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IRREDUCIBLE CLIFFORD MODULES

By

Zhou JIANWEI

Abstract. This paper gives a new treatment of the Clifford algebras.
We represent the pinor and spinor spaces as subspaces of the Clifford
algebras and use these pinors to construct isomorphisms between the
Clifford algebras and the matrix algebras. In doing these we develop
some spinor calculus.

1. Introduction

The Clifford algebras and the related topics have come to play important role
in mathematics and in mathematical physics. In the area of differential geometry
and topology they have become fundamental.

As is well-known, the structures of Clifford algebras can be studied by
induction. This paper gives a new treatment. We construct the real and complex
pinor spaces as subspaces of Clifford algebras and use them to construct iso-
morphisms between the Clifford algebras and matrix algebras. H. B. Lawson and
M. Michelsohn pointed out that there must exist a local spinor calculus, like the
tensor calculus, which should be an important component of local Riemannian
geometry (see [5], Introduction). In a subsequent paper [10], we shall use spinor
calculus developed in this paper to study the Grassmann manifolds and the cali-
brations.

The methods used in this paper are simple. Let Ay, be an irreducible module
over complex Clifford algebra C¢,,, /\y, can be generated by one element of C#,,
as a left ideal. We show in §2 that, there is a decomposition Cts, = A - N =~
A ® A as bimodules over C¢,. Thus we can construct explicit isomorphisms
between complex Clifford algebras and matrix algebras. The subspace S,, of
Ct», generated by x + %, v—1 (x — x) is a module over Cty,, x € . If S, is
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reducible, it can be decomposed into a direct sum of irreducible modules. In
this way we show in §3 that the irreducible modules over C7,, can be generated
by the one of the following elements (for the notations see the end of this
section):

(1) A, when m = 2,4 (mod 8);

(2) Am(1+8,), when m=0,6 (mod 8);

(3) Am-1(1 +B,,—1), when m =1 (mod 8);

(4) Ap-1(1 + wm), when m =3 (mod 8);

(5) 4u-1(1+8,,), when m =5 (mod 8);

(6) Am—1(1+B,,_1)(1 £ wm), when m =7 (mod 8).

It is interesting to note that the number of the summand in 4,(1 +f,,) is
2"/2 which is also the dimension of the irreducible modules over C¢,, when
m = 0,6 (mod 8). The numbers of the summand in other generators listed above
are also closely related to the dimensions of the correspond irreducible Clifford
modules.

These pinors have many interesting properties and applications. With an
orthonormal basis for every irreducible module over C¢,, we construct iso-
morphism between the Clifford algebra and the matrix algebra. In §4, we study
C¢z in some details. As is well known (see for example [2] or [3]), the octonians
can be used to study Clifford algebra and spin group. In an appendix we show
that the octonians can also be defined by Clifford algebra.

In the following, we give some notations used in this paper. Let R™ be an
Euclidean space and C?,, be its associated Clifford algebra, C¢,, = C¢,, ® C be
the corresponding complex Clifford algebra. Let ey,...,e, be an orthonormal
basis of R™, then C¢,, is generated by {e;} with the relations: e;e; + eje; = —24;.
The homomorphism o : C¢,, — C/,, is defined by

a(§) =¢, if EeCLrm; aln) =—n, if ne CLLY.

Let w,, = ejex---e, be the volume element of CZ,. Then co,?;, =1if m=0,3
(mod 4). The element S,, € C¢,, is defined by

ﬂ eyeé3- - ep_3pm_-1, M CVEN,
m ) eres - em_2em, m odd.

Note that 2 =1 if and only if m =0,5,6,7 (mod 8), otherwise [f,:f1 = -1

If m=2n being even, let g; = %(ez,-_l — \/—_lez,-), g, = %(ezi_l + \/—_1e2,~),
i=1,...,n. It is easy to see that g,g;=g;,9, =0 and g;5;9; = —g;. Denote
Az =Re(g; -+ g,) and By, = Im(g; - - g,).
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2. Complex Clifford Algebras

It is well known that the complex Clifford algebra C¢,, decomposes into a
direct sum of irreducible left modules over C¢,,. Denote one of these modules by
A, /A is a spin representation space of spin group Spin(2n). If £ =Av;-- vk €
Cty, A€ C, v;e R, we set &' = dvg---v;. The space A = {&'|Ee A} is an
irreducible right module over C¢,.

