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DI0PHANTINE PHENOMENA IN C0MMUTING VECTOR
FIELDS AND DIFFE0M0RPHISMS

By

Masafumi YOSHINO

Abstract. This paper studies the simultaneous Diophantine phe-
nomena of commuting systems of vector fields and diffeomorphisms.
We consider how these conditions are related with the Diophantine
phenomena of every element of the system.

1. Introduction

In [4] J. Moser studied a commuting system of smooth circle maps $\phi_{v}$

$(v=1, \ldots, d)$ with the rotation numbers $\alpha_{v}=\lim_{k\rightarrow\infty}((\phi_{v})^{k}-I)/k$ , $((\phi_{v})^{k}=$

$\phi_{v}\circ\cdots\circ\phi_{v})$ satisfying a simultaneous Diophantine condition, i.e., a simultaneous
approximation of a set of numbers by rationals. He showed that there exists a
set of $\alpha_{v}(v=1, \ldots, d)$ satisfying a simultaneous Diophantine condition, whereas
$\sum_{1}^{d_{-}}\alpha_{v}p_{v}$ is a Liouville number for any $(p1, \ldots, pd)\in Z^{d}\backslash 0$ . (cf. Theorem 2 of
[4]). This implies that even in the Diophantine case one cannot reduce the si-
multaneous linearization problem under certain regularity to the case of a single
map.

In this paper we show that the same phenomenon occurs for a commuting
maps in $C^{n}$ fixing the origin. (cf. Theorem 5.1). On the contrary, in the case
of vector fields we will show that a simultaneous Diophantine condition is
equivalent to a Diophantine condition for some element in the system. More
precisely, there exists an element in the system having the same Diophantine
property and the resonance as those for the system. In case no Diophantine
condition appears we will show that both for maps and for vector fields a si-
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multaneous Poincar\’e condition is equivalent to the one for some element in the
system.

2. Simultaneous Siegel and Bmno Condition

Let $x=(x_{1}, \ldots, x_{n})$ be the variable in $R^{n}$ . We denote the differentials
by $\partial_{x}=(\partial_{x_{1}}, \ldots, \partial_{x_{n}}),$ $\partial_{x_{j}}=\partial/\partial x_{j},$ $(j=1, \ldots, n)$ . Let $d\geq 1$ be an integer. We
consider a commuting system of analytic vector fields $\mathscr{X}:=\{\mathscr{X}_{\mu};\mu=1, \ldots, d\}$ ,

where $\mathscr{X}_{\mu}$ $:=\sum_{j=1}^{n}X_{j^{\mu}}(x)\partial_{x_{j}}(\mu=1, \ldots, d)$ , and $[\mathscr{X}_{v}, \mathscr{X}_{\mu}]=0(v,\mu=1, \ldots,n)$ .
Define $X^{\mu}$ $:=(X_{1^{\mu}}, \ldots, X_{n}^{\mu})$ and $\Lambda^{\mu}=\nabla_{x}X^{\mu}(0)$ . Note that $x\Lambda^{\mu}$ is the linear part
of $X^{\mu}$ . We assume that $\mathscr{X}$ is singular at the origin. Hence we can write

(2.1) $X^{\mu}(x)$ $:=X^{\mu}=(X_{1}^{\mu}(x), \ldots, X_{n^{\mu}}(x))=x\Lambda^{\mu}+R^{\mu}(x)$ , $1\leq\mu\leq d$ ,

where $R^{\mu}(x)$ is analytic in $x$ in some neighborhood of the origin such that

(2.2) $R^{\mu}(O)=\partial_{x}R^{\mu}(0)=0$ , $1\leq\mu\leq d$ .

We assume that the diagonal entries of a (real) Jordan normal form of $\Lambda^{\mu}$ is
given by $(\Lambda_{1}^{\mu}, \ldots, \Lambda_{n}^{\mu_{1}}, \xi_{n_{1}+1}^{\mu}, \ldots, \xi_{n_{1}+n_{2}}^{\mu})$ , where $\xi_{j}^{\mu}\in R,$ $(2n_{1}+n_{2}=n)$ , and $\Lambda_{j}^{\mu}$ is
given by

