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ON AN ALGEBRA ASSOCIATED WITH
A CIRCULAR QUIVER AND ITS PERIODIC
PROJECTIVE BIMODULE RESOLUTION

By

Takahiko Furuya

Abstract. In this paper, we describe the structure of a subalgebra
Bk(?) of a basic self-injective Nakayama algebra B¥, and we give a
periodic projective bimodule resolution for B().

Introduction

Let K be a field, s a positive integer and I' the circular quiver (or cyclic
quiver, oriented cycle) with s vertices e;, e, ..., e; and s arrows aj, as, . ..,as such
that a; starts at ¢; and ends at e;;. Hence a; = ¢;.1a;e; holds foreach 1 <i <sin
the path algebra KT", where we regard the subscripts i of ¢; as modulo s. If we set
X =a+ay+---+as(€e KT'), then KT is the algebra generated by the elements
e1,ez,...,e, X, that is, KI' = K[ej,ez,...,e5, X]. It is known that a basic self-
injective Nakayama algebra over the field K is of the form KT /J*, where k > 2
and J is the two-sided ideal of KT generated by all arrows: J = (X) (see [EH]).
As in [EH], we denote KI'/J* by BF. In that paper, Erdmann and Holm give
a periodic projective bimodule resolution of B¥ and compute the Hochschild
cohomology ring HH*(B¥). Also similar results have been obtained by Bardzell,
Locateli and Marcos ((BLM]). In this paper, we describe the structure of a
subalgebra of Bf and give a projective bimodule resolution.

Let B;(¢) be the subalgebra of KI" generated by the elements ej,es,...,e;,
X! for t>1, that is, B(t) = Klej,ez,...,e5,X"]. We define a subalgebra
BX(t) = n(Bs(t)), where n : KT — B¥ is the natural map. If ¢ > k then X’ =0 in
B¥, so we assume ¢ < k. Since Ker 7|y, = Bs(t) NJ¥, we have B¥(r) ~ By(1)/
(By(t) N J*). Therefore the paths whose length is a multiple of ¢ and less than k-
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give a basis of B¥(z). Clearly B¥(1) = B holds. In Section 1, we show that BX(z)
is isomorphic to a direct sum of basic self-injective Nakayama algebras (Theorem
1). In Section 2, we give a periodic projective bimodule resolution of B¥(¢), which
is given by means of some exact sequences of B¥(f)-bimodules (Theorem 2).

§1. The Structure of B*(z)

Let K be a field and we fix two integers s > 1 and k£ > 2. If ¢ is an integer
such that 1 <t < k, then we put k = gt + r for some integers ¢ and r such that
0<r<t If r#0 then we have

By (1) ~ Bg*D'(1),

since By(f) NJ* = B,(1)NJW*D! So it suffices to consider the case that k is a
multiple of . k = gt for g > 2.

ExampLE 1.1. If s =6 and ¢ = 10, then we have B¥(10) ~ B3°(10) for all &
such that 21 < k < 30.

In this section, we will show that B%(t) is isomorphic to a direct sum of
copies of a self-injective Nakayama algebra. Let d = gcd(s, 1), and we set s = s'd,
t=1t'd for s’ > 1, t' > 1. We regard the subscripts i of ¢; as modulo s.

LEMMA 1.2. The set {X"eix|0<n<gq,1<i<d,0<x<s'} gives a K-
basis of B (t).

ProoF. Since {X/'¢;|1 <i <s,0< j< g} gives a K-basis of B¥(¢), we have
dimg B¥(t) =gs. So we will show that the elements of {X™e; |0 <n<yg,
1 <i<d,0<x<s'} are distinct each other. It suffices to prove that e,,,, are
distinct for 1 <i<d and 0<x<s'. If e;1y = €4y for 1 <i,j<d and 0 < x,
y <s', then we have i+xt=j+ yt (mods). Hence, (j—i)+(y—x)t=0
(mod s5). Since d|s, it follows that (j— i)+ (y —x)t=0 (modd). From ¢ =0
(mod d), we have j—i=0 (modd), which implies that i = j. Then we have
xt = yt (mod s). Since gecd(s’,t’) =1, we have y —x =0 (mod s’). Hence we
have x = y. O

Next, we consider B%(d). In order to distinguish the vertices and the arrows
of B#¥(d) from ones of BY(f), we denote the idempotents of B4 (d) by f; and the
sum of all arrows of B%(d) by Y.
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LEMMA 1.3. The set {Y"f,,,4|0<n<q,1<i<d,0<x<s'} gives a K-
basis of B%(d).