LemMma 2.1. Let A be a spin representation space described as above, then
Cln = A - N, where - denote the Clifford product. Hence there is an isomorphism
of bimodules:

Cty,=AQ®N.

PROOF. Let o; =v—lex_1ex, gi = 3(exi-1 — V—ley), §; =3 (ezi-1 + vV —1lew),
i=1,...,n. Let the {o;} act on C?¢,, from the right and decompose C¢,, into 2"
simultaneous eigenspaces of this action (cf. ). Let A(e,...,&y) be one of such
space, A(er,...,&y) be eigenspace of o; with eigenvalue ¢; for 1 <i<n, ¢ =1
or —1. Then A = A(—1,...,—1) is generated by g, --- g, as left ideal of C¢5,. It
is easy to see that A-gy---gug; --- g, = A(t1,...,7,) with 1 = =1, = —1,
7, =1 for p #1ij,...,i. These prove that

szn Z@A(El,...,ﬁn) =A-N.

Since dim A - dim A = dim C¢3,, there is a natural isomorphism: Ct3, = A - N —
A ® XN and the decomposition is invariant under the right and the left action of
the elements of C/,,. The lemma has been proved. O

Let so(2n) and spin(2n) be the Lie algebras of special orthonormal
group SO(2n) and spin group Spin(2n) respectively. There is an isomorphism
E : spin(2n) — so(2n) defined as usual. The following lemma is well known, its
proof can be reduced to the case of n = 1.

LemMA 2.2. The exponential maps exp : spin(2n) — Spin(2n) and exp :
so(2n) — SO(2n) are epimorphisms and exp o Z = Ad o exp : spin(2n) — SO(2n),
where Ad : Spin(2n) — SO(2n) is the covering map.
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From this lemma we know that for any g = exp(h;) € SO(2n), the lift of g
to Spin(2n) is given by

texp (% Z hijeiej) .

Let A\(R*") be the exterior algebra of R* and A (R*™) = AR™)®C.
There is an isomorphism p: A (R*)— Ct, given by plei An---Ae;) =
e iy, I < - <.

LEmMMA 2.3. For any g € SO(2n), g is a lift of g to Spin(2n), then we have
pog=Ad(G) op: )\ (R*™) — Ctr, where g: |\ (R™) — A (R™) and Ad(§) =
g : Ctyy — Cty, are the induced maps.

By [Lemma 2.1-2.3, we can show that the de Rham-Hodge and Signature
operators on a Riemannian manifold are essentially the twisted Atiyah-Singer
operators. If the manifold has a spin structure, the de Rham-Hodge and the
Signature operators are twisted Atiyah-Singer operators in usual sense (see [7, 8]).

Using [Lemma 2.1, we can construct isomorphism between C?,, and matrix
algebra C(2"). Denote 7 = (v/—1)"e; - --ey,. We have half spinor spaces At =
(1+£7)A. Let A=(41,...,4) be multiindex and B, =g, --- 9,91 "G, €L =
A" @A, A <--- <X Then f; and B, -«(B.) form vector bases of A and
Ctrn = A - N respectively.

0, wu+#r,

LemMma 24. B, - O‘(BL) B = {ﬁl u=r.

ProoF. Since g¢;9; = §;,g;, =0 and g, - g; - §; = —g;, the lemma can be verified
easily. O

Given an order of A = (41,...,4), &1 < -+ < A, k=0,...,n. Let E;, be the
standard elements of matrix algebra C(2"). Then we have

PROPOSITION 2.5. The homomorphism ® : Cty, — C(2") defined by
(B, - a(B))) = Ey,

is an algebraic isomorphism.

As Ctyyy = C£y7,, there is an isomorphism C#;,, = C(2") ® C(2"). In
what follows, we construct such an isomorphism directly.
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Let h :%(1 + VvV —leys1) and E:%(l — vV —leyy1), then we have
Clpr=0N-h-NDA-h-N.

PROPOSITION 2.6. There is a natural isomorphism between two algebras:

#icoma= (T o)

which is given by A -h- N=Ctly and A-h- N = Ct,.

Proor. We need only to show that
Ah-N-ANh-N=A-h-N-N-h-N=0,
and both A-h-A and A-h-A are isomorphic to the Clifford algebra C#s,.

These can be proved by using and the fact that &h = hé for
Ee CLH% ph=hy for ne C4P". [

The spaces A -h and A -h are irreducible modules over Cta,y1.

