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SOME CONDITIONS ON THE WEINGARTEN
ENDOMORPHISM OF REAL HYPERSURFACES IN

QUATERNIONIC SPACE FORMS
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Miguel ORTEGA and Juan de DIOS P\’EREZ

Abstract. We classify the real hypersurfaces in a non-flat quater-
nionic space form satisfying several conditions on their Weingarten
endomorphism. Firstly, we study on the maximal quatemionic dis-
tribution of the real hypersurface a relationship between a certain
metric tensor and the restriction of the metric of the ambient mani-
fold. Secondly, we consider some formulae relating the Weingarten
endomorphism to the curvature operator.

Introduction

Let $QM^{m}(c),$ $m\geq 2,$ $c\neq 0$ , be a non-flat quatemionic space form endowed
with the metric $g$ of constant quatemionic sectional curvature $c\neq 0$ . For sake of
simplicity, we will use $c=\pm 4$ . When $c=4$ , we will call it the quatemionic
projective space, $QP^{m}$ , and when $c=-4$ , the quatemionic hyperbolic space,
$QH^{m}$ . Let $M$ be a connected real hypersurface in $QM^{m}(c)$ without boundary,
and we choose a locally defined unit normal vector field $N$ on $M$ . We denote by
$A$ and $D$ the Weingarten endomorphism associated with $N$ and the maximal
quatemionic distribution on $M$ respectively. The restriction of the metric $g$ to
$TM$ will be also denoted by $g$ .

A totally umbilical real hypersurface should satisfy that there exists a smooth
function $\lambda$ on $M$ such that $g(AX, Y)=\lambda g(X, Y)$ , for any $X,$ $Y\in TM$ . But a
classical result of Tashiro and Tachibana (see [4]) states that there do not exist
totally umbilical real hypersurfaces in not-flat quatemionic space forms. Thus, an
interesting problem is to classify those real hypersurfaces in $QM^{m}(c)$ satisfying a
weaker condition. We copy the above formula, but we do not choose all tangent
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vectors in the tangent bundle $TM$ . Instead, we consider the quatemionic dis-
tribution $D$ of $M$ , which is also a vector bundle on $M$ . We continue denoting by
$g$ the restriction of the metric to $D$ . Besides, we define the symmetric tensor $h$ on
the vector bundle $D$ by $h(X, Y)=g(AX, Y)$ for any $X,$ $Y\in D$ . Then, we classify
in Theorem 1 those real hypersurfaces in $QM^{m}(c),$ $m\geq 3,$ $c\neq 0$ , satisfying that
there exists a smooth function $\lambda$ on $M$ such that $h=\lambda g$ .

On the other hand, the Codazzi equation implies the non-existence of real
hypersurfaces in $QM^{m}(c)$ with parallel second fundamental form. It is therefore
natural to consider the action of the curvature operator $R$ of $M$ acting as a
derivation on $A$ , that is to say $R\cdot A=0$ , that is weaker than $\nabla A=0$ , where $\nabla$ is
the Levi-Civita connection of $M$ . From this, we are interested in studying several
conditions that enable us to relate the Weingarten endomorphism to the curvature
operator. In this way, we have obtained several characterizations of some of the
examples of real hypersurfaces in $QM^{m}(c)$ known at present, making a clear
distinction among all real hypersurfaces in $QM^{m}(c)$ . More precisely, we consider
the following two conditions

$g(R(AX, Y)Z-AR(X, Y)Z,$ $W$) $=0$ , for any $X,$ $Y,$ $Z,$ $W\in D$ (1)

$g((R(X, Y)A)Z+(R(Z, X)A)Y+(R(Y, Z)A)X,$ $W$ ) $=0$ , (2)

for any $X,$ $Y,$ $Z,$ $W\in D$

Obviously, the second one is weaker than $R\cdot A=0$ . We classify the real hy-
persurfaces in $QM^{m}(c),$ $m\geq 3,$ $c\neq 0$ , satisfying these two conditions in Theorems
2 and 3 respectively. As a consequence, we can show that do not exist real
hypersurfaces in $QM^{m}(c),$ $m\geq 3,$ $c\neq 0$ , such that $R\cdot A=0$ .