PrOOF. Since dimg B%(d) =gs, we will show that the elements of
{Y™f, . al0<n<gq1<i<d0<x<s'} are distinct each other. It suffices
to prove that f;,,, are distinct for 1 <i<d and 0 <x<s'". If fiyxg= firya
for 1 <i,j<d and 0<x,y<s’, then we have i+xd=j+ yd (mod s).
Thus (j — i)+ (y — x)d =0 (mod s). Since d|s, we have (j—i)+(y—x)d=0
(modd). So j—i=0 (modd) which implies i = j. Then we have xd = yd
(mod s). So it follows that x = y (mod s’). Thus we have x = y. O

By Lemmas 1.2 and 1.3, we have the isomorphism of K-vector spaces

® : BY(f) — BY(d); XMeixa — Y fiixa (0<n<g,1<i<d,0<x<5s).
PROPOSITION 1.4. @ is an isomorphism of K-algebras.

Proor. We will show that
(11) CI)((X"e,-+x,)(Xp’ej+y,)) = ®(X"ei+x,)(D(Xp’ej+y,)
for X"eirxi, X?ejy € BI(t) where 0<r,p<gq, 1 <i,j<d and 0<x,y <y
Since (X" eixt)(XP'€jty) = (X eirxt)(€jr(pt+y)i X P €j1yr), we consider the following

two cases.

(i) Case eiixr = €j4(p+y)- The left hand of equals

(X" €1 (piy)) (X P'ejyn)) = DX T Peyy )

_ {Y(’+P)dj}+yd if r+p <gq,
0 if r+p>q.

By the assumption, we have i + xt = j+ (p + y)t (mod s). By the similar
argument as in Lemma 1.2, we have i = j, so xt = (p+ y)t (mod s).
Hence we have (p+ y — x)t' =0 (mod s’). By ged(s’,?') =1, it follows
that p+ y—x=0 (mods’), so xd = (p+ y)d (mod s). Thus we have
i+xd=j+ (p+ y)d (mod s), which implies fiixa = fi1(p+y)a- Then the
right hand of equals

( Yrdfi+xd)( Ypdfjﬁ-yd) = ( Yrdﬁ+(p+y)d)( Ypdf}+yd)

_ {Y(’+P)dj}+yd ifr+p<ag,
0 ifr+p=>q.
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(i) Case €j1xr # €y (pty)r- SINCE €iyx1€j1(py) = 0, the left hand of equals
®(0) =0. We will show fiixs # fir(prpya- U firxa = fir(p+y)a> then
i+xd=j+ (p+y)d (mods). So we have i = j by the similar argument
as in Lemma 1.3. Hence xd = (p + y)d (mod s), which implies xt =
(p+ y)t (mods). So i+xt=j+ (p+ y)t (mods) which means e;,,, =
€i+(p+yy- This is contradiction. Then the right hand of equals
(Yrdfi+xd)( Y? df;'+yd) = (Yrdfi+xd)(fj+(p+y)d Ye dﬁ+yd) =0.

Hence is proved. Also, by the definition of ®, we have ®(}", , eirx) =
> ix Jirxa, the identity of B%?(d), where i, x range over 1 <i<d, 1 <x<y,

respectively. Thus @ is an isomorphism of K-algebras. O
Let
Adi= @D KY"i
0<n<gq
0<x<s’

for 1 <i <d. Each 4; is a K-subspace of B%(d), and it is easy to see that 4; is a
two-sided ideal of B%(d). Thus B%(d) is the direct sum of all the two-sided
ideals A;:

d
(12) B#(d) = @D 4.

i=1
We will show that each A4; is isomorphic to a basic self-injective Nakayama
algebra. In the following, in order to distinguish 4; from BZ, we will denote the

idempotents of B! by g; and the sum of all arrows of BY by Z.

PROPOSITION 1.5. There exists an isomorphism of K-algebras A; ~ BY for
every i (1 <i<d).

Proor. Fix i such that 1<i<d. Since the set {Y"f 4|0<n<y,
0 <x <s'} is a K-basis of 4; and the set {Z"g,|0<n<gq,l <x<s'} is a K-
basis of B!, the map
¥Y:B!) - 4; Z'g.— Y"df,-+(x_1)d 0<n<gqgl<x<ys)
is an isomorphism of K-vector spaces. We will show that
(1.3) Y((Z279x)(Z%gy)) = ¥(Z79x)¥(Z%g,)

for 0<r,p<gq, 1 <x,y<s' Since (Z'gx)(Z?g,) = (Z"9x)(gp+yZ*g,), We con-
sider the following two cases.
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(i) Case gy = gpiy. The left hand of equals
Y((Z'9p4y)(Z7gy)) = ¥(Z77gy)

_ {Y('+p)dﬁ+(y—1)d if r+p<g,
0 ifr+p>gq.