(2.3) $\Lambda_{j^{\mu}}=(_{\eta_{j}^{\mu}}^{\xi_{j}^{\mu}}$ $-\eta_{\mu^{j^{\mu}}}\xi_{j}$ , $\xi_{j}^{\mu},$ $\eta_{j^{\mu}}\in R$ ,

where $\eta_{j^{\mu}}\neq 0$ for some $\mu,$ $1\leq\mu\leq d$ .
We define $\lambda_{j}^{\mu}(j=1, \ldots, n,\mu=1, \ldots, d)$ by $\lambda_{2j-1}^{\mu}=\xi_{j}^{\mu}+i\eta_{j}^{\mu},$ $\lambda_{2j}^{\mu}=\xi_{j}^{\mu}-i\eta_{j}^{\mu}$

for $j=1,$
$\ldots,$

$n_{1}$ and $\lambda_{j^{\mu}}=\xi_{j-n_{1}}^{\mu}$ for $j=2n_{1}+1,$ $\ldots,n$ . Then we set $\lambda^{\mu}=$

$(\lambda_{1}^{\mu}, \ldots, \lambda_{n}^{\mu})$ , $(\mu=1, \ldots, d)$ . For a multiinteger $\alpha=(\alpha_{1}, \ldots, \alpha_{n})\in Z_{+}^{n}$ we set
$\langle\lambda^{v}, \alpha\rangle=\sum_{j^{n}=1}\lambda_{j}^{v}\alpha_{j}$ and define

(2.4) $\omega(\alpha)=\min_{1\leq j\leq n}\sum_{v=1}^{d}|\langle\alpha, \lambda^{v}\rangle-\lambda_{j}^{v}|$ .

DEFINITION 2.1. We say that $\mathscr{X}$ $:=\{\mathscr{X}_{v};v=1, \ldots, d\}$ is non simultaneously
resonant if $\omega(\alpha)\neq 0$ for all $\alpha\in Z_{+}^{n},$ $|\alpha|\geq 2$ . The set of $\alpha\in Z_{+}^{n},$ $|\alpha|\geq 2$ such that
$\omega(\alpha)=0$ is called a simultaneous resonance of $\mathscr{X}$ .

DEFINITION 2.2. Let $\omega_{k}(k=2,3, \ldots)$ be given by

(2.5) $\omega_{k}=\inf\{\omega(\alpha);\omega(\alpha)\neq 0, \alpha\in Z_{+}^{n}, 2\leq|\alpha|<2^{k}\}$ .
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We say that the system $\mathscr{X}$ satisfies a simultaneous Siegel condition, a simultaneous
Bruno type condition and a simultaneous Bruno condition respectively $lf$,

$\omega_{k}\geq C(1+2^{k})^{-\tau}$ ,

$\omega_{k}\geq\exp(-C2^{k}/(k+1)^{1+\tau})$ ,

for some constants $C>0$ and $\tau>0$ independent of $k$, and

$-\sum_{k=2}^{\infty}ln\omega_{k}/2^{k}<\infty$ .

In the case $d=1$ we say that the vector field $\mathscr{X}=\mathscr{X}_{1}$ satisfies a Siegel
condition, a Bruno type condition and a Bruno condition, respectively if the
corresponding simultaneous condition is verified.

THEOREM 2.3. Let $\mathscr{X}=\{\mathscr{X}_{v};v=1, \ldots, d\}$ be a commuting system of vector

fields. Then $\mathscr{X}$ satisfies one of a simultaneous Siegel condition, a simultaneous
Bruno type condition and a simultaneous Bruno condition $lf$ and only if there exist
real numbers $c_{v}(v=1, \ldots, d)$ such that (i) the vector field $\mathscr{X}_{0}=\sum_{v=1}^{d}c_{v}\mathscr{X}_{v}$ satisfies
a Siegel condition, a Bruno type condition and a Bruno condition, respectively; (ii)
the resonance of $\mathscr{X}_{0}$ coincides with the simultaneous resonance of the system $\mathscr{X}$ .

The proof of this theorem is given in Section 3.

REMARK 2.4. By the same argument Theorem 2.3 holds for a commuting
system of holomorphic vector fields $\iota f$ we replace the condition $c_{v}\in R(v=1, \ldots, d)$

with the one $c_{v}\in C(v=1, \ldots, d)$ .

3. Proof of Theorem 2.3

PROOF OF THEOREM 2.3. We will show the necessity of (i) and (ii). We note
that the commutativity of $\mathscr{X}_{v}$ implies that the linear parts of $\mathscr{X}_{v}$ are pairwise
commuting. Without loss of generality we may assume that the linear part $A_{1}$ of
$\mathscr{X}_{1}$ is put in a Jordan normal form.