Finally, the authors would like to thank the referee for some useful com-
ments.

1. Preliminaries

As $QM^{m}(c)$ is a quatemionic manifold, there is a three dimensional fiber
bundle $\gamma\nearrow\subset EndTM$ , called the quatemionic structure, such that given $\{J_{1}, J_{2}, J_{3}\}$

a basis of $\gamma$ defined on a suitable open subset of $M$ , the following properties are
satisfied

$J_{1}^{2}=J_{2}^{2}=J_{3}^{2}=-Id$ , $J_{1}J_{2}=-J_{2}J_{1}=J_{3}$

$g(J_{k}X, Y)+g(X, J_{k}Y)=0$ , $k=1,2,3$ (3)

$\overline{\nabla}_{x}J_{j}=-q_{j}(X)J_{k}+qk(X)J_{j}$ , $(dq_{j}+q_{j}\wedge qk)(X, Y)=4g(X,J_{j}Y)$
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for any $X,$ $Y$ tangent to $QM^{m}(c)$ , where V is the Levi-Civita connection of
$QM^{m}(c),$ $(i,j, k)$ is a cyclic permutation of (1,2,3) and $q\iota,$ $q_{2},$ $q3$ are local 1-
forms. In [2], we see that another basis $\{J_{1}^{\prime}, J_{2}^{\prime}, J_{3}^{\prime}\}$ of the fiber bundle $\mathscr{V}$ , which is
defined on the same open subset, can be obtained by considering $P\in SO(3)$ , and
then computing $PJ_{k}=J_{k}^{\prime}$ , for $k=1,2,3$ .

Let $M$ be a connected real hypersurface of $QM^{m}(c)$ without boundary. Let
$X$ be a tangent vector field to $M$ . We write $J_{k}X=\phi_{k}X+f_{k}(X)N,$ $k=1,2,3$ ,
where $\phi_{k}X$ is the tangential component of $J_{k}X$ and $f_{k}(X)=g(X, U_{k}),$ $k=1,2,3$ .
Then we have

$\phi_{k}^{2}X=-X+f_{k}(X)U_{k}$ , $f_{k}(\phi_{k}X)=0$ , $\phi_{k}U_{k}=0$ , $k=1,2,3$ (4)

for any $X$ tangent to $M$ , and

$\phi_{j}X=\phi_{j}\phi_{k}X-f_{k}(X)U_{j}=-\phi_{k}\phi_{j}X+f_{j}(X)U_{k}$ , $i=1,2,3$
(5)

$f_{i}(X)=f_{j}(\phi_{k}X)=-f_{k}(\phi_{j}X)$

for any $X$ tangent to $M$ , where $(i,j, k)$ is a cyclic permutation of (1,2,3). It is also
easy to check

$\phi_{j}U_{j}=-\phi_{j}U_{i}=U_{k}$

(6)
$g(\phi_{j}X, Y)+g(X, \phi_{i}Y)=0$ , $g(\phi_{j}X, \phi_{i}Y)=g(X, Y)-f_{i}(X)f_{i}(Y)$

for any $X,$ $Y$ tangent to $M,$ $j=1,2,3,$ $(i,j, k)$ being a cyclic permutation of
(1, 2, 3). From the expression of the curvature tensor of $QM^{m}(c),$ $[2]$ , we have the
Codazzi equation

$(\nabla_{X}A)Y-(\nabla_{Y}A)X=\frac{C}{4}\sum_{k=1}^{3}\{f_{k}(X)\phi_{k}Y-f_{k}(Y)\phi_{k}X-2g(\phi_{k}X, Y)U_{k}\}$ (7)

for any $X,$ $Y$ tangent to $M$ , where $\nabla$ is the Levi-Civita connection of $M$ and $A$ is
the Weingarten endomorphism. The eigenfunctions and eigenvectors of $A$ are
called principal curvatures and principal vectors respectively. If $p\in M$ , we will
write $W_{\lambda}(p)=\{X\in T_{p}M:A_{p}X=\lambda(p)X\}$ , which is called the principal curvature
distribution associated to the principal curvature $\lambda$ at $p$ . In general, $\dim W_{\lambda}$ is not
constant, although it is possible to find a dense open subset of $M$ where $\dim W_{\lambda}$

is constant. We also define $B\in hom(D, D)$ by the following. Given a point $p\in M$ ,
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and a vector $X\in D_{p}$ , define $B_{p}X$ as the orthogonal projection of $A_{p}X$ on $D_{p}$ .
Clearly, $g(BX, Y)=g$ ( $X,$ BY) for any $X,$ $Y\in D$ .

