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THE CENTER CONSTRUCTION FOR
WEAK HOPF ALGEBRAS

By

Adriana NENCIU

1. Introduction

Weak Hopf algebras have been proposed recently in [2], [3], [11], as a new
generalization of Hopf algebras. In contrast to other Hopf algebraic constructions
such as the quasi-Hopf algebras or weak quasi-Hopf algebras and rational Hopf
algebras, weak Hopf algebras are coassociative but they have ‘“weaker”” axioms
related to the unit and counit. Nevertheless the category of left (or right) modules
carries a monoidal structure.

The center construction was introduced by Joyal and Street [7], Majid [8] and
also by Drinfel’d (unpublished). It associates to a tensor category ¢ a braided
tensor category (%), called the center of ¥. The goal of this paper is to prove
that the center of the category of finite dimensional left modules over a weak
Hopf algebra H is braided equivalent to the category of finite dimensional left
modules over D(H), the Drinfel’d double associated to H. This generalize the
case of Hopf algebras (see [6]). Similar results have been obtained in [4], [5], [9]
for quasi-Hopf algebras and in for xg-Hopf algebras.

2. Preliminaries

We work over a field &, all maps are k-linear, unadorned tensor products ®
means ®; and all k-vector spaces are finite dimensional. We shall freely use the
Z-notation from and

DErFINITION 2.1 ([3]). A weak bialgebra (WBA for short) is a quintuple
(H,u,1,A,¢) such that:

(i) (H,u 1) is a (finite dimensional) associative algebra

(ii) (H,A,e) is a coassociative coalgebra
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(i) a) A(xy) = A(x)A(y)
b) (A®id)(A(1)) = (A1) @11 ®A(1)) = (1 ®A(1))(A(1)® 1)
c) e(xyz) = e(xya))e(y2)2) = 2 e(xy))e(ya)z)

DEFINITION 2.2 ([3]). A weak bialgebra H is called a weak Hopf algebra
(WHA for short) if there exists a k-linear map S : H — H satisfying the following
axioms:

@) X x)S(x@) =2 e(lnx)le)

(ii) > S(eay)x@e) = 2 lnelxle)

(i) > S(x))x@2)S(x3) = S(x)

The map S is called the antipode of H.

REMARK 2.3. 1) The antipode of a weak Hopf algebra is bijective (see [3]).

2) For a weak Hopf algebra (H,u,1,A,&,S) the following conditions are
equivalent (see [3]):

« H is a Hopf algebra

AN =1®1

* &(xy) = &(x)e(y)

* 2 S(xq))xe) = &(x)1

* 2 x1)S(x) = &(x)1

A morphism of WHA’s is a map between them which is both an algebra
and a coalgebra morphism preserving unit and counit and commuting with the

antipode.
We define the maps
ntEnR:H - H

nEh) =Y el = > _ hayS(hw)
nR(h) := Z 1ye(hl)) = Zs(h(,l))h&)

and we introduce the notation Hy := NE(H), Hg := NR(H). Then H; and Hpg
are subalgebras of H containing 1 which commute with each other and the
restriction of S defines an algebra anti-isomorphism between them (see [3]).

If H is a WHA then the dual space denoted by H becomes a WHA as in the
classical case of finite dimensional Hopf algebras. Between the left (right)
subalgebra of H and the right (left) subalgebra of H there exist the following
correspondences:

LeMMA 2.4 ([3], Lemma 2.6). The maps kj: H, — Hg, kf(xF) =xL —¢
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and kR :Hgp — Hp, kR(x®)=e— xR are algebra isomorphisms, where
(h— @§)(h') = d(h'h) and (¢ — h)(h') = p(hk') for all he H, $ € H.

The notions of left or right H-module and left or right H-comodule over a
WHA H are similar to classical ones. If M is a right H-comodule with structure
p:M— MQH, p(m) =3 my ® m(y, then M becomes a left H-module with

the action ¢-m =Y ¢(mqy)mqoy.
We give now the definition of a Yetter Drinfel’ld module over a WHA which
is slightly different from the classical one, see [13].