REMARK. As more application, we consider Seiberg-Witten monopole equa-
tions:
D4® =0, o*(F) = (DPD),.

For notations see D. Salamon: Spin geometry and Seiberg-Witten invariants. By
Cemma 2.1, 2.2 and 2.3 above, see also [7], we know that there is a natural

isomorphism between S® S* and C/Z(X) = /\ (X), where S=S*@® S~ is a
spin¢ bundle on a 4-manifold X. Then for any ® € I'(S*), ® - ®’ can be viewed
as a section of C/T(X)NCso(X) = AL(X)N N (X). Locally, ®,7eI(ST)
can be represented by
© = ag\g, + 091929192, T = €419 + 4919291>-

By OD*t = O(D, 1) = (Gc + bd)® = ®© - ®' - 7, where - is the Clif-
ford product. Then as a section of C/*(X)N C/**"(X), we have

OD* =@ - P’

= aagg,9201 + bbg1923,9: + abg,g, + abgig:

4

VA
4

(ad + bE)(l — 61828384) + (ad — bB) (e;ez + 8384)

FNJ

(ab + ab)(ezes + ejes).

+ = (ab — ab)(eje3 — ereq) —

FNI
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3. [Irreducible Modules over C7,,

As an algebra, C/,, is isomorphic to some matrix algebra, then any irre-
ducible module over C¢, is generated by one element. In this section we
construct such elements and study their properties.

3.1. Even Dimensional Case

As in §2, let £\, be an irreducible module over C7», generated by g, ---g,.
Let S, be the realization space of /,, that is, S,, is a subspace of C¢,
generated by x + %, vV—1(x — X), x € Xy,. Denote

gl g,, = A+ Vv _1B2n7 A2naB2n€S2n-

Lemma 3.1.1. We have (1) By, = ejer Az, = —Aznelez, (2) A2nﬁ2n = ﬁznAZn:
(3) 4A2nOC(A£n)A2n = Az,,.

PrOOF. By gl te gnﬂZn = gl ot 'gngl **On and gl e 'gneleZ = —elezgl *gn
V=13, - g,, we have Af,, = fr,A2n, B = e1€242, = —Azse1€2. Then

g1+ G, = Am(1 — V—lejer).
The equality g, Gugn- 6131 Gn = (=1)"Gy -G, vields
442, AL An(1 — V—le1er) = (=1)"A2,(1 — V=1ese2).
This shows 4A4,a(A3,)A2, = A2zn. O

This lemma is important in our study. Equation (3) is used in the iso-
morphism between the Clifford algebras and the matrix algebras.

LEMMA 3.1.2. The space S,, is a left module over Ct», generated by A, or
By,. This space is invariant under the action of eiez,f,,,ws, on the right of it.
Moreover, Ctry = Sz, - o(S5,)-

PrOOF. Obviously, S, is a left module over Ct2, = Ct3, with dim S, = 2!
and is generated by A,, or By,. The equality Cty, = Sz, - a(S3,) follows form
Con = Azn . Alzn. D

PROPOSITION 3.1.3. The spaces Vgixinr = Ssk+2 and Vgiia = Sgiqsa are irre-
ducible and they are also the right C¢,-modules. Then there are quaternion
structures on Vgiio and Viiia respectively.
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ProOF. For dimensional reasons, V), =S85, is irreducible if 2n =2 or
4 (mod 8). These can also be proved by using [Proposition 3.1.10, The subspace
of C¢,, generated by eje; and f,, is isomorphic to C7#,. This shows that the pinor
spaces Vsky2 and Vgriq4 are right modules of C¢;. O

PrOPOSITION 3.1.4. If 2n = 0,6 (mod 8), the space Vi, = Sau(1+ fB,,) is an
irreducible module over Ct»,.

PrROOF. When 217 =0,6 (mod 8), pi—n =1, the module S,, can be decom-
posed into

Son = Szn(l +ﬁ2n) S S2n(1 _ﬁZn)'
As f,.e1e2 = —ejexfi,,, acting eje; on the right of S,(1 + f,,) induces a

module isomorphism between S,(1 + f,,) and Sz,(1 — B,,). O

Now we turn to study the isomorphisms between the Clifford algebras and
the matrix algebras. Let ¢; = ep;,_1€2),—1 - - - €2;,—1. With the notations used in §2,
we have

Bi=cigr-3n = (1 +vV—lejer)Aan,.
Then the elements

c; Az, ciArmerer,
ﬂ.:(ll,...,/lk), /11<"‘<}~k, k=0,1,...,n,

form a basis of S,,.