If $R$ denotes the curvature tensor of $M$ , the Gauss equation takes the form

$R(X, Y)Z=\frac{c}{4}\{g(Y, Z)X-g(X, Z)Y+\sum_{k=1}^{3}\{g(\phi_{k}Y, Z)\phi_{k}X-g(\phi_{k}X, Z)\phi_{k}Y$

$-2g(\phi_{k}X, Y)\phi_{k}Z\}$ $+g(AY, Z)AX-g(AX, Z)AY$ (8)

for any $X,$ $Y,$ $Z$ tangent to $M$ . If $\overline{R}$ denotes the curvature tensor of $QM^{m}(c)$ ,
$M$ is called curvature-adapted if its normal Jacobi operator $K_{N}=\overline{R}(-, N)N$

commutes with the Weingarten endomorphism $A$ of $M$ . J. Bemdt obtained the
following three theorems in [1].

THEOREM A. Let $M$ be a curvature-adapted real hypersurface in $QP^{m},$ $m\geq 2$ .
Then $M$ is orientable and an open subset of a tube of radius $0<r<\pi/2$ over one
of the following:

1. a totally geodesic $QP^{k},$ $k\in\{1, \ldots, m-1\}$ ,

2. a totally geodesic $CP^{m}$ .

REMARK 1.1. The tube of radius $0<r<\pi/2$ over a totally geodesic $QP^{m-1}$

is also a tube of radius $\pi/2-r$ over a point. These model spaces are known as
geodesic hyperspheres.

THEOREM B. Let $M$ be a curvature-adapted real hypersurface in $QH^{m},$ $m\geq 2$ ,

with constant principal curvatures. Then $M$ is an open subset of one of the fol-
lowing:

1. a tube of radius $r>0$ over a totally geodesic $QH^{k},$ $k\in\{0, \ldots, m-1\}$ ,
2. a tube of radius $r>0$ over a totally geodesic $CH^{m}$ ,
3. a horosphere.

THEOREM C. Let $M$ be a curvature adapted real hypersurface in $QH^{m}$ .
Suppose that $M$ has non-constant principal curvatures. Then

1. $AZ=2Z$ for any $Z\in D^{\perp}$ ,

2. the constant 1 is a principal curvature,
3. $lfp$ is another principal curvature different from 2 and 1, then $\phi_{k}W_{\rho}\subset W_{1}$

for $k=1,2,3$ .
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A real hypersurface is also curvature adapted if $AD\subseteq D$ or equivalently,
$AD^{\perp}\subseteq D^{\perp}$ (see [1]). Sometimes, it is useful to consider a pointwise version of this
definition when we are making a proof. Indeed, given $P$ any non-empty subset of
$M$ , we will say $M$ is curvature adapted on $P$ if for each point $p\in P,$ $A_{p}D_{p}\subseteq D_{p}$ ,
equivalently, $A_{p}D_{p}^{\perp}\subseteq D_{p}^{\perp}$ . Clearly, we are considering $P=M$ if we simply say $M$

is curvature adapted.
We recall that a real hypersurface in $QM^{m}(c)$ is ruled if $D$ is integrable. We

can call the horosphere a real hypersurface of type $A_{0}$ , the tubes over a point or
over a totally geodesic $QM^{m-1}(c)$ , real hypersurfaces of type $A_{1}$ , and the tubes
over a totally geodesic $QM^{k}(c),$ $1\leq k\leq m-2$ , real hypersurfaces of type $A_{2}$ .

2. Main Results

The reader should refer to the introduction to recall the definition of $g$ and $h$ .