By the assumption, we have x= p+ y (mods’). Hence (x—1)d =
(p+y—1)d (mods), so i+ (x—1)d=i+(p+y—1)d (mods). Thus
we obtain fi,(x_1)a = fiy(p+y-1)a- Then the right hand of equals

(Y fisem1)) (YPSir -130) = (Y s (oiy-1)a) (Y Pfis (y-1)a)

_ {Y(’+p)dﬁ+(y—1)d if r+p<gq,
0 fr+p>gq

(ii) Case gx # gp+y. Clearly the left hand of equals W¥(0) =0,
since  gxgpy = 0. We will show fiix_1)a # fir(pry-1a- I fir(x—1)a =
Jir(p+y—1)d> then we have i+ (x — 1)d =i+ (p+ y — 1)d (mod s). Hence
(p+y—x)d =0 (mods), which means p+ y—x =0 (mods’). Thus
x=p+y (mods’), so we have gy = gp+y. This contradicts the assump-
tion. Then the right hand of equals (Y"fix—1ya)(YPfir(y-1ya) =
(Y fir(x-1)@) it (pry—1)a Y ?fis(y=1)a) = 0.

Hence is proved. Also, we have ‘P(Z;lzl gx) = Efc’:l fi+(x=1)a> the identity of
A;. Therefore, ¥ is an isomorphism of K-algebras. O

By the discussion in the beginning of this section, and Propositions 1.4
and 1.5, we have the following structure theorem of B¥(¢) for any s > 1, k > 2
and ¢ such that 1 <t < k:

THEOREM 1. Let s, t and k be integers satisfying s > 1, k >2 and 1 <t < k,
and let d := ged(s,t) and s’ == s/d. If q is the least integer such that k/t < q, then
we have the following isomorphism of K-algebras

d
BX(t) ~ @ B! (the direct sum of d copies of BY).
i=1

Proor. By the discussion in the beginning of this section, we have
B¥(f) ~ B%(f). Moreover we have



252 Takahiko Furuya

2

v

BY(f) ~ B¥(d) by Proposition 1.4

A; by [1.2)

'@& E@“-

Bq

Sl

1

by Proposition 1.5. O

i=1

REMARK 1.6. If d = ged(s, ) = 1, then B¥(¢) is isomorphic to the basic self-
injective Nakayama algebra B?, where g is the least integer such that k/z < q.

In [EH, Section 4.2], Erdmann and Holm give a projective bimodule resolu-
tion of B¥ of period 2 - lem(k, s)/k, where s > 1 and k > 2. From this result and
Theorem 1, we have the following:

COROLLARY 1.7. Let s> 1, k > 2 and t be integers such that 1 <t < k, and
let d = gcd(s,t) and s' = s/d. If q is the least integer such that k/t < q, then B¥(?)
has a projective bimodule resolution of period 2 -lcm(q,s’)/q, and the Hochschild
cohomology ring HH*(BX(t)) is isomorphic to the direct sum of d copies of the
Hochschild cohomology ring HH*(BY).

ExaMpPLE 1.8. Let s=28, k=68 and ¢t=35. Then it follows that d =
gcd(28,35) =7, s’ =4 and ¢ =2. By Theorem 1, we have

BE(35)~B;® - ®B;.

7 copies

Also, by Corollary 1.7, there is a projective bimodule resolution of BS$S(35) of
period 2-lcm(2,4)/2 =4. Moreover if K is a field with Char K = 0, then by
Theorem in [EH, Section 4.8], it follows that the even Hochschild cohomology
ring HH®(B3?) is the commutative graded K-algebra with generators yo, y2 and y4
modulo the ideal generated by the elements yo, y3 — ys4- yo, 2 and y3 — yZ. y,,
where deg y; = i. Hence we have HH®(B2) ~ K[yo, y2, ¥4]/(y0, Y3 — y4 - 0, y2,
3 — ¥% - y0) =~ K[y4). Thus HH®(B2) is isomorphic to the polynomial ring K[x].
Therefore we have the following isomorphism of graded rings:

HH®(B3(35)) ~ Kx|@- @K[x], degx=4.

