1 \le j \le s$. It is easy to see that the first equation holds. We will show that the second equation holds. Since $\kappa(e_i * X^t) = \kappa(e_i\beta^{-\overline{qt}}(X^t)) = \kappa(e_iX^t) = \kappa(X^te_{i-t}) = X^t\kappa(e_{i-t})$, it suffices to show that $X^t\kappa(e_{i-t}) = \kappa(e_i)X^t$ for each $1 \le i \le s$. We put $Y := X^t$ for simplicity. Here, note that $Ye_i = e_{i+t}Y$ and $Y^q = 0$.

$$Y\kappa(e_{i-t}) - \kappa(e_i) Y$$

$$= Ye_{i-t} \left(\sum_{j=0}^{q-1} Y^j \otimes Y^{q-j-1} \right) e_{i-t-qt} - e_i \left(\sum_{j=0}^{q-1} Y^j \otimes Y^{q-j-1} \right) e_{i-qt} Y$$

$$= e_i \left(\sum_{j=0}^{q-1} Y^{j+1} \otimes Y^{q-j-1} \right) e_{i-t-qt} - e_i \left(\sum_{j=0}^{q-1} Y^j \otimes Y^{q-j} \right) e_{i-t-qt}$$

$$= e_i \left(\sum_{j=0}^{q-1} (Y^{j+1} \otimes Y^{q-j-1} - Y^j \otimes Y^{q-j}) \right) e_{i-t-qt}$$

$$= e_i (Y^q \otimes 1 - 1 \otimes Y^q) e_{i-t-qt} = e_i (0 - 0) e_{i-t-qt} = 0.$$

THEOREM 2. There exists the exact sequence of left B^e -modules:

$$(2.4) 0 \to {}_{1}B_{R^{-q_{i}}} \stackrel{\kappa}{\to} Q_{1} \stackrel{\phi}{\to} Q_{0} \stackrel{\pi}{\to} B \to 0,$$

where π is the multiplication. Thus we have the periodic projective B^e -resolution of period $2 \cdot \text{lcm}(s',q)/q$, where s' = s/gcd(s,t) as in Section 1.

We prepare the following lemma for the proof of Theorem 2. In the rest of this section, we put $Y := X^t$ as in the proof above. Here, we again note that $Ye_i = e_{i+t}Y$ and $Y^q = 0$.

Lemma 2.2. The sequence (2.4) is a complex of left B^e -modules, that is, $\pi \phi = \phi \kappa = 0$.

PROOF. For $1 \le i \le s$, we have

$$(\pi\phi)(e_{i+t}\otimes e_i) = \pi(e_{i+t}(Y\otimes 1 - 1\otimes Y)e_i) = e_{i+t}(Y - Y)e_i = 0$$

and

$$(\phi\kappa)(e_i) = \phi \left(e_i \left(\sum_{j=0}^{q-1} Y^j \otimes Y^{q-j-1} \right) e_{i-qt} \right)$$

$$= e_i \left(\sum_{j=0}^{q-1} Y^j (Y \otimes 1 - 1 \otimes Y) Y^{q-j-1} \right) e_{i-qt}$$

$$= e_i \left(\sum_{j=0}^{q-1} (Y^{j+1} \otimes Y^{q-j-1} - Y^j \otimes Y^{q-j}) \right) e_{i-qt} = 0.$$

PROOF OF THEOREM 2. Define left *B*-homomorphisms $h_{-1}: B \to Q_0$, $h_0: Q_0 \to Q_1$ and $h_1: Q_1 \to {}_1B_{\beta^{-q_1}}$ by

$$h_{-1}(x) = x \left(\sum_{j=1}^{s} e_{j} \otimes e_{j} \right) \quad \text{for } x \in B,$$

$$h_{0}(e_{i} \otimes e_{i} Y^{m}) = \begin{cases} 0 & \text{if } m = 0, \\ -e_{i} \left(\sum_{j=0}^{m-1} Y^{j} \otimes Y^{m-j-1} \right) e_{i-mt} & \text{if } 1 \leq m \leq q-1, \end{cases}$$

$$h_{1}(e_{i+t} \otimes e_{i} Y^{m}) = \begin{cases} 0 & \text{if } 0 \leq m \leq q-2, \\ e_{i+t} & \text{if } m = q-1. \end{cases}$$

It is easy to see that $h_0(e_i \otimes e_i Y^m)$ is an element of Q_1 for all $1 \le i \le s$. We will show that $\{h_{-1}, h_0, h_1\}$ is a contracting homotopy of (2.4).