Let $c_{1},$
$\ldots,$

$c_{d}$ be real numbers. By the commutativity, the real parts of
eigenvalues of the linear part of $\mathscr{X}_{0}:=\sum_{v=1}^{d}c_{v}\mathscr{X}_{v}$ are given by $\sum_{v\Rightarrow 1}^{d}c_{v}\xi_{j}^{v}$

$(j=1, \ldots, n_{1}+n_{2})$ . For $c=(c_{1}, \ldots, c_{d})\in R_{+}^{d}$ and $\alpha\in Z_{+}^{n}$ we define

(3.1) $\Omega(\alpha, c)=\min_{1\leq j\leq n}\sum_{v=1}^{d}c_{v}(\langle\alpha, \lambda^{v}\rangle-\lambda_{j}^{v})$ .
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Let $\omega(\alpha)$ and $\omega_{k}$ be given by (2.4) and Definition 2.2, respectively. Then we
define

(3.2) $A_{k}=\{c=(c, \ldots, c_{d})\in R_{+}^{d}$ ; $\exists\alpha\in Z_{+}^{n},$ $2\leq|\alpha|<2^{k}$

such that $\omega(\alpha)\neq 0,$ $\Omega(\alpha, c)<2^{-nk-k}\omega_{k}$ }.

We want to show that the Lebesgue measure of the set $A$ $:=\overline{Iim}_{k\rightarrow\infty}A_{k}$ is equal
to zero. Without loss of generality we may assume that $A_{k}$ is contained in some
bounded ball $B$ . By assumption and Definition 2.2 the length of the vector

$\omega_{k}^{-1}(\langle\alpha, \lambda^{1}\rangle-\lambda_{j}^{1}, \ldots, \langle\alpha, \lambda^{d}\rangle-\lambda_{j}^{d})$ , $j=1,$ $\ldots,n$

is bounded from the below by some constant $K_{1}>independent$ of $j$ and $k$ . It
follows that the Lebesgue measure of the set of $c=(c_{1}, \ldots, c_{d})$ in the ball $B$ such
that $\Omega(\alpha, c)<2^{-nk-k}\omega_{k}$ is bounded by $K_{2}2^{-nk-k}$ for some $K_{2}>0$ independent of
$k$ . Because the number of $\alpha$ such that $2\leq|\alpha|<2^{k}$ is bounded by $K_{3}2^{nk}$ for some
$K_{3}>0$ independent of $k$ , the Lebesgue measure of $A_{k}$ is bounded by $K2^{-k}$ for
some $K>0$ independent of $k$ . Hence the Lebesgue measure of $A$ is bounded by
$K\lim_{k\rightarrow\infty}\sum_{v=k}^{\infty}2^{-v}=0$ for some $K>0$ independent of $k$ .

Therefore, if $c\not\in A$ there exists $k_{0}\geq 1$ such that

$\Omega(\alpha, c)>\omega_{k}2^{-nk-k}$ , $\forall k\geq k_{0}$ .

This proves that $\mathscr{X}_{0}$ satisfies a Siegel, a Bruno type and a Bruno condition,
respectively.

In order to show (ii) we note that if $\alpha$ is not in a simultaneous resonance
set of $\mathscr{X}$ , the set of $c\in R^{n}$ such that $\sum_{v=1}^{d}c_{v}(\langle\alpha, \lambda^{v}\rangle-\lambda_{j}^{v})=0$ is a hyperplane for
each $j$ . The Lebesgue measure of the sum of these hyperplanes is zero. By adding
$A$ to the sum of these hyperplanes we can choose $c\not\in A$ such that the resonance of
$\mathscr{X}_{0}$ is equal to the simultaneous resonance of $\mathscr{X}$ .

We will prove the sufficiency. We define $\tilde{\omega}(\alpha)$ by

$\tilde{\omega}(\alpha)=\min_{j}\{\alpha,$ $\sum_{v}c_{v}\lambda^{v}\}-\sum_{v}c_{v}\lambda_{j}^{v1}$ .

We also define $\tilde{\omega}_{k}$ by (2.5) with $\omega(\alpha)$ replaced by $\tilde{\omega}(\alpha)$ . We can easily show
that $\tilde{\omega}(\alpha)\leq M\omega(\alpha)$ for some $M>0$ independent of $\alpha$ . If follows from the
assumption (ii) that $\tilde{\omega}_{k}\leq M\omega_{k}$ . This implies that if $\mathscr{X}_{0}$ satisfies a Siegel condi-
tion (or Bmno type condition) the system $\mathscr{X}$ also satisfies a simultaneous Siegel
and Bruno type condition, respectively. Now, let us assume that $\mathscr{X}_{0}$ satisfies a
Bruno condition. Because $ln\tilde{\omega}_{k}<lnM+ln\omega_{k}$ , it follows that $-\sum_{k}ln\tilde{\omega}_{k}/2^{k}>$
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$-\sum_{k}(lnM+ln\omega_{k})/2^{k}$ . Hence $\mathscr{X}$ satisfies a simultaneous Bruno condition. This
ends the proof.