THEOREM 1. Let $M$ be a connected real hypersurface in $QM^{m}(c),$ $m\geq 3$ ,
$c\neq 0$ , without boundary. Let us suppose there exists a smooth function $\lambda$ : $M\rightarrow R$

such that $h=\lambda g$ . Then the function $\lambda$ is constant, and $M$ is one of the following:

1. ruled, $\lambda=0$ ,

2. in $QP^{m}$ , an open subset of a tube of radius $r,$ $0<r<\pi/2$ , over a totally
geodesic $QP^{m-1},$ $\lambda=\cot(r)$ ,

3. in $QH^{m}$ ,
(a) an open subset of a tube of radius $r>0$ over a totally geodesic $QH^{m-1}$ ,

$0<\lambda=\tanh(r)<1$ ,
(b) an open subset of a horosphere, $\lambda=1$ ,
(c) an open subset of a tube of radius $r>0$ over a point, $1<\lambda=\coth(r)$ .

PROOF. The hypothesis $h=\lambda g$ is equivalent to

$AX=\lambda X+\sum_{l=1}^{3}f_{l}(AX)U_{l}$ for any $X\in D$ (9)

Let $\Gamma$ be the set of points $p\in M$ such that $M$ is not curvature-adapted at $p$ and
$\lambda(p)\neq 0$ . Given a point $ p\in\Gamma$ , let $\Omega$ be a connected coordinate open neigh-
bourhood of $p$ . We consider the vector bundle $Hom(D^{\perp}, D^{\perp})$ . We define $ A^{0}\in$

$Hom(D^{\perp}, D^{\perp})$ by the following. Given any $ q\in\Omega$ and any $X\in D_{q}^{\perp},$ $A_{q}^{0}X$ is the
normal projection of $A_{q}X$ on $D_{q}^{\perp}$ . Clearly, $g(A^{0}X, Y)=g(X, A^{0}Y)$ for any
$X,$ $Y\in D^{\perp}$ . By restricting $\Omega$ if necessary, there exists an orthonormal basis of $D^{\perp}$ ,
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$\{U_{1}^{\prime}, U_{2}^{\prime}, U_{3}^{\prime}\}$ , defined on $\Omega$ such that $A^{0}U_{k}^{\prime}=\mu_{k}U_{k}^{\prime}$ for certain smooth functions
$\mu_{k},$ $k=1,2,3$ , defined on $\Omega$ . As it is shown in [2], there exists $P\in SO(3)$ such
that $PJ_{k}=J_{k}^{\prime}$ for any $k=1,2,3$ , maybe after reordering the indices $k$ . It is easy
to check $U_{k}^{\prime}=-J_{k}^{\prime}N$ . Moreover, A $U_{k}^{\prime}=A^{0}U_{k}^{\prime}+E_{k}$ , for certain tangent vector
fields $\{E_{1}, E_{2}, E_{3}\}$ on $\Omega$ . As $E_{k}(q)\neq 0$ for some $k\in\{1,2,3\}$ , we can restrict $\Omega$ to
obtain that $M$ is not curvature adapted on $\Omega$ . Therefore, $\Gamma$ is open, so we can
choose a connected open neighbourhood $\Omega$ included in $\Gamma$ , and we retain the
notations to compute the vector fields $E_{k}$ , although for the sake of simplicity we
will denote by $U_{k}$ the new orthonormal basis of $D^{\perp}$ defined on $\Omega$ . Also, for each
$k,$ $l\in\{1,2,3\}$ , define the smooth function $a_{kl}=g(E_{k}, E_{l})$ on $\Omega$ . In the sequel, all
the computations will be made on $\Omega$ unless otherwise stated. Let us define
$V=Span\{E_{1}, E_{2}, E_{3}\}$ and $W$ the orthogonal complement of $V$ in $D$ . By (9),

$AX=\lambda X$ for any $X\in W$ (10)

Given $X,$ $Y\in W$ and $k\in\{1,2,3\}$ , we develop $g((\nabla_{X}A)Y-(\nabla_{Y}A)X, E_{k})$ bearing
in mind (7), (9) and (10),

$0=\sum_{l=1}^{3}a_{k/}g(Y, \phi_{l}X)$ (11)

for any $X,$ $Y$ in $W,$ $k=1,2,3$ on $\Omega$ . We can regard (11) as a homogeneous linear
system whose coefficients are $a_{kl}$ , so that we have to distinguish three cases. We
define the matrix $G=(a_{kl})_{k,l=1,2,3}$ .