LemMma 3.1.5. (1) If 4y = =1, we have
oc(c,lAz,,)t . C”Azn = J;OC(Aén)Azn,

where 5: :5;’}:::;_'”1" is the Kronecker delta.

(2) c/lAZHﬂZn = (_'l)k(k_i_l)/za(inu)c,uAbl: where u= (lul’ v Hun—k) and 6(27”) =

Alyeer lk Hyyeors Up_
5Alv sy By Mn—k
1,2,...,n :

PrOOF. From oc(/)’_j)ﬁ# = (——1)"5/fg,,---glgl---g,,, we have
(—l)kAz’n [cicy + exercicuerer] Aan = 25jAénA2,,.

As Ay = puy =1, ezeicjcueie; = cjc,. These prove (1). The equation (2) follows
from
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ci(1 +V—leje)) Aanf,
=Ggu - 9ug1 " Gnd1 - Gn
= (=) V250, w)gs, -+ 91,83, TG+ G, 91 G
= (=126, )Gy, -Gy 917 9
= (—l)k(k“)/zé(/l,u)c,,(I - \/:_lelez)Az,,. 0O
PROPOSITION 3.1.6. There is an isomorphism of bimodules over Ct,y:

Clon = Van - a(V3,) = Van @ a(V5,),
when 2n =0 or 6 (mod 8).

PrOOF. When 2n =0 or 6 (mod 8), by Lemma 3.1.2] and A4,(1 + f,,)-
a(A5,) = Ba (1 — By,)a(BS,), we have

Ctan = San(1 + Bry)(S3,) + So(1 = By,)x(S3,)

= San(1+ Bon)a(S3,) = [San(1 + Bon)] - a([S2a(1 + Bn)]). O

PROPOSITION 3.1.7. In the cases of 2n =0 or 6 (mod 8), the algebraic iso-
morphism ® : Cty, — R(2") can be defined by

D[ fudzn(1+ Brn) - a(fpA2n(1 + Boy)) ] = Eup,

where fy, fg = c; or ceiez, Ay = 1.

Proor. By [Proposition 3.1.4] and [Lemma 3.1.5, the following pinors form a
basis of V5, if 2n=0 or 6 (mod 8),

ciAw(1+ Bs,), ciererdr, (1 + B,,),

where A; = 1.
By Lemma 3.1.5, if 4y =y, =1, we have

(=D)AL cleyererdo, = (1) AL cle,Areres = 5;A5,,A2,,e1e2.
Combining this with eje;(1 + f,,) = (1 — B,,)e1e2 shows
aferdan(l + Bon)]" - cuerezdan(1+ Bay) = 0.

Then the proposition follows from [emma 3.1.1, 3.1.5 and
3.1.6. O




Irreducible Clifford Modules 65

In the rest of this paper we always assume that ; =y = 1in A = (4;,..., )

and p= (4;,...,14)
In case of C¢;, Vs is generated by A = Ag¢(1 + f¢). Let

0 =wed, oy =e1A, az3=e3d, o4 =es54,
Ols = A, g = ezA, o7 = e4A, og = e6A.

Similar to Lemma 4.1, we can show that the equalities a(aj) - oy = dz4 hold for
all k,1. Thus {a;} forms a basis of V. The algebraic isomorphism @ : C4 — R(8)
can also be given by

(I)(Otk O((Otlt)) = Ek1, k,l= 1,2,...,8

One can compute,

( 0 (%] U4 Vg 0 —U; U3 —1)5\
- 0 vs —v3 v 0 —vsg vy
—U4 —Us 0 (4] U3 Vg 0 —Us
—vg U3 —Up 0 vs —vg vy O

q)(z viei) =

0 —U1 —UV3 —V5 0 —Uy —Ug —Ug
2 0 —vg Vs UV 0 —vs v3
U3 Vg 0 —Uy U4 Us 0 —U1

\ vs  —Us Dy 0 vs —-v3 1 0 )