4. Note on the non Diophantine Case

We know that for commuting diffeomorphisms, a simultaneous Diophantine
condition does not necessarily imply a Diophantine condition for any element of
the system. In this section we will show that no such phenomena occur both for
commuting diffeomorphisms and for vector fields if we assume much stronger
condition than a Diophantine condition, namely a simultaneous Poincar\’e condi-
tion. Although the following results hold for commuting vector fields as well as
for (local) commuting diffeomorphisms we state only in the case of diffeomor-
phisms for the sake of simplicity. The precise statements in the case of vector
fields are left to the reader.

Let us start with (seemingly) weaker definition of a Poincar\’e condition for
a system. Let $\mathscr{X}$ $:=\{\Phi_{\mu}(x);\mu=1, \ldots, d\}$ be a commuting system of diffeomor-
phisms near the origin of $C^{n},$ $[\Phi_{\mu}, \Phi_{v}]=0(\forall v, \forall\mu)$ such that

(4.1) $\Phi_{\mu}(x)=\Lambda^{\mu}x+\phi_{\mu}(x),$ $\phi_{\mu}(x)=O(|x|^{2})$ , $\Lambda^{\mu}\in GL(n, C)$ .

By the commutativity, $\Lambda^{\mu}(\mu=1, \ldots, d)$ commute with each other. Hence every
$\Lambda^{\mu}(\mu=1, \ldots, d)$ has the same Jordan block structure with diagonal entries
given by

(4.2) $(\lambda_{1}^{\mu}, \ldots, \lambda_{n}^{\mu})$ , $\lambda_{j^{\mu}}\neq 0$ ,

where we denote with multiplicity. We set $\xi_{j}=(\log|\lambda_{j}^{1}|, \ldots, \log|\lambda_{j}^{d}|)$ for
$j=1,$

$\ldots,$
$n$ and define

$\Gamma=\{\sum_{j=1}^{n}c_{j}\xi_{j}\in R^{d};c_{j}\geq 0,$ $c_{1}^{2}+\cdots+c_{n}^{2}\neq 0\}$ .

DEFINITION 4.1. The maps $\Phi_{\mu}(\mu=1, \ldots, d)$ satisfy a simultaneous Poincar\’e

condition $\iota f\Gamma$ does not contain the origin.

REMARK 4.2. In the case $d=1$ , the above definition is equivalent to the
usual Poincar\’e condition for a single map, $|\lambda_{j}^{1}|>1(j=1, \ldots, n)$ or $|\lambda_{j}^{1}|<1$

$(j=1, \ldots, n)$ .

We set $\lambda^{\mu}=(\lambda_{1}^{\mu}, \ldots, \lambda_{n}^{\mu})$ and $(\lambda^{\mu})^{\alpha}=(\lambda_{1}^{\mu})^{\alpha_{1}}\cdots(\lambda_{n}^{\mu})^{\alpha_{n}}$ .
We say that $\mathscr{X}$ is simultaneously nonresonant if
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(4.3) $\min_{|\alpha|=m,\alpha\in Z_{+}^{n}1\leq j\leq n},\sum_{\mu=1}^{d}|(\lambda^{\mu})^{\alpha}-\lambda_{j^{\mu}}|\neq 0$ for $m=2,3,$ $\ldots$ .

The set of multiintegers $\alpha$ which does not satisfy (4.3) is called a simultaneous
resonance of $\mathscr{X}$ . In the case $d=1$ , it coincides with the resonance of a single
map.

THEOREM 4.3. The system $\mathscr{X}$ satisfies a simultaneous Poincar\’e condition if and
only if there exist $t_{\mu}\in Z(\mu=1, \ldots, d)$ such that (i) $\Phi_{0}:=\prod_{\mu=1}^{d}\Phi_{\mu^{\mu}}^{t}$ satisfies a
Poincar\’e condition; (ii) the resonance of $\Phi_{0}$ coincides with a simultaneous resonance
of $\mathscr{X}$ .

PROOF. Let $\Gamma^{\prime}$ be the dual cone of $\Gamma$

(4.4) I” $=\{(c_{1}, \ldots, c_{d})\in R^{d};\sum_{j}c_{j}t_{j}>0,$ $\forall(t_{1}, \ldots, t_{d})\in\Gamma\}$ .

The eigenvalues of the linear part of $\Phi_{0}$ is given by $\prod_{\mu=1}^{d}(\lambda_{j^{\mu}})^{t_{\mu}},$ $j=1,$
$\ldots,$

$n$ .
Hence $\Phi_{0}$ satisfies a Poincar\’e condition iff, by replacing $t_{\mu}$ with $-t_{\mu}$ , if necessary,

$\sum_{\mu=1}^{d}t_{\mu}\log|\lambda_{j^{\mu}}|>0$ for $j=1,$
$\ldots,$

$n$ .