(a) $\pi h_{-1} = id_B$: For $x \in B$, we have

$$(\pi h_{-1})(x) = \pi \left(x \sum_{j=1}^{s} e_j \otimes e_j \right) = x \sum_{j=1}^{s} e_j = x.$$

(b) $h_{-1}\pi + \phi h_0 = id_{Q_0}$: For $1 \le i \le s$, we have

$$(h_{-1}\pi + \phi h_0)(e_i \otimes e_i) = h_{-1}(e_i) + \phi(0) = e_i \left(\sum_{j=1}^s e_j \otimes e_j\right) = e_i \otimes e_i.$$

Also, for $1 \le i \le s$ and $1 \le m \le q - 1$, we have

$$(h_{-1}\pi + \phi h_0)(e_i \otimes e_i Y^m)$$

$$= h_{-1}(e_i Y^m) + \phi \left(-e_i \left(\sum_{i=1}^{m-1} Y^j \otimes Y^{m-j-1}\right) e_{i-mt}\right)$$

$$= Y^m e_{i-mt} \otimes e_{i-mt} - e_i \left(\sum_{j=0}^{m-1} (Y^{j+1} \otimes Y^{m-j-1} - Y^j \otimes Y^{m-j}) \right) e_{i-mt}$$
$$= e_i \otimes e_i Y^m.$$

Hence the desired equation holds.

(c) $h_0\phi + \kappa h_1 = id_{Q_1}$: For $1 \le i \le s$, we have

$$(h_0\phi + \kappa h_1)(e_{i+t} \otimes e_i) = h_0(e_{i+t}(Y \otimes 1 - 1 \otimes Y)e_i) + \kappa(0)$$

$$= h_0(e_{i+t}Ye_i \otimes e_i - e_{i+t} \otimes e_{i+t}Y)$$

$$= e_{i+t} \otimes e_i.$$

Also, for $1 \le i \le s$ and $1 \le m \le q - 2$ we have

$$(h_0\phi + \kappa h_1)(e_{i+t} \otimes e_i Y^m) = h_0(e_{i+t}(Y \otimes 1 - 1 \otimes Y)e_i Y^m) + \kappa(0)$$

$$= h_0(e_{i+t}Ye_i \otimes e_i Y^m - e_{i+t} \otimes e_{i+t} Y^{m+1})$$

$$= e_{i+t}Y\left(-e_i\left(\sum_{j=0}^{m-1} Y^j \otimes Y^{m-j-1}\right)e_{i-mt}\right)$$

$$-\left(-e_{i+t}\left(\sum_{j=0}^m Y^j \otimes Y^{m-j}\right)e_{i-mt}\right)$$

$$= e_{i+t} \otimes e_i Y^m.$$

Moreover, for $1 \le i \le s$, we have

$$(h_{0}\phi + \kappa h_{1})(e_{i+t} \otimes e_{i} Y^{q-1})$$

$$= h_{0}(e_{i+t}(Y \otimes 1 - 1 \otimes Y)e_{i} Y^{q-1}) + \kappa(e_{i+t})$$

$$= h_{0}(e_{i+t} Y e_{i} \otimes e_{i} Y^{q-1} - e_{i+t} \otimes e_{i+t} Y^{q}) + \kappa(e_{i+t})$$

$$= e_{i+t} Y h_{0}(e_{i} \otimes e_{i} Y^{q-1}) + \kappa(e_{i+t})$$

$$= e_{i+t} Y \left(-e_{i} \left(\sum_{j=0}^{q-2} Y^{j} \otimes Y^{q-j-2} \right) e_{i-qt+t} \right)$$

$$+ e_{i+t} \left(\sum_{j=0}^{q-1} Y^{j} \otimes Y^{q-j-1} \right) e_{i+t-qt}$$

$$= e_{i+t} \otimes e_{i} Y^{q-1}.$$

Hence we obtain the desired equation.