Denote ®(3 vie;) = E. If 02 =1, then E2 = —I, EE' =1I.
Notice that

O(CLE) = {(_CD g) |C,De R(4)},

O(CLPH) = {(g _DC> |C,De R(4)},

®(Spin(6)) = {E e ®(CL&") | EE' = I}
= SU(4) = SO(8).
By definition, ®(x(¢")) = (®(&))" for any &e Cls, these also shows
Spin(6) = {¢ € CLeem | & - &' =1},

ProPOSITION 3.1.8. (1) There is a Clgi-Claki2-bimodule isomorphism

Clsk+2 = Vakra ® a(Vgh);
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(2) There is an isomorphism of bimodules over Cfgiy3,

Clsk+2 = Vikra ®ce, 4 Viia)-

PrOOF. It is easy to see that —egy)Agk+2 Z%Agk(l — ejezesir1€sk+2). The
map C/; - Vg — Varyn given by x — %x(l — e1e2€8k+1€8k+2) 1S an isomorphism.
Combining this with Clgir = Cf - Vi - a(Vg,) gives (1). (2) follows from
Lemma 3.1.2] and [Proposition 3.1.3 and the dimensions of Cfg,, and
Vak+2 ®cr, 4 Viy)- ]

ProPOSITION 3.1.9. (1) There is a Clgkt1-Cl3rr+a-bimodule isomorphism
Claira = Vakra @ a(Vgiy)-
(2) As bimodules over Clgiya,
Clarrs = Vakra cr, tU(Vgpia)-
PrOOF. Let 6\'{’4 and C/?gk be subspaces of Cfgr4 generated by
€8ki1,---,e8k+a and L e1,. .-, en respectively. Let V4 and Vg be irreducible mod-

ules over 674 and Cfg; respectively. Denote @4 = esx41 - - - esk+4. It is easy to see
that

Vi=Cls(1 —@4), (1+@s)esess = esir1(l — ia).
These shows @4 =V, 6?’1, where C/'?’l is generated by egr.;. Then
Ctsirs = Cly - Clye = Vi - Cly - Vara(Vy,)
= I74 : I}Sk“(l};k) ’ 6}1
As modules over Cfgii4, Vikra = V- ng, we have proved

Clakra = Vakrs ® a( Vi)

The proof of (2) is similar to that of [Proposition 3.1.8, O

Let H be the field of quaternions and i, j,k = ij be defined as usual. Notice
that e¢;e; and f,, commute with A,,a(A4},). The following proposition can be
proved by using [Lemma 3.1.5

ProrosiTION 3.1.10. When 2n=2 or 4 (mod8), the map ®:Ct —
H (2" 1) defined by
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@[461142,, (x1 + xpe1e2 + x;;,an + X4€1€2ﬂ2n) . O((C#Az,,) t]
= (x1 + x2i + X3 + x4k) E,,,

is an isomorphism, where x; € R.

The case of C#; is easy. The isomorphism @ : C/; — H(2) can be defined by

(I)<Z vlel) - (—v1 +vi+uv3j+ vsk

For [Proposition 3.1.6, 3.1.8 and 3.1.9, see also [5], II, §7.

vl+vzi+v3j+v4k)

3.2. Odd Dimensional Case
Let V5, be an irreducible module defined as in §§3.1. Let
T = {(a + be2n+1)v I a,beRve Vzn}.

Then T3,.; is a left module over C¢»,.1. For dimensional reasons we have

ProrosiTiON 3.2.1. The space Vgii1 = Tsrr1 is a left irreducible module over
Clsk+1 and a right C{y module (where C/, can be generated by esii1).

ProposiTION 3.2.2. If 2n+1=3 or 7 (mod8), the spaces Vi1 =
T2ni1(1 + w2n41) and Vs, 1 = Tonp1(1 — wany1) are two different irreducible mod-
ules over Ctynyy. Furthermore, Vi3 and V5 are also the right C{; modules.

ProOF. Since wy,.; is in the center of C/,.1, for any v e V5,.1, one has
@2 10(1 4+ 02n41) = (1 + W2n41) 02041 = 0(1 + W2041),

@2n410(1 — w2ny1) = V(1 — W2ny1)W2n41 = —0(1 — W2n41).

This shows, V2,,1 and V3, | are not isomorphic as left modules. Since Vgiy2 is
a right C4, module and wgx,3 is in the center of C/g 3, the spaces Vgi, 3 and
Vgr.s are right C¢; modules. O

PROPOSITION 3.2.3. The space Vyiys = Tgrys(1+ Byys) is an irreducible
module over Clgys. There is a complex structure on Vs defined by acting wgis
on the right of it.