CASE 1. Define $\Omega_{1}=\{q\in\Omega : \dim V(q)=3\}=\{q\in\Omega : \det G(q)\neq 0\}$ , which
is open. The matrix $G$ has rank 3, so that the linear system (11) has the unique
solution $0=g(Y, \phi_{T}X)$ , for any $l=1,2,3$ and any $X,$ $Y\in W$ . Therefore, $\phi_{1}W\subseteq V$ ,
so that $3=\dim V\geq\dim W=4m-7$ , that is to say, $4m\leq 10$ , which contradicts
$m\geq 3$ . Therefore $\Omega_{1}$ is empty.

CASE 2. Define $\Omega_{2}=\{q\in\Omega:\dim V(q)=2\}$ . We can suppose without los-
ing any generality $V=Span\{E_{1}, E_{2}\}$ on an open subset $\Omega_{2}^{0}$ of $\Omega_{2}$ . We can omit
the third equation of (11) and rewrite the others as

$a_{11}g(Y, \phi_{1}X)+a_{12}g(Y, \phi_{2}X)=-a_{13}g(Y, \phi_{3}X)$

(12)
$a_{21}g(Y, \phi_{1}X)+a_{22}g(Y, \phi_{2}X)=-a_{23}g(Y, \phi_{3}X)$

for any $X,$ $Y\in W$ on $\Omega_{2}^{0}$ . There are two subcases.



Some Conditions on the Weingarten endomorphism 305

CASE 2. $a$ . There exist a point $q\in\Omega_{2}^{0}$ and a unit vector $Z\in(W\cap\phi_{3}W)(q)$ .
By computing at $q$ , we put $X=Z,$ $Y=\phi_{3}Z$ in (12), obtaining $0=a_{13}=a_{23}$ . We
introduce this information in (12), and we finish this case as in Case 1.

CASE 2. $b$ . $W\cap\phi_{3}W=\{0\}$ at some point $q\in\Omega_{2}^{0}$ . As $(\phi_{3}W\oplus W)(q)\subset D(q)$

$=(V\oplus W)(q)$ , then $4m-6=\dim W=\dim\phi_{3}W\leq\dim V=2$ , and therefore
$m\leq 2$ . This is a contradiction. We conclude the set of interior points of $\Omega_{2}$ is
empty.

CASE 3. Define $\Omega_{3}=\{q\in\Omega : \dim V(q)=1\}$ . We can suppose without los-
ing any generality

$a_{11}g(Y, \phi_{1}X)+a_{12}g(Y, \phi_{2}X)+a_{13}g(Y, \phi_{3}X)=0$

for any $X,$ $Y\in W$ on $\Omega_{3}$ . Choose $k\in\{1,2,3\}$ . Let us define $\tilde{W}=W\cap$

$(V\oplus\phi_{1}V\oplus\phi_{2}V\oplus\phi_{3}V)^{\perp}$ . As $m\geq 3,$ $\dim\tilde{W}\geq 4$ on $\Omega_{3}$ , so that we can choose
a nonzero vector $X$ lying in $\tilde{W}$ . Now, take $Y=\phi_{k}X\in W$ , in the above equation,
and we obtain $0=a_{1k}$ on $\Omega_{3},$ $k=1,2,3$ , that is to say, $M$ is curvature-adapted
on $\Omega_{3}\subset\Gamma$ . This is a contradiction, and therefore $\Omega_{3}$ is empty.