7 copies

Note that BX(35) ~ B$§(35) for all k such that 36 < k < 70.
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§2. A Periodic Projective Bimodule Resolution of B ()

The projective bimodule resolution of B* in [EH, Section 4.2] is given by
means of the exact sequence which consists of four terms, where s > 1 and k > 2.
But all maps of the exact sequence are not explicitly given there. In this section,
we explicitly give the maps of the exact sequence. Since B¥(1) = B we will
consider a projective bimodule resolution of BX(¢), in general, for integers s > 1,
k>2 and ¢ such that 1 <t < k.

Let g be the least integer such that k/t < g. Since B¥(f) ~ B%(t), we consider
BZ(t). Denote BZ(t) by B, and set gt = ns + g for some integer n and g7 such
that 0 < g7 < s. We will denote ®x by ® and the enveloping algebra B ® B°P
of B by B¢. We regard the subscripts i of ¢; as modulo s. Define left B*-modules,
equivalently B-bimodules,

s N
Qo=@ Be;®e;B, Q1= Beirs @ e;B,

and let f: B — B be the automorphism induced by the automorphism B¢ — B¥
defined by e; — e;_1 and a; — a;_;. Note that the order of f equals s. Moreover,
we define a left B¢-module lB/),_l; as follows: IB/;—«F has the underlying space B,
and the action on the left is the usual one. The action on the right is given by
bxx=>bB"%(x) for be 1B, 7 and x € B. Here, note that ¢ =p7
LemmA 2.1. We can define a left B¢-homomorphism ¢ : Q) — Qo by
dleir®e) = (X'®1 -1 XYe; for 1 <i<s.

And if we define a left B-homomorphism k : 1B, 7 — Q) by

q—1
K(e;) = e; (Z X'® X(q_j_l)’> eiq for 1 <i<s,

j=0

then k is a right B-homomorphism. Thus k is a left B®-homomorphism.

PrOOF. Since X'e; = a4 - aiv1a; = ei, X", it follows that ¢(e; ® €;) is
an element of Qp for each 1 <i <s. It is clear that we can make ¢ a left Be-
homomorphism. Also, since X™e; = aiymi—1 - Gir10; = €iryyX™ for each 1 <
m < g — 1, it follows that x(e;) is an element of Q; for each 1 <i <s. We will
show that x is a right B-homomorphism. Since B is generated by ¢; (1 <i<s)
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and X', we show that x(e; *e;) = k(e;)e; and x(e; x X') = k(e;)) X' for each
I<i<sand 1<j<s Itis easy to see that the first equation holds. We
will show that the second equation holds. Since x(e; x X?) =K(€,~ﬂ—(ﬁ(X Ny =
k(e X') = k(X'ei—;) = X'k(ei—), it suffices to show that X 'x(e;_;) = kx(e;) X’ for
each 1 <i <s. We put Y := X’ for simplicity. Here, note that Ye; = ¢;,,Y and
Y?=0.

Yi(ei—;) —k(e)Y

g-1 g—1
= Ye,_, (Z Y/ ® Yq_j_l)e,-_,_q, — e (Z Y/ ® Y‘H—‘>e,-_q,Y

q-1 q—1
— ei( y/+1 ® Yq—j—l)ei_t_qt —e (Z Y/ ® Yq—j) €i—t—gt
0 j=0

j:

q—1
=¢; (Z(YJ'H RYIF I _Yi® Yq—j)) €i—t—gt

j=0

= e,'( Y4 ® 1-1 ® Y")ei_,_q, = e,-(O — O)ei_,_q, =0. O

THEOREM 2. There exists the exact sequence of left B¢-modules:
(24) 0185501505 B0,

where w is the multiplication. Thus we have the periodic projective B¢-resolution of
period 2 -lcm(s’,q)/q, where s' = s/gcd(s,t) as in Section 1.

We prepare the following lemma for the proof of Theorem 2. In the rest of
this section, we put Y := X' as in the proof above. Here, we again note that
Ye; =e€;+;Y and Y7 =0.

LEMMA 2.2. The sequence is a complex of left B®-modules, that is,
g = ¢ = 0.

Proor. For 1 <i<s, we have

(np)(eir ®e) =m(eir(Y®1 —1® Y)e;)) =ei(Y — Y)e; =0

and
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(gr)(ei) = ¢(€i (f Y/ ® Yq_j_l)ﬁ—qz)

Jj=0

q—1
= e,-( Y/(Y®1-1®7Y) Yq_j_l)e,-_q,

gq—1
e; (Z(YHI ® ye97-1 _ yJ ® Y‘I—f)) €igt = 0. .