DEFINITION 2.5. A left-right Yetter-Drinfel’d module over the WHA H is a
k-linear space M such that:
(i) M is a left H-module with the action HQ M — M, hQ®mw— h-m
(i) M is a right H-comodule with the coaction p: M — M ® H, p(m) =
> my @ mqy
(iii) 3 ha) - meoy ® hgymay = 3o (h) - m) gy ® (h2) - m)(1yhq)
21y - meoy ® lgmay = 22 meoy @ may
for all he H, me M.

REMARK 2.6. 1) The axiom (iii) is equivalent to

> (hm) gy ® (h-m) gy = by - meoy ® haymayS~ (k) (1)

2) If x*eHy, xRe Hr and M is a left-right Yetter-Drinfel’d module then for
all me M we have:

(xt =) -m=>"(x* — &) (may)mcy
- Zs(m<1>x1‘)m<o>
= 28(1(2)m<1>x1‘)1(1)m<o>
=Y el(1) - m) 1y 1 yxH) (L) - m) oy
= _el(xG) - m) 1y x(5))(xXG) ™) o
=D e(xGymas)x(i) - meo»
=Y e(lgmay)(x*1() - meoy
=Y _e(lgmay)x™ - (Lay - meoy)

=Y x e(may)meoy

=xL-m (2)
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where the first and the second equality is the definition of left action of Hg and —
respectively, the third, fourth, sixth and ninth equality is condition (iii) from
Definition 2.5 (in the fourth equality h = 1 and in the sixth h = xT), the fifth and
the seventh equality is A(xL) = 1)xt ® 1) = xL1(y ® 1(p) (see (3], (2.6a), (2.7a)
and (2.10)); the last equality is the counit property.

(e — x®) - m=>"(e — x®)(mqy)mqoy
= Za(me<1>)m<o>
= e(x®(1gmay) 1) - moy
= Za((le(z))m<1>)1(1) " Moy
= _elxfyman)x(ly - meoy
=Y e((x§) - m)ayx(ly) (x§) - m) oy
=2 &((A@x®) - m) ¢, 1) ((1exF) - m)
= _e(lg(x®-m) )1y (x" - m) g,
=) (- m) 1) (xR - m) g

=x"-m (3)

where we used the definition of left action of Hg for the first equality and the
definition of — for the second equality; for the third, sixth, eighth and ninth
equality we used Definition 2.5 (iii) for h = xR h =1 and m = x® . m (in the sixth,
eighth and ninth equality respectively); the fifth and the seventh equalities follow
from the fact that A(xR) = 1) ® xR15) = 1(1) ® 12)xR (see [3] (2.6b), (2.7b) and
(2.10)); the last equality is the counit property.

Similarly we can define the notions of a left-left, right-left and right-right
Yetter-Drinfel’d module over a WHA H.

We denote by g% 2H the category of left-right Yetter-Drinfel’d modules
whose objects are finite dimensional left-right Yetter-Drinfel’d modules and
morphisms are maps which are H-linear and H-colinear. Moreover we have:
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PROPOSITION 2.7. Let H be a WHA over the field k. Then the category
uY DY is braided.

Proor. For two objects V, W we define the tensor product to be:
VxW:i={xeVQW|x=A(l) - x}c VW
as k-space. Then V x W e g% 9P with the following action and coaction:

he-(oxw):=Y hay-vxhg-w
plox w) =Y vy X Weoy ® Wy

for all ve V, we W. It is easy to see that the action and the coaction are well
defined and that ¥ x W becomes an Yetter-Drinfel’d module. If f,g are mor-
phisms then

fxgi=(f®g)oA(l)
The associativity constraints are trivial. The unit object is Hg with the structures:
h-z= Z 10)e(1(2)hz)
p() =) 20 ® 2
for all he H, ze Hgr and the unit constraints are:
ly :HpxV -V, Ily(zxv)=S8(z) v
rv:VxHp—V, rp(lvxz)=z-v

for all ve V, z e Hg. It is easy to see that /)y and r; are natural isomorphisms in
the category p# 2 with inverses:

I):V s HrxV
') =1x0v
17}V = V x Hg

it (@) =) (1) NR (1) v x 1,

for all ve V, ze Hgr. We verify the “Triangle Axiom’:
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(ry xidw)(lvxzxw)=z-vXw
=Zl(l)z-v®1(2)-w
= 14 v®1pS(z)-w (see [3], 2.31a)
=vxS(z)-w
= (idy x lw)(v x z x w)

for all ve V, we W, ze Hg. So y¥2" is a monoidal category.
For two objects V, W € y%9H we define:

cvw VXW—oWxV
cyw(v X w) = Z Wy X W(y - U
This map is H-linear because we have:

cv.wh-(vxw))= cV,W(Zh(l) v X h) -w)
=D (b W)oy X (hy - W)aayhay - 0
= hay - way x (hgyway) - v
= Zh(l) “weoy X by - (way - v)
= k- (wey X way - v)
=h-cy,w(vxw)

Similarly we can prove that ¢y w is H-colinear. If f: V — V' and g: W — W'
are morphisms in the category y¥2 then:

(g xf)ocv,w)vxw) = glwey) xf(way - v)
= 1y 9(wey) ® Ly - f(wary - v)
=3 19(ww) ® gy (way -/ (v))
=3 1g(w)eoy ® 1) (gW) 1y - (0))
=" gW) gy x gW) s - £ (v)

= (evi,w o (f x g))(v x w)
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for all ve V, we W, so cy w is natural. Moreover it satisfies the “Hexagon
Axioms”. We have:

cuvxw(ux (vxw))= Z(v X W)oy X (VX W)y - u
= Z Doy X Weoy X (Weiyoqry) - U
= (idy x chW)(Z vy X Uy U X w)
= (idy % cy,w) o (cu,v X idw)
cusxv,w((uxv) xw)= Zw«)) X wqry - (U X v)
= Zw<o> X WLy U X Wiy * U
= Z W03, X W0y * U X WLy + U
= (cy,w X idy) (Zu X W0y X Wy - v)
= (cu,w X idy) o (idy X cv,w)(u x v X w)
The map cyp w is bijective, the inverse is given by:
Gw WXV o>VxW
P (wxv) =" S(way) - v X weop
We compute:
(cv,w o cylw)(w x v) = CV,W(Z S(way) - v X W<0>)
= W03y X (W03, - (S(wary) - 0)
= " waoy X (W5, SWaryy)) - v
= Zw<o> x e(1yway)lg) v |
=) e(lgyway)weoy X 1) - v
= Z lay-wx 1l -v (using (3) for 1(;) € Hg)
=wXUv

Similarly cp!y o ey, w = idyxw. =
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For a WHA H we denote by Rep(H) the category of representations of H,
whose objects are finite dimensional left H-modules and whose morphisms are
H-linear maps.

PROPOSITION 2.8 (see [12]). The category Rep(H) is a monoidal category with
unit object Hj.

ProoF. The tensor product is defined in the same way as the tensor product

of the category y@ 2. The unit object is H; with the left H-module structure
given by:

h-z=nk(hz)
for all he H, ze H;. The unit constraints are the following:
lV:HL®V—>V, ly(Zl(l)-z®l(2)-v)=z-v
rV:V®HL—>V, rV(Zl(1)~U®1(2)-Z>=S(2)'v
for all ve V, ze Hy. The inverses are given by:
1;1 " V-oH.®V, l,‘,l(v) = Z 1(1) ® 1(2) )
Vo VeHL )= 1g 0@l o |
DEerFINITION 2.9 (see [12]). A quasitriangular weak Hopf algebra is a pair
(H,R) where H is a WHA and # € A°?(1)(H ® H)A(1) such that the following
conditions are fulfilled:
(qtl) (id ® A)(#) = Ri13%12
(at2) (A® id)(R) = R13%23

(qt3) A“P(h)R = RA(h)
(qtd) there exists # € A(1)(H ® H)A”(1) with

RAR =AP(1) and RR = A(1)

where Ry =RR 1, B3 =1 Q@ R etc., as usual.