It follows that $\Gamma^{\prime}\cap Z^{d}\neq\emptyset$ , where $\Gamma^{\prime}$ is a dual cone of $\Gamma$ . Because $\Gamma^{\prime}$ is an open
cone this is equivalent to $\Gamma^{\prime}\neq\emptyset$ . Because $ 0\not\in\Gamma$ if and only if $\Gamma^{\prime}\neq\emptyset,$ $\mathscr{X}$

satisfies a simultaneous Poincar\’e condition. This proves the sufficiency part and
the necessity of (i).

In order to show the necessity of (ii) we want to show that we can choose
$(r_{1}, \ldots, \iota_{d})$ so that the resonance of $\Phi_{0}$ is equal to the simultaneous resonance of

$\mathscr{X}$ . We first note that $\Phi_{0}$ is resonant for a simultaneous resonance of $\mathscr{X}$ . Suppose
that $\alpha$ is not a simultaneous resonance of $\mathscr{X}$ . By definition $\alpha$ is not a resonance of
$\Phi_{0}$ if,

(4.5) $\prod_{j=1\mu}^{n}\prod_{=1}^{d}(\lambda_{j^{\mu}})^{t_{\mu}\alpha_{j}}-\prod_{\mu=1}^{d}(\lambda_{f}^{\mu})^{t_{\mu}}\neq 0$ , $\ell=1,$ $\ldots,n$ .

By taking a logarithm of both sides of (4.5) we have

(4.6) $\sum_{\mu=1}^{d}t_{\mu}(\log\prod_{j=1}^{n}(\lambda_{j^{\mu}})^{\alpha_{j}}-\log\lambda_{l}^{\mu})\neq 0$ , $\ell=1,$
$\ldots,$

$n$ .
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The condition (4.6) holds for all except a finite number of $\alpha\prime s$ in view of
a Poincar\’e condition. On the other hand, for each $\alpha$ and $l,$ $1\leq\ell\leq n$ the
simultaneous nonresonant condition implies the existence of $\mu$ such that
$\log\prod_{j^{n}=1}(\lambda_{j^{\mu}})^{\alpha_{j}}-\log\lambda_{l}^{\mu}\neq 0$ . Because (4.6) means that $(t_{1}, \ldots, t_{d})$ does not lie on
a sum of hyperplanes and because $\Gamma^{\prime}$ is an open cone there exists $t_{\mu}\in\Gamma^{\prime}\cap Z^{d}$

satisfying (4.6). Hence $\alpha$ is not a resonance of $\Phi_{0}$ . $\square $

Finally we give expressions of a simultaneous Poincar\’e condition.

REMARK 4.4. The simultaneous Poincar\’e condition is equivalent to each of the
following conditions.

(a) There exist $c_{1}>0$ and $c_{2}>0$ such that

(4.7)
$\prod_{v,|(\lambda^{v})^{\alpha}|\geq 1}|(\lambda^{v})^{\alpha}|\geq e^{c_{1}|\alpha|}\prod_{v,|(\lambda^{v})^{\alpha}|<1}|(\lambda^{v})^{\alpha}|$

, $\forall\alpha\in Z_{+}^{n},$ $|\alpha|>c_{2}$ .

(b) There exist $c_{1}>0$ and $c_{2}>0$ such that for each $\alpha\in Z_{+}^{d},$ $|\alpha|>c_{1}$ we can
choose $v=v(\alpha),$ $1\leq v\leq d$ such that either $|(\lambda^{v})^{\alpha}|>e^{c_{2}|\alpha|}$ or $|(\lambda^{v})^{\alpha}|<e^{-c_{2}|\alpha|}$ holds.

(c) The dual cone $\Gamma^{\prime}$ of $\Gamma$ is nonempty.

Because the proof of these facts are elementary we omit the proof.

5. Diffeomorphisms

In this section we will show that the simultaneous Diophantine condition for
a commuting system of diffeomorphisms in $C^{n}$ does not imply the Diophantine
condition for any element of the system. We consider the commuting system
of diffeomorphisms as in (4.1). We continue to use the same notations as in
Section 4. We assume that we are in a Siegel domain. Namely we assume that the
eigenvalues satisfy

(5.1) $|\lambda_{j}^{v}|=1$ , $(v=1, \ldots, d;j=1, \ldots, n)$ .