The proof is similar to that of [Proposition 3.1.4] (note that wsgis is in the
center of Clgis).
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PROPOSITION 3.2.4. (1) Cfgs1 = Varr1 ® a(Vey) = Vakrr Qcy, #(Vgisr)s
(2) Clakss = Varys @ a(Vy,) @ Vi3 @ a(V5h)
= Va3 ®ce, *(Vgiers) @ Varrs ®ce, #(Veiys)s
(3) Cfgkrs = Veras @ a(Viiin) = Vakrs ®ce, ¢ Veieis)s
(4) Clyicr1 = Vakr1 ® a(Vihi6) @ Vaerr @ (Vi)
= Vakrr @ a(Vgir) @ Vs @ a( Ve q)-

Proor. The proof of (1) is easy. Equation (2) follows from [Proposition 3.1.§
and 3.2.2.

By eski2(1 + Byirs) = (1 — Barys)esk+2, we have

Tsicvs = Tsi+s(1 + Borys) @ Taras(1 — Barys) = Tares(1 +ﬁ8k+5)6\'{1,

where C7 is generated by egy.2. By [Proposition 3.1.9,

Clakss = Tars - 8(Vereyr) = VarrsCl - a( V1) = Vs - 0(Vgiyn)-

As Agkia(l — Barys)erer = —erea Agira(l + Bgiys) and a(ﬂ§k+5) = Paiys, we
have

Clkrs = COVakra - a(Vy4) Ch
= Taik+5(1 + Barss)®(Tgiys) + Torts(1 — Bairs)t(Tges)
= Tars(1 + Barss) U Ty s)
= [Tois(1 + Byers)] - ([ Tskrs(1 + Baas)])
= Vaicrs @y, (Vgiess),

where E’Z’l and C/’?l are generated by esi.s and wgys5 respectively. These prove (3).
In case of Cfgry7, one has

Claks1 = Cti - Varto - a(Vgirs) = Vakr1 @ a(Vgirs) D Verrr ®© a(Vgieis)s
and
Claks1 = C Vairs - 0(Viier6) CO = (Vakr1 @ Vi) - (Vg1 @ Viar)-
(4) follows from the facts that VPgryr-a(Vg,7) =0 and Vg ;-

o(Vger) =0. O

In the following, we construct the isomorphisms between Clifford algebras
and matrix algebras for odd dimensional case.
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PROPOSITION 3.2.5. The isomorphism ® : Clgy — C(2%) can be given by
(I)(faA(xl + X2a)gk+1)oc(f3A)t) = (x1 + )Czl')EDC ,

where fy, fz = ci, A= Agi(1 + Bgr)-

Denote 4 = Agi.2(1 + wsk+3). The elements

A, cideier, c;APgrio,  crdererfgyia,

form a basis of Vg3, where c¢; are defined as in §3.1, 4y = 1.
PROPOSITION 3.2.6. The isomorphism ® : Cly 3 — H(2%*) @ H(2%) can be
given by
D[f,A(x1 + X2e1€2 + X3Byy 12 + Xae1€2B542)(fpA)"
+ [ A (x] + x3182 + X3Bgicr2 + Xser1e2Byi42) 0 fprA')']

( (X1 + x20 + x3j + x4k)Eyp

(1 + x3i + x3) + x4K) Eypr ) ’
where fy, fur = ci, A = Agii2(1 + wspy3) and A’ = Asgpy2(1 — wgit3)-

PROPOSITION 3.2.7. The isomorphism ® : Clgys — C(2%+2) can be defined

by .
®[(x1 + X208k+5) fuda(fpA)'] = (x1 + x20) Ep,

where A = Agia(1 + Pgiis), Xi€ R and fy, fp = ¢, or ceie;.

By [Proposition 3.2.3, V5 is generated by 4 = %(1 — wy4)(1 + B5) as left module
of C/s. Let

g =A, o =ed, o3=-eesA, a4=e4A.