Summing up these three cases, $\Omega$ is an open subset, $\Omega=\Omega_{2}$ , and $\Omega_{2}$ has no
interior points. Therefore, $\Omega$ is empty, which yields that $\Gamma$ is empty. Next, let us
define $\Delta=\{p\in M:\lambda(p)\neq 0\}$ , which is open. As $\Gamma$ is empty, $M$ is curvature
adapted on $\Delta$ . Therefore, $\Delta$ is a curvature adapted real hypersurface in $QM^{m}(c)$ .
Moreover, equation (9) becomes $AX=\lambda X$ for any $X\in D$ tangent to $\Delta$ . If the
ambient manifold is $QH^{m}$ , let us suppose $\Delta$ has a non-constant principal curvature
$p$ on an open subset $G$ contained in $\Delta$ . By Theorem $C$ , the constant 1 is a princi-
pal curvature on $G$ , and $W_{1}\subset D$ . This contradicts $AX=\lambda X$ for any $X\in D$ .
Therefore, we can resort to Theorems A and $B$ to classify the real hypersurface $\Delta$ ,
so that $\lambda$ is locally constant on $\Delta$ . Paper [1] contains a table with the principal
curvatures of each model space, so we only have to refer to this. As $M$ is
connected, and $\lambda$ is a continous function, $\lambda$ must be constant on $M$ and $M$ is one
of the real hypersurfaces of Theorems A and B. This concludes the proof. $\square $

Next, we tum our attention to equation (1).

THEOREM 2. Let $M$ be a connected real hypersurface in $QM^{m}(c),$ $m\geq 3$,
$c\neq 0$, without boundary. Suppose that $M$ satisfies (1). Then $M$ is one of the
following:



306 Miguel $0RTEGA$ and Juan de DIOS P\’EREZ

1. ruled,
2. an open subset of a real hypersurface of type $A_{0}$ or $A_{1}$ .

PROOF. By (8), (1) is equivalent to

$0=(c/4)\{g(X, Z)g(AY, W)-g(AX, Z)g(Y, W)+\sum_{i=1}^{3}\{g(\phi_{j}X, Z)g(A\phi_{j}Y, W)$

$+g(\phi_{j}Y, Z)g((\phi_{j}A-A\phi_{j})X, W)-g(\phi_{i}AX, Z)g(\phi_{j}Y, W)$ (13)

$-2g(\phi_{i}AX, Y)g(\phi_{j}Z, W)+2g(\phi_{i}X, Y)g$ ( $\phi_{i}Z,$ A $W$)}}

$+g(AX, Z)g(A^{2}Y, W)-g(A^{2}X, Z)g(AY, W)$

for any $X,$ $Y,$ $Z,$ $W\in D$ . Let $p$ be a point of $M$ , and choose $G$ a connected open
neighbourhood of $p$ on which the basis $\{U_{1}, U_{2}, U_{3}\}$ is globally defined. Define
$\{E_{1}, \ldots, E_{4m-4}\}$ an orthonormal basis of $D$ on $G$ . Fix $i\in\{1,2,3\}$ . Define the
smooth function $a:G\rightarrow R$ by $a=\sum_{k=1}^{4m-4}g(AE_{k}, E_{k})$ . In the sequel, all the
computations will be made on $G$ unless otherwise stated. We introduce $X=E_{l}$

and $Z=\phi_{j}E_{l}$ in (13), by (4), (5) and (6), and adding in $1\in\{1, \ldots, 4m-4\}$ we
obtain

$0=(4m-7)g(A\phi_{j}Y, W)+g(\phi_{j}AY, W)-ag(\phi_{j}Y, W)$ (14)

$-g(A\phi_{k}Y, \phi_{j}W)+g(A\phi_{j}Y, A\phi_{k}W)$

for any $Y,$ $W\in D$ tangent to $G$ , being $(i,j, k)$ a cyclic permutation of {1, 2, 3}.
We exchange $Y$ and $W$ in (14), obtaining

$0=(4m-7)g(A\phi_{l}W, Y)+g(\phi_{j}AW, Y)-ag(\phi_{j}W, Y)$

$-g(A\phi_{k}W, \phi_{j}Y)+g(A\phi_{j}W, A\phi_{k}Y)$

and adding this equation to (14), we obtain $0=(4m-8)g(A\phi_{i}Y, W)+(8-4m)$ .
$g(\phi_{l}AY, W)$ . As $m\geq 3,$ $g(A\phi_{j}Y, W)=g(\phi_{j}AY, W)$ . We introduce this infor-
mation in (14), and the resulting equation is $0=(4m-4)g(\phi_{i}AY, W)-$

$ag(\phi_{j}Y, W)$ , so that we obtain $g(AY, W)=\lambda g(Y, W)$ for any $Y,$ $W\in D$ tangent
to $G$ , where $\lambda$ : $G\rightarrow R$ is a smooth function. Conversely, any real hypersurface
in $QM^{m}(c)$ that has a smooth function $\lambda$ such that $g(AX, Y)=\lambda g(X, Y)$ for
any $X,$ $Y\in D$ satisfies (13). Finally, these real hypersurfaces are classified in
Theorem 1. $\square $
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THEOREM 3. Let $M$ be a connected real hypersurface in $QM^{m}(c),$ $m\geq 3$ ,
$c\neq 0$, satisfying (2). Then, $M$ is one of the following,

1. ruled,
2. an open subset of a real hypersurface of type $A_{0}$ or $A_{1}$ .