We say that the system $\{\Phi_{v}\}_{v=1}^{d}$ satisfies a simultaneous Diophantine condition if
there exist $c>0$ and a real number $\tau$ such that

(5.2) $\min_{1\leq k\leq n}\sum_{v=1}^{d}\prod_{j=1}^{n}(\lambda_{j}^{v})^{\alpha_{j}}-\lambda_{k}^{v}\geq c|\alpha|^{-\tau}$ , $\forall|\alpha|\geq 2,$ $\alpha\in Z_{+}^{n}$ .

If we set $\lambda_{j}^{v}=\exp(2\pi i\theta_{j}^{v}),$ $0\leq\theta_{j}^{v}\leq 1$ and $\theta^{v}=(\theta_{1}^{v}, \ldots, \theta_{n}^{v}),$ $\langle\alpha, \theta^{v}\rangle=\sum_{j^{n}=1}\alpha_{j}\theta_{j}^{v}$ ,
(5.2) is equivalent to the following condition
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(5.3) $\min_{1\leq k\leq n}\sum_{v=1}^{d}$ I $\langle\alpha, \theta^{v}\rangle-\theta_{k}^{v}\Vert\geq c|\alpha|^{-\tau}$ , $\forall|\alpha|\geq 2,$ $\alpha\in Z_{+}^{n}$ ,

where $\Vert t\Vert=\inf_{p\in Z}|t-p|$ . Let $p_{v}\in Z(v=1, \ldots, d)$ and set $\delta_{j}=\sum_{v=1}^{d}\theta_{j}^{v}p_{v}$ and
$\delta=(\delta_{1}, \ldots,\delta_{n})$ . We say that the vector $\delta$ satisfies a Liouville condition if, for
every $\lambda>0$ the inequality

(5.4) $0<\min_{1\leq k\leq n}\Vert\langle\alpha,\delta\rangle-\delta_{k}\Vert<|\alpha|^{-\lambda}$ ,

holds for infinitely many $\alpha\in Z_{+}^{n}$ . We note that $\delta$ gives the eigenvalues of the map
$\Phi\equiv\Phi_{1}^{p_{1}}\cdots\Phi_{d^{d}}^{p}$ .

In the following, without loss of generality we assume that $\Phi_{1}=Identity$ .
Then we have

THEOREM 5.1. Suppose that $d>n\geq 2$ . Then there exists a set of linearly
independent vectors $\theta_{j}=(\theta_{j}^{1}, \ldots, \theta_{j}^{d})(j=1, \ldots, n)$ with the density of continuum
which satisfies a simultaneous Diophantine condition (5.3), whereas for any $p=$

$(p1, \ldots, pd)\in Z^{d}\backslash 0$ the $\delta=(\delta_{1}, \ldots,\delta_{n}),$ $\delta_{j}=\sum_{v=1}^{d}\theta_{j}^{v}p_{v}$ satisfies a Liouville con-
dition (5.4).

In order to prove Theorem 5.1 we need a result in [4]. We state it for the
reader’s convenience. (For the detail, see [4]). Let $E^{n}\subset R^{d}$ be a real subspaoe in
$R^{d}$ . With the norm $|\cdot|$ in (5.3) we define

dist $(x, E^{n})=\min_{y\in E^{n}}|x-y|$ , $x\in R^{d}$ .

DEFINITION 5.2. We define $\mu$ $:=\mu(E^{n})$ as the supremum of the numbers $\lambda$ for
which

dist $(j, E^{n})<|j|^{-\lambda}$ , $j\in Z^{d}$

possesses infinitely many solutions. Here $\mu=\infty$ is admitted.

Clearly, the definition is independent of the norm. Note that, if $Z^{d}\cap E^{n}=$

$\{0\}$ and $\tau>\mu$ then there exists a positive constant $c$ such that

(5.5) dist $(j, E^{n})\geq c|j|^{-\tau}$ , for all $j\in Z^{d}\backslash \{0\}$ .

A subspace $E^{n}$ satisfying $Z^{d}\cap E^{n}=\{0\}$ and (5.5) is called a Diophantine
subspace with respect to $Z^{d}$ . The following theorem is given in Moser [Theorem
2.1, 4]. (See also [5]).
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THEOREM 5.3. For almost all $E^{n}$ in the Grassmann manifo$ldG_{n}(R^{d})$ one has
$\mu(E^{n})=n/(d-n)$ .