It is easy to see that each «; commutes with ws and oc(oc}) -ox =0jxA. Then w;,
wsoy, i=1,...,4, form a basis of V5 and ws defines a complex structure on Vs.
The isomorphism ® : C/s — C(4) can be defined by

D((x + yos)o; - ale))) = (x + V—-1y)Ej.
By easy computation, for any v e R°, we have
—vsi  —v; — v3i 0 —v4 — Uy
5 . . .
® (; vjej) =" ‘(")”3’ —vfi vy 04_*;5’;2’ v i) v3i

Vg — U2l 0 —v1 — v3i vsi
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5
Notice that ®(3_vje;) € SU(4) if > v? =1, also
j=1

o -{( S,

O(CL2%) = { (g _DC,> |C,De C(Z)}.

PROPOSITION 3.2.8. The isomorphism ® : Cly7 — RQ2*~1) @ R2*) can
be defined by

) |C,De C(Z)},

a o

1 ¢ 1 ' nt Ea
(DZfaA-oc(fﬁA) +Zfa'A '“(fﬂ’A)]:< ’ Eoc’ﬂ/)’

where A = Aggi6(1 + Bgri6)(1 + wsk+7), A" = Asr6(l + Bair6) (1 — wskv7), fo, S5
as in the case of Clgyys.

4. The Clifford Algebra C¢;

The Clifford algebra C¢; is important in the theory and application. In this
section we study C#g in some details. By [Proposition 3.1.6, C¢ = V3 - a(Vy) and
Vs is generated by A = Ag(1l + fg). Let o; = eje;4, a3 =e;4, i=1,2,...,8.

LemMMma 4.1. oz(oc,i) <oy =5k1A, k,l = 1,2,. cey 16.

ProOOF. 164 is invariant by acting every summand of 164 on itself, then
A-A = A. Also note that for any 1 <i <j < k <8, there is a unique summand
in A which contains e;ejex. We need only to show a(ay) - oy =0 for k # /. This
can be proved as follows.

1
a(og) - oo = §Ae7e1ez(1 — ejezeres) A

1
= EA(I + e1e2e7eg)e7e1e2A =0.
The other cases can be proved similarly. O

The elements {0}, ;s({i+8},<i<s) form bases of V" (V5 ) respectively,
where Vg = (1 + ws)Vs.

PROPOSITION 4.2. The algebraic isomorphism ® : C{y = R(16) can be defined

by
Doy - (o)) = Egj, k,j=1,...,16.
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It is easy to see that ®(&) = T for any & € C¢3, where T € R(16) are deter-
mined by
oy o
g oc|=T
16 *16

I .
Then @(ws) :( I)' By simple computation, we have @) vie;) =

P,
( _pr ’ ) , where

(701 [ %] U3 Vg4 Us Vg U7 vg \

U1 —U4 U3 —V¢ Us —Ug U7

—U3 U4 1 —U v7 —Ug —Us Ve

P = —V4 —U3 U2 U1 —vg —U7 Ve Us
T —vs v —v; vy v —v2 03—
—Vg —Us Ug U7 U2 U1 —U4 —U3

—U7 Ug Vs —Vlg —U3 V4 U1 —Uy
\_US —U7 —U¢ —Us Vg U3 U2 Ul)

If £&,n € Ct; = Cfs generated by es,es,...,es, then

=5 o) wen=(5 %)

Thus @ : C/3 — R(16) induces an isomorphism
®': Ct; — R(8) @ R(8).
The algebraic structure on R(8) @ R(8) is defined by
(4,B)(C,D) = (AC + BD,AD + BC), (A, B),(C,D) e R(8) ® R(8).

The following proposition is helpful for our understanding the spin group
(see also [3], p. 273).

PROPOSITION 4.3. For any Ge SO(VS), there are two elements g1,g; €
Spin(8), such that g, = grws, g1|V8+ = G. The elements g, and g, can be con-
structed from G.

A
Proor. We first show that, for any g;,g> € Spin(8), ®(g;) = ( ! 3 ),
i
i=1,2,if A) = A, then By = +B,. That is, g; = g» or g; = gows. We need only

. 1
to show that if ®(g) = ( ), g € Spin(8), then g =1 or g = ws. From ®(w) =

B
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®(g9)®(v)®(g’) for v,w = gvg' € R®, we have P, = P,B' and B'= P, B' = P,
with vy = ge;g’ = > ae;. Set v=e, in P, = P,B'=P,P,, we can show that
a3 =as =---=ag = 0. In this way we can show vy = +e;, hence B = Piﬁel = +I,
g=1 or g = ws.