PROOF. By (8) and the first Bianchi equation, equation (2) is equivalent to

$0=\sum_{k=1}^{3}\{g((\phi_{k}A+A\phi_{k})X, Y)g(\phi_{k}Z, W)+g((\phi_{k}A+A\phi_{k})Y, Z)g(\phi_{k}X, W)$

$+g((\phi_{k}A+A\phi_{k})Z, X)g(\phi_{k}Y, W)-2g(\phi_{k}Z, X)g(\phi_{k}AY, W)$ (15)

$-2g(\phi_{k}X, Y)g(\phi_{k}AZ, W)-2g(\phi_{k}Y, Z)g(\phi_{k}AX, W)\}$

for any $X,$ $Y,$ $Z,$ $W\in D$ . Choose a point $p\in D$ , and an orthonormal basis
$\{E_{1}, \ldots, E_{4m-4}\}$ of $D$ defined on an open neighbourhood $G$ of $p$ . Given
$i,$ $k\in\{1,2,3\}$ , we define the smooth function $\lambda_{ik}$ : $G\rightarrow R$ by $\lambda_{ik}=(1/2)$ .
$\sum_{l=1}^{4m-4}g((A\phi_{k}+\phi_{k}A)E_{l}, \phi_{l}E_{l})$ . We should point out $\lambda_{ik}=-trace(\phi_{i}(A\phi_{k}+\phi_{k}A))$ ,
for any $i,$ $k\in\{1,2,3\}$ , so that if $i=k,$ $\lambda_{jj}=trace(B)$ and if $i\neq k,$ $\lambda_{ik}=0$ . Given
$i\in\{1,2,3\},$ $1\in\{1, \ldots, 4m-4\}$ , we introduce $Y=E_{l}$ and $Z=\phi_{j}E_{l}$ in (15), and
adding in $l=1,$

$\ldots,$
$4m-4$ we obtain

$0=\sum_{k=1}^{3}\{g((\phi_{k}A+A\phi_{k})X, \phi_{j}\phi_{k}W)-g(\phi_{j}A\phi_{k}X, \phi_{k}W)-g(\phi_{j}\phi_{k}AX, \phi_{k}W)$

$-2g(\phi_{k}A\phi_{l}\phi_{k}X, W)+2g(\phi_{j}\phi_{k}X, A\phi_{k}W)\}+2\lambda_{ii}g(\phi_{j}X, W)$

$-2(4m-4)g(\phi_{i}AX, W)$

for any $X,$ $W\in D$ tangent to $G$ . By using (5), we develop the above equation, and
we get

$0=(7-4m)g(\phi_{i}AX, W)-g(A\phi_{j}X, W)+\lambda_{ii}g(\phi_{i}X, W)$

$-g(A\phi_{j}X, \phi_{k}W)+g(A\phi_{k}X, \phi_{j}W)$

for any $X,$ $W\in D$ tangent to $G$ , being $(i,j, k)$ a cyclic permutation of (1, 2, 3). This
equation is equal to (14), so we can repeat the proof of Theorem 2 to obtain that
$G$ is either a ruled real hypersurface or an open subset of a real hypersurface of
type $A_{0}$ or $A_{1}$ . Usual connection reasonings show that $M$ is either a ruled real
hypersurface or an open subset of a real hypersurface of type $A_{0}$ or $A_{1}$ .
Conversely, if $M$ is either a ruled real hypersurface or a real hypersurface of type
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$A_{0}$ or $A_{1}$ , using Theorem 1, it is easy to see that $M$ satisfies equation (15). This
concludes the proof. $\square $

COROLLARY 2.1. Let $M$ be a connected real hypersurface in $QM^{m}(c),$ $m\geq 3$ ,
$c\neq 0$. The following statements are equivalent,

1. $M$ satisfies $(R(X, Y)A)Z=0$ for any $X,$ $Y,$ $Z\in D$,
2. $M$ satisfies $(R(X, Y)A)Z+(R(Y, Z)A)X+(R(Z, X)A)Y=0$ for any

$X,$ $Y,$ $Z\in D$ ,
3. $M$ is an open subset of a real hypersurface of type $A_{0}$ or $A_{1}$ .