PROOF OF THEOREM 5.1. We use the argument in Moser [4]. Suppose that
there exists a subspace $E^{n}$ in $R^{d}$ generated by the linearly independent vectors
$\theta_{j}=(\theta_{j}^{1}, \ldots, \theta_{j}^{d}),$ $(j=1, \ldots, n)$ such that $\mu(E^{n})=n/(d-n)$ . Let $\tau$ be such that
$\tau>n/(d-n)$ . Then we have (5.5). We consider the left-hand side of (5.3)

(5.6) $\min_{1\leq k\leq n}\sum_{v=1}^{d}\Vert\langle\alpha, \theta^{v}\rangle-\theta_{k}^{v}\Vert=\min_{1\leq k\leq n}\sum_{v=}^{d}\inf_{v{}_{1}P\in Z}|\langle\alpha, \theta^{v}\rangle-\theta_{k}^{v}-p_{v}|$ .

We set

$y=yk=(\langle\alpha, \theta^{v}\rangle-\theta_{k}^{v})_{v\downarrow 1,\ldots,d}\in E^{n}$ , $k=1,$ $\ldots,$
$n$ .

Let $j=(p_{v})_{v\downarrow 1,\ldots,d}\in Z^{d}$ be a multiinteger for which the infimum in the right-hand
side of (5.6) is taken. Then the right-hand side of (5.6) is bounded from the below
by $c_{1}\min_{1\leq k\leq n}|j-yk|$ for some positive constant $c_{1}$ independent of $j$ and $k$ . By
the inequality $|j-yk|\geq dist(j, E^{n})$ for $k=1,$

$\ldots,$
$n$ and (5.5) we can estimate the

right-hand side of (5.6) from the below in the following way

(5.7) $\geq c_{1}\min_{1\leq k\leq n}|j-yk|\geq c_{1}dist(j,E^{n})\geq c_{2}|j|^{-\tau}$ ,

for some positive constant $c_{2}$ independent of $j$ . Because the infimum in (5.6) is
taken for $j$ such that $|j-yk|\leq M|yk|$ for some constant $M$ independent of $k$ , we
obtain, by the condition $|\alpha|\geq 2$

$|j|\leq(1+M)|yk|\leq c^{\prime}(1+|\alpha|)\leq c^{\prime\prime}|\alpha|$

for some positive constants $c^{\prime}$ and $c^{\prime\prime}$ . It follows that the right-hand side of (5.7)
is bounded from the below by $c|\alpha|^{-\tau}$ for some positive constant $c$ independent of
$\alpha$ . This proves (5.3).

We want to show that there exists $E^{n}$ satisfying $\mu(E^{n})=n/(d-n)$ and the
Liouville property (5.4) for any $p=(pl, \ldots, pd)\in Z^{d}\backslash 0$ . Let $g,$

$h\in Z^{d}$ be the
given two linearly independent vectors and define a $\Gamma_{2}=Z^{d}\cap(span\{g, h\})^{\perp}$ .
The set $\Gamma_{2}$ is a sublattice of $Z^{d}$ of codimension 2. We choose a basis $\gamma_{3},$

$\ldots,$
$\gamma_{d}$

of $\Gamma_{2}$ and, extend it by $\gamma_{1},$ $\gamma_{2}$ to a basis of $Z^{d}$ . With $\Gamma_{1}=span_{Z}\{\gamma_{1}, \gamma_{2}\}$ we
have a splitting $Z^{d}=\Gamma_{1}\oplus\Gamma_{2}$ . We define a rational projection $P:Z^{d}\rightarrow\Gamma_{1}$ by
$P(v_{1}+v_{2})=v_{1}$ for $v_{i}\in\Gamma_{i}$ . The dimension of $\Gamma_{1}$ is called a rank of $P$ .

Let $\xi_{j},$ $\eta(j=1, \ldots, n-1)$ be a basis of $E^{n}$ , and define $\zeta_{j}=\lambda\xi_{j}+\eta$ for
$j=1,$

$\ldots,$
$n-1$ , where $\lambda$ is a real parameter. Suppose that we can choose $\eta\in E^{n}$

so that $P\eta\neq 0$ . We define
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(5.8) $f_{ghj}(\lambda)=\frac{\langle g,\zeta_{j}\rangle}{\langle h,\zeta_{j}\rangle}$ .

We want to show that $f_{ghj}(\lambda)$ is not constant for some $j,$ $1\leq j\leq n-1$ . Suppose
that this is not true. Then the differentiation vanishes, $f_{ghj}^{\prime}(\lambda)=0$ for $j=$

$1,$
$\ldots,$

$n-1$ . By simple calculations we have

(5.9) $\frac{\langle g,\xi_{j}\rangle}{\langle h,\xi_{j}\rangle}=\frac{\langle g,\eta\rangle}{\langle h,\eta\rangle}$ , $j=1,$
$\ldots,$

$n-1$ .