=0

PROOF OF THEOREM 2. Define left B-homomorphisms #4_;: B — Qy,
ho : Qo — Q1 and hl : Q1 — IB,B“‘F by

h_y(x) = X(Z e ® ej> for x € B,
J=1

0 if m=0,

ho(e; ® e;Y™) = m-1 .
—ei| D Y @Y™ e ifl<m<g-—1,
=0

0 f0<m<gqg-2,
eiry ifm=gq-—1.

hi(eir ® e Y™) = {

It is easy to see that /y(e; ® e;Y™) is an element of Q; for all 1 <i <s. We will
show that {h_j,ho,h } is a contracting homotopy of (2.4).

(a) mh_y = idp: For x e B, we have

S S
(nh_1)(x) = n(xz e D ej> = xz e = X.
j=1 j=1
(b) h_1m+ @phy = idg,: For 1 <i <s, we have

(h_17t + ¢h0)(e,- ® e,~) = h_l (e,') + ¢(0) = €&y (i €; ® ej> = €; ® é;.

j=1
Also, for 1 <i<sand 1 <m<gq—1, we have

(h-1m + Pho)(e; ® e, Y™)

m—1
=h_1(&Y™)+ ¢ (—ei (Z Y/ ® Ym—j_l) ei——mt)

J=0
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m—1

= Y™ it ® it — €i (Z(Yf“ @Y™ -Y ® Y”"f)>e,-_m,
Jj=0

= ® e Y”.

Hence the desired equation holds.
(c) ho¢ + xhy =idp,: For 1 <i<s, we have

(hod + Khy) (€t @ €;) = ho(eir (Y @1 — 1 ® Y)e;) + x(0)
= ho(ei+: Ye, @ e; — eiry D €11 Y)
= e+ @ e;.
Also, for 1 <i<s and 1 <m <q—2 we have
(hop +kh)(eir: ® e Y™) = holeir (Y ®1 -1 ® Y)e; Y™) + k(0)
= ho(eir Yei @ &Y™ — eins @ €1, Y1)

m—1
= e Y (—ei (Z Y/ ® Y'"‘f") e,-_m,)
Jj=0

- (—e,-+z (Z Y/ ® Y'”"j) ei—ml)
j=0

=e®eY™.
Moreover, for 1 <i <s, we have
(ho¢ + xch1) (eir @ & Y47)
=hy(ei (Y ®1 -1Q® Y)e,-Yq‘l) + x(eitr)
= ho(eir Yei @ e; YT — e, ® € YY) + k(eigr)
= e Yho(e; ® ;Y971 + c(eirs)

q-2
= ei+tY(—ei (Z Y’ ® Yq_l_z) ei—qt+r>

Jj=0
q-1
j —j-1
+ et Y@ Y™™ |eiyi-q
Jj=0

e ®eYI L

Hence we obtain the desired equation.



An algebra associated with a circular quiver 257

d) mx = idlBﬂ_E: For 1 <i<s, we have

(h]K)(e,') = hl (6,’ (S Yj ® Yq"j_l)ei_q,>

Jj=0
| s G _
e (Z Vh(er @ Y>) =
Jj=0
So we get the desired equation.

Conseguently is exact. Furthermore, since the order of # equals s, the order
of f7% =% equals s/gcd(s, qf) = lem(s, qt) /gt = lem(s’, q)/q. Hence we have
the periodic projective B¢-resolution of B of period 2 -lcm(s’,q)/q. O

REMARK 2.3. We get an immediate consequence that (2.4) is left B-split.

In particular, we consider the case ¢ = 1, that is, Bsk with the automorphism
p. Let C=B* for s>1 and k > 2, and we put

i=1

) s
Ry=@ Ce;®e;C, Ry =P Cei1 Qe;C.
i=1
By setting t =1 in Theorem 2, we have the following:

CoroLLARY 2.4 ([EH, Section 4.2]). There is the exact sequence of left C¢-
modules:

0—1C; 5 Ry % RS C—0,
where left C¢-homomorphisms ¢ and k are given by

dleir1 ®e) = (XA ®1—-1® X)e;,

k-1
K(e;) = ei( X/ ®Xk‘j"l)e,~_k for 1 <i<s

j=0
and m is the multiplication. From this sequence, we obtain the periodic projective

C¢-resolution of period 2 -lcm(s,k)/k.

REMARK 2.5. In [S], the concrete form of x is described. Also, an exact
sequence similar to one in Corollary 2.4 appears in [KSS].
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