Next we show that the matrices T; = F, P, 1 <i<j<8, are linearly
independent. If there are real numbers b; such that } b;T; =0. Then from

P P! i<j
®(eiej) = ( e and — 3 b;F, P, = —23_byF,, we have
J

_Pet,-Pej ) i<j
I
(exp 3" byeres) = exp (_2 by ng) e ®(Spin(8)).
J

This shows that b;; =0 for j=2,...,8, then b; =0 for all i <j. Thus {T};} isa
basis of so(8), the Lie algebra of SO(8). Notice that T; € SO(8).
For any A4 € SO(8) =~ SO(V;"), we can write A’ = exp (Z b,-jTij). Let g; =
i<j

exp ) bjeie; and g, = giwg. Then g1, g> € Spin(8) as claimed. |

A
From this proposition, we know that if g € Spin(8), ®(g) = ( B)’ and

A =exp(>_b;Ty), then g = exp(}_ byeie;) or exp(d_ byeie;)ws. Hence

B= texp (_ S by Ty + Zb,.,.f,,.).
i#l
Let Ctg and C¢ (1 <l <8) be subalgebras of Cfgi; generated by
el,...,esx and egryq,...,egxs; respectively, where ej,e;,...,esxs; is an ortho-
normal basis of R¥*/. Let wg, be the volume element of Cfg and CZ be a
subalgebra of Cfg,; generated by esiiiwsk, i=1,...,/. Then uv = vu for any

ue Cfgk, ve C{).
LEMMA 4.4. C4 = C¢), Clskss = Clar - Ct = Cty ® Chh.

ReMARK. The Clifford algebra C¢(m,n) is generated by ey, ..., eyun With the
relations:

=2 fi=j=1,...,m,
eej + eje; = 2 fi=j=m+1,... m+n
0 ifikj.
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In the case of m = n, let h; =1 (e; — emss), hi = (€i + emyi), i=1,...,m, then
hi . h,‘ = l_l,' : E,‘ = 0, }_l,'hiﬁ,' = —h,‘, hiﬁihi = —hi. The pinor 'space of C/(m,m) can
be generated by 4 - - - h,,. As [Proposition 2.5, one can use elements k;, h; to con-
struct isomorphism between C¢(m,m) and R(2™).

For the general case, as Lemma 4.4, one can show that C¢(m,n) =
Ct/(m—n,0) ® C¢(n,n) if m > n; C¢/(m,n) = C£(0,n —m) ® C¢/(m,m) if m < n.

Appendix

As is well-known (see for example or [3]), the octonians can be used to
study Clifford algebra and spin group. In this appendix we show that the octo-
nians can also be defined by Clifford algebra. For notations see §4.

Fix an isomorphism ¢ : V5 — R® defined by ¢(e;4) = e;.

DEFINITION.  Define a product o on R?® by

x0y = —g(yerxd)
for all x, y e R®.

8
S yje; € R, we have
=1

8
LEMMA 1. For any x=3_ xie;, y =
i=1 Jj=

el
xoy=(x1,...,x3)P,
€g
Proor. By definition,
xXoy=-— Z P(xiyjejo)
, %
= in.)’lei + Z¢((X1, v xg) Vil )
i > 16
€1
=(x1,...,x8)Py . O
eg
The conjugate % for any x e R® is defined by X = —e;xe;. Then xoX =

—d(xe1xAd) = —p(erxxA) = |x|%er.
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PROPOSITION 2. The algebra (R%,0) is isomorphic to the octonians.

4 4
Proor. For any x =Y xe;, y =Y. yej € R®, by it is easy to see
i1 =1

that xoy is just the quaternionic product of x and y. Then we can identify
(R* o) with quaternions H. Hence we need only to show that for any a,b,c,d €

H = (R* o) (see [3], p. 105)
(a+boes)o(c+does)=aoc—dob+(doa+boé)oes.
We verify (boes)o(does)=—dob for instance.
Let d= 24: die;, does=des+ dyeg¢ —dser +dses. Then (does)esh =
—esh(d o es). };;l definition
(boes)o(does)=¢((does)eese1bA)

= —¢(esb(d o es)A)

= ¢(esbese;dA)

= ¢(e1bdA).
On the other hand

dob=—p(berdA) = —g(e1bdA).

Let O = H(+) be the octonians defined as in [3], p. 107. Then the isomorphism
between (R%,0) and O is defined by

8
Zx,-e,- — (x1 + X210 + X37 + X4k, x5 + X6I — X7] + X3k). O
i=1
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