Then the slopes of the vectors $P\xi_{j}$ and $ P\eta$ in the plane coincides. It follows that
there exist numbers $\alpha_{j}$ and $\beta_{j}$ such that the linear combination $\omega_{j}=\alpha_{j}\xi_{j}+\beta_{j}\eta$

satisfies $P\omega_{j}=0$ and $\omega_{j}\neq 0$ for $j=1,$
$\ldots,$

$n-1$ .
We will show that $\omega_{j}(j=1, \ldots, n-1)$ are linearly independent. Assume

that $\sum_{j}c_{j}\omega_{j}=0$ . It follows that $\sum_{j}c_{j}\alpha_{j}\xi_{j}+(\sum_{k}c_{k}\beta_{k})\eta=0$ . Hence we have
$c_{j}\alpha_{j}=0$ for $j=1,$

$\ldots,$
$n-1$ . Suppose that $\beta_{j}\neq 0$ . Because $P\eta\neq 0$ and $P\omega_{j}=0$

we have $0\neq\beta_{j}P\eta=-\alpha_{j}P\xi_{j}$ . Thus we have $\alpha_{j}\neq 0$ . It follows that $c_{j}=0$ . In case
$\beta_{j}=0$ , it follows from the definition of $\omega_{j}$ that $0\neq\omega_{j}=\alpha_{j}\xi_{j}$ . Hence we have
$\alpha_{j}\neq 0$ . Because $c_{j}\alpha_{j}=0$ , it follows that $c_{j}=0$ . Hence we have $c_{j}=0$ for $j=$

$1,$
$\ldots,$

$n-1$ . It follows that, if $F$ is a rational subspace of codimension 2 defined
by $\Gamma_{2}$ we have

(5.10) $\dim(E^{n}\cap F)\geq n-1$ .

Next we consider the case where there does not exist an $\eta\in E^{n}$ such that $P\eta\neq 0$ .
It follows from the definition of $P$ that $\dim(E^{n}\cap F)=n\geq n-1$ . Hence we
obtain (5.10).

We want to show that the Lebesgue measure of the subspace $E^{n}$ satisfying
(5.10) in a Grassmann manifold is zero. We consider only the special subspace $E^{n}$

given by

(5.11) $E^{n}$ : $x_{v+n}-\sum_{\mu=1}^{n}c_{v\mu}x_{\mu}=0$ , $v=1,2,$ $\ldots,$
$d-n$ .

We define the matrix $A$ by $A=(c_{v\mu})_{v\mu}$ . Let $s=(s_{1}, \ldots, s_{d})\in Z^{d}$ and $t=$

$(t_{1}, \ldots, t_{d})\in Z^{d}$ span $F^{\perp}$ . By (5.10) the $d-n$ vectors which define $E^{n}$ and $s,$
$t$ are

not linearly independent. It follows that every $d-n+2$ cofactor matrix of

$\left(\begin{array}{lll}A, & & -I_{d-n}\\l_{l} & \cdots & t_{d}\\s_{l} & \cdots & s_{d}\end{array}\right)$
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vanishes. On the other hand, since $t$ and $s$ are linearly independent the deter-
minant is a polynomial of $c_{v\mu}$ of degree $d-n$ which does not vanish identically.
It follows that the $n(d-n)$ dimensional Lebesgue measure of $E^{n}$ in the
Grassmann manifold is zero.

Since the set of subspace $E^{n}$ in a Grassmann manifold satisfying a Diop-
hantine condition $\mu(E^{n})=n/(d-n)$ has positive measure we can take $E^{n}$ so that
(5.10) does not hold. Therefore $f_{ghj}(\lambda)$ is not constant for some $j,$ $1\leq j\leq n-1$ .
$\ln$ the following, we take such a $j$ and we fix it. Because the Liouville numbers
form a residual set $\mathscr{L}$ on $R$ , i.e., countable intersection of open dense sets, the
same property holds $for\cap f_{ghj}^{-1}(\mathscr{L})$ , where the intersection is taken over all linearly
independent vectors $g,$

$h\in Z^{d}$ . Hence the set is residual, dense in $R$ and of the
cardinality of continuum. For every $\lambda$ in this set the vector $\zeta_{j}=\lambda\xi_{j}+\eta$ satisfies
that $\langle g, \zeta_{j}\rangle/\langle h, \zeta_{j}\rangle$ is a Liouville number. We set $h=(1,0, \ldots, 0)$ and define $\theta_{j}$ by
$\theta_{j}=\zeta_{j}/\zeta_{j}^{1}$ , where $\zeta_{j}^{1}$ is the first component of $\zeta_{j}$ . If we take a basis of $E^{n}$

containing $\theta_{j}$ we have (5.4). $\square $
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