Note that # is uniquely determined by #. As in the Hopf algebra case we
shall denote 2 =3 %' ® #2. For any two objects V, W € Rep(H) we define:
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cyw:VXW—->WxV
cV,W(vxw)zz.%z-wx.%l-v

then we have the following result from [12], Proposition 5.2:

ProposiTION 2.10. The family of homomorphisms {cy w}y y defines a
braiding in Rep(H). Conversely, if H is a WHA such that Rep(H) is braided, then
there exists # € AP (1)(H ® H)A(1) satisfying the properties in Definition 2.9 and
inducing the given braiding.

For more details about WHA’s and quasitriangular weak Hopf algebras see

3. The Drinfel’d Double for WHA'’s

In this section we give the generalization to WHA’s of the double con-
struction due to Drinfel’d for Hopf algebras. This also appears in and [12].

Let H be a WHA. By H we denoted the dual space which is again a WHA
(see [3]). Consider on the vector space H ® H a multiplication given by

R PR Y) = gha) ® duy¥du)(h3) b (S~ (h)))

where g,he H and ¢,y € H. With this muliplication H ® H becomes an as-
sociative algebra with unit 1 ® &. We denote by J the two-sided ideal generated
by:

z®e—1®e~—2z, zeHp
y®e—-1®y—¢ yeHp

where y e Hr, z € Hg. We define the Drinfel’d double, denoted by D(H), to be
the factor algebra (H ® H)/J and let [k ® ¢] denote the class of 4 ® ¢ in D(H).

ProposITION 3.1 (see [1]). D(H) is a WHA with the following structures:
[9 ® ][ ® Y] = Ylghw) ® doybdgy (b)Y (S~ (k)]

lpay = [1 ® ¢

A(lg®4)) = >lgq) ® d2)] ® [9(2) ® d(1)]

e(lg @ 4]) =2 e(gl))d(12)

S(g®d) =21 ®¢oS57[S(9) ®¢
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As in the classical case we have:

PropoSITION 3.2. The Drinfel’d double D(H) of a weak Hopf algebra H has
a quasitriangular structure given by:

2=%/i®d®[1®<]
2=1;[/i®®1® 5
where {f;};, and {¢'}; are dual bases in H and H respectively.

Proor. The identities (id ® A)(%) = R 13%1, and (A ® ld)(@) = R13%>»3 can
be written (identifying [H ® ¢] with H and [l ® H] with H) as:

i®&y®E =i fifi®E®¢
Z; fi(n) ®ﬁ<2) ® éi =% [i®f® fiéj

These equalities can be verified by evaluating both sides on an element
g®he H® H in the first two factors (respectively on ¢ @ ¥ € H ® H).
To check (qt3) we compute:

RA([$ ® h) = D _[fiha) ® b(3)] ® [h)Elyb1)Eiy (Ba)E (™ (b))
= 3 lh@fiS™ (h)ha) ® b)) ® ) ® &'y
= [ha) fiethayl )@ ® d)) ® (he) ® E'dpy)]
= [he)fi ® eydre) (1)) ® [ (hay L1y k) ® &6 )]
=Y i ® ' (11 m)eay (1)eny ) ® [heyliy ® E'd ()
= ha) fi ® $2)) ® [e)(11))e) (L)) b (1)) L2y ® &' 1))
= "lhe fi ® b)) ® [h) ® eyélerdz) ) )]
= h /i ® 4] ® lhaty ® by S~ (8 )
= > lhafiy ® b8 i )83 (ST (i) ® [ty ® by
= A“?([h @ ¢]) 2
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where we used the relations from the definition of the double and
&) fi=a, Zig(f)E=¢

Finally let us check that # satisfies #% = A(1), #% = A%(1). The first
property is equivalent to:

D@ @1 @8N =D [Linlmee (1) ® & ® [1 ® amsfsy (1))
which can be regarded as an equality in H ® H:
%y /i ® 8N =Y 1y lmee (Liy)el (1 emen,

Evaluating both sides on an arbitrary ¢ € H in the first factor we get:

S(¢(2))¢(1) = r:ITQ(¢(1)) ,:ﬁz (¢(2))

The second property can be proved in a similar way. [ |

REMARK 3.3. In [12] the authors introduce the definition of the Drinfel'd
double using H? ® H instead of H® H with a different multiplication. They prove
that their double is a quasitriangular weak Hopf algebra.