(d) $h_1 \kappa = i d_{1B_{g-\overline{q}i}}$: For $1 \le i \le s$, we have

$$(h_1\kappa)(e_i) = h_1 \left(e_i \left(\sum_{j=0}^{q-1} Y^j \otimes Y^{q-j-1} \right) e_{i-qt} \right)$$

$$= e_i \left(\sum_{j=0}^{q-1} Y^j h_1 (e_{i-jt} \otimes e_{i-jt-t} Y^{q-j-1}) \right) = e_i.$$

So we get the desired equation.

Consequently (2.4) is exact. Furthermore, since the order of β equals s, the order of $\beta^{-\overline{qt}} = \beta^{-qt}$ equals $s/\gcd(s,qt) = \operatorname{lcm}(s,qt)/qt = \operatorname{lcm}(s',q)/q$. Hence we have the periodic projective B^e -resolution of B of period $2 \cdot \operatorname{lcm}(s',q)/q$.

REMARK 2.3. We get an immediate consequence that (2.4) is left B-split.

In particular, we consider the case t=1, that is, B_s^k with the automorphism β . Let $C=B_s^k$ for $s\geq 1$ and $k\geq 2$, and we put

$$R_0 = \bigoplus_{i=1}^s Ce_i \otimes e_i C, \quad R_1 = \bigoplus_{i=1}^s Ce_{i+1} \otimes e_i C.$$

By setting t = 1 in Theorem 2, we have the following:

COROLLARY 2.4 ([EH, Section 4.2]). There is the exact sequence of left C^e -modules:

$$0 \to {}_{1}C_{\beta^{-\bar{k}}} \xrightarrow{\kappa} R_{1} \xrightarrow{\phi} R_{0} \xrightarrow{\pi} C \to 0,$$

where left C^e -homomorphisms ϕ and κ are given by

$$\phi(e_{i+1} \otimes e_i) = e_{i+1}(X \otimes 1 - 1 \otimes X)e_i,$$

$$\kappa(e_i) = e_i \left(\sum_{j=0}^{k-1} X^j \otimes X^{k-j-1}\right) e_{i-k} \quad \text{for } 1 \le i \le s$$

and π is the multiplication. From this sequence, we obtain the periodic projective C^e -resolution of period $2 \cdot \text{lcm}(s,k)/k$.

REMARK 2.5. In [S], the concrete form of κ is described. Also, an exact sequence similar to one in Corollary 2.4 appears in [KSS].

Acknowledgment

I would like to thank Professor K. Sanada for many helpful suggestions.

References

- [BLM] M. Bardzell, A. Locateli and E. Marcos, On the Hochschild cohomology of truncated cycle algebras, Communications in Algebra 28(3) (2000), 1615–1639.
- [EH] K. Erdmann and T. Holm, Twisted bimodules and Hochschild cohomology for self-injective algebras of class A_n , Forum Math. 11 (1999), 177–201.
- [KSS] S. König, K. Sanada and N. Snashall, On Hochschild cohomology of orders, Arch. Math. 81 (2003), 627-635.
- [S] K. Sanada, Hochschild cohomology of orders, Cohomology theory of finite groups and related topics (Japanese), Sūrikaisekikenkyūsyo Kōkyūroku, 1251 (2002), 37–41.

Takahiko Furuya

Department of Mathematics, Tokyo University of Science Wakamiya-cho 26, Shinjuku-ku, Tokyo 162-0827, Japan E-mail: j1103705@ed.kagu.tus.ac.jp