THEOREM 3.4. Let H be a WHA. Then the category g% of left-right
Yetter-Drinfel’d modules can be identified with the category Rep(D(H)) of left
modules over the Drinfel’d double D(H).

Proor. Let V be a left D(H)-module. Then V becomes a left H-module and
a left H-module in an obvious way. The left action of H on V transposes into a
right coaction of H as follows:

p:V—-oV®H, p) =Zifi(”) ® fi

where {f;}; and {¢'}, are dual bases in H and H respectively. We check now the
condition (1). We have:

$-(h-v)= Z¢((h : ”)<1>)(h : U)<o>
p-(h-0)=(1@dh®e])-v=> [ha) ® bu)du)(h)da) (S~ (hy))] - v

= bhayayS™ (hm)he) - v
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for all he H, ¢ € H. Thus

D (he0) gy ® (h-0) s = Y k) - 00y ® hgyvayS™ (ha))

Conversely if V is a left-right Yetter-Drinfel’d module it is easy to see that V'
becomes a left D(H)-module with the action:

h@d]-v=">_ $vay)h- vy
for all [h® ¢] € D(H). |

4. The Center Construction

Let (¥¢,®¢,1,a,l,r) be a tensor category. To this category we shall associate
a braided tensor category Z(%¥), called the center of ¥. When € is Rep(H) for a
WHA H then we shall prove that Z(¥) is braided equivalent to Rep(D(H)).

DEFINITION 4.1.  An object of Z(¥€) is a pair (V,c_.y) where V is an object
of € and c_ y is a family of natural isomorphisms
cx v i XQ@gV - VR®gX
for all X € Ob(€) such that for all X,Y € Ob(¥) we have:
Cx@.y,v =av,x,y © (cx,v ®¢idy) o a},lv,y o(idy ®¢cy,v)oax,y,v (2)
ey =ryloly (3)

A morphism f : (V,c_y) — (W,c_ w) is a morphism f:V — W in € such
that for each object X of € we have:

(f ®gidx)ocx,v = cx,wo (idx ®¢ f) (4)
The composition of two morphisms in Z(€) is the same as in € and

l'd(V,c_‘ vy = idy.

THEOREM 4.2. Let (¢,®,1,a,1,r) be a tensor category. Then Z(€) is a
braided tensor category.

ProOF. We follow the same steps as in [6] The tensor product of two
objects (V,c_ v) and (W,c_ w) is given by:

(Vie_v) ®ze) (W,cow) = (V®e W,c_ ve,w)
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where
cx,vew X Qg (V®¢ W) = (Vg W)@ X
CX,V@W = af/,lw,x o (idy Qg cx,w)oav,x,wo (cx,v Qgidw) o a}}y, W
The unit is (/,c_ ;) and the braiding is:
cv.w: (Vie—v) ®aw) (Wicow) = (W,c— w) @) (V,c-,v)

In order to prove our main result we fix a WHA H and we consider
% = Rep(H). This is a tensor category with unit H; and trivial associativity
constraints. We need some preliminary results.

LEMMA 4.3. Any object of & (Rep(H)) becomes a left-right Yetter-Drinfel'd
module.

Proor. Let (V,c_ y)e Z(Rep(H)). We define p, : V - V®H, py(v) :=
cr v(l x v). We claim that p, is a right H-comodule structure. As in [6] Lemma
XIII. 5.2 we have that for all X € Z(Rep(H)):

cx,v(x X 0) =D _ vy ® iy - X

To prove that p, is coassociative we consider X,Y € Z(Rep(H)) and using
condition (2) we obtain:

ZU<0> XUy "X XUy "V = ZU<O><0> X U0y = X X V) Y

forall xe X, yeY,ve V. Taking X = Y = H and x =y =1 we get that py is
coassociative. Since Hy is the unit of Rep(H) we have:

CHL,V(l X U) = Zv<0> X D<1> 1= Zv«,) X 8(1(1)v<1>)1(2)

But cy, v =ry! oly, hence

ZU((» X 8(1(1)1)(1))1(2) =vxl

Applying I x ¢ to both sides of this equality we obtain v = > v(oye(v¢1y), so Vis
a right H-comodule.
Let us now express the fact that cy y is H-linear. For he H, ve V we have:

C’H,V(h : (1 X U)) =h-CH,V(1 X v)

Replacing cy p by its expression in p;, we get:
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> (k@) - v)oy ® (hy - v)ayhay = Y hay - veoy ® hyvay
which is exactly condition (iii) from Definition 2.3. |

So if (V,c_ v) e Z(Rep(H)) then V becomes a right comodule, hence a left
H-module. Under the same hypotheses we have:

LEMMA 44. Let (V,c_ v) be an object of Z(Rep(H)) and X a left H-
module. Then the isomorphism cx y is determined by:
cX,V(xxv)zziéi-vxfi-x

for all xe X, ve V, where {f;}, and {&'}; are dual bases in H and H respectively.

ProoF. We have

cx,v(x X v) =D vy X vy - X
= vy x E(vay)fi- x
=Zéi-vxﬁ-x [ ]

THEOREM 4.5. For any weak Hopf algebra H the tensor. braided categories
Z(Rep(H)) and Rep(D(H)) are braided equivalent.
PrOOF. We define
F : Z(Rep(H)) — Rep(D(H))
F(Vie-v))=V
F(f)=f

for all (V,c_ v)e Z(Rep(H)) and f a map in Z(Rep(H)).
From V is a left-right Yetter-Drinfel’d module so V is a left
D(H)-module (see with the action:

h® ¢l 0= d(vay)h- v

where he H, ¢eﬁ, ve V.

Because f is a map in 2 (Rep(H)) it follows that f is H-linear and relation
(4) for X = H implies that f is H-colinear, hence H-linear. Consequently f is
D(H)-linear. This proves that F is well defined.



The center construction for weak Hopf algebras 203

Let us show that F is a braided functor. The unit object is H; in both
categories. The tensor product of (V,c_ y) and (W,c_ w) is (V x W,c_ yxw).
We define F((V,c_ y) x (W,c_w)) =V x W with the left D(H) action given
by [h®¢]> (v xw) =3 8((v x w)y)h- (v X W)y In the same time we can
consider the tensor product in Rep(D(H)) of V =F((V,c_y)) and W =
F((W,c- w)) with the action of D(H) given via A. We shall prove that these two
actions of D(H) coincide. We compute:

@b (vxw)=> ¢((v x w) g3k~ (v X W),
=Y dwasoay)hq) - vy X k) - weoy
=Y o) (vas)hay - vy X day(was)he) - weo
= [y @ b)) - v % [he) ® dyy] - w
=[h®@¢]- (vxw)

We prove now that F is braided functor, that is, if ¢y w is the braiding of
Z(Rep(H)) and cy, the braiding of Rep(D(H)), then F(cy w) = ¢y, w, which is
equivalent to

cv w(v x w)=z,%2-wx§i’1 ‘v
Using the definition of # the later is equivalent to
crwloxw) =% -wxfi-v

which is exactly the result from Lemma 4.4
We shall construct an inverse for the functor F. We define:

G : Rep(D(H)) — Z(Rep(H))
G(V)=(V,c_v)

where cx p(x x v) =3 %% v x #' - x for all X € Rep(H) and xe X, ve V. The
map cy,y is equal to Cy, p, the braiding of the category Rep(D(H)) (see
[Proposition 2.10)), and it is easy to see that it satisfies all the properties from

If f:V — W is a D(H)-linear map we define G(f) = f. We check that f is
a morphism in Z(Rep(H)). First f is H-linear since it is D(H)-linear. Next we
have:
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((f xidx)ocx v)(x xv) =Zf(§92-v) x R - x
=Z§?2 f(v) x R - x
= (cx,v o (idx x f))(x x v)

This proves that G is well defined. Clearly F o G = id and the equality Go F = id
follows from so the functor F is an equivalence. [ |

REMARK 4.6. The natural embedding H — D(H) of WHA’s induces a tensor

Sfunctor U : Rep(D(H)) — Rep(H). It is easy to check that U corresponds to the
universal functor 11 : Z(Rep(H)) — Rep(H) under the equivalence of Theorem 4.5.
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