PROOF. Clearly, statement 1) implies statement 2). Let $M$ be a connected
real hypersurface in $QM^{m}(c),$ $m\geq 3,$ $c\neq 0$ , satisfying statement 2). By Theorem
3, $M$ is either a ruled real hypersurface or an open subset of a real hypersurface
of type $A_{0}$ or $A_{1}$ . Let $M$ be a ruled real hypersurface. We develop $(R(X, Y)A)Z+$

$(R(Y, Z)A)X+(R(Z, X)A)Y=0$ , bearing in mind (8), the First Bianchi equation
and Theorem 1, obtaining

$0=\sum_{k=1}^{3}\{g(\phi_{k}Z, X)\phi_{k}AY+g(\phi_{k}X, Y)\phi_{k}AZ+g(\phi_{k}Y, Z)\phi_{k}AX\}$

for any $X,$ $Y,$ $Z\in D$ . Given $\{E_{1}, \ldots, E_{4m-4}\}$ a local basis of $D$ , choose $i\in\{1,2,3\}$ .
We substitute $Y=E_{l},$ $Z=\phi_{l}E_{l}$ in the above equation, and adding in $l=1,$ $\ldots$ ,
$4m-4$ , we obtain $0=\phi_{j}AX$ for any $X\in D$ . Thus, $AX=f_{i}(AX)U_{i}$ , for
any $X\in D$ and any $i=1,2,3$ . This yields $AX=0$ for any $X\in D$ . Therefore,
given $X,$ $Y\in D$ , as $M$ is ruled, $D$ is integrable, so $(\nabla_{X}A)Y-(\nabla_{Y}A)X=\nabla_{X}AY-$

$\nabla_{Y}AX-A[X, Y]=0$ . Introducing this in the Codazzi equation (7), we have
$0=\sum_{k=1}^{3}g(\phi_{k}X, Y)U_{k}$ for any $X,$ $Y\in D$ . If we introduce $X\in D$ unitary and
$Y=\phi_{1}X$ in this last equation a contradiction arises. Therefore, no ruled real
hypersurface satisfies statement 2). Finally, if $M$ is a real hypersurface of type $A_{0}$ or
$A_{1}$ , there exists a real constant $\lambda$ such that $AX=\lambda X$ for any $X\in D$ . Thus, given
$X,$ $Y,$ $Z\in D$ , by (8), $(R(X, Y)A)Z=R(X, Y)AZ-AR(X, Y)Z=R(X, Y)(\lambda Z)-$

$\lambda R(X, Y)Z=0$ . This concludes the proof. $\square $

COROLLARY 2.2. There do not exist real hypersurfaces in $QM^{m}(c),$ $m\geq 3$,
$c\neq 0$, satisfying

$(R(X, Y)A)Z+(R(Y, Z)A)X+(R(Z, X)A)Y=0$ , for any $X,$ $Y,$ $Z\in TM$ .
(16)
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PROOF. Suppose a real hypersurface $M$ in $QM^{m}(c),$ $m\geq 3,$ $c\neq 0$ , satisfies
(16). We then resort to Corollary 2.1 to know that $M$ is an open subset of a real
hypersurface of type $A_{0}$ or $A_{1}$ . In either case, there exist two real constants $\lambda,$

$\mu$

such that $AX=\lambda X+\mu\sum_{k=1}^{3}f_{k}(X)U_{k}$ for any $X\in TM$ . Introducing this in-
formation in (16), by the first Bianchi equation, we obtain $0=\sum_{k=1}^{3}\{f_{k}(Z)$ .
$R(X, Y)U_{k}+f_{k}(Y)R(Z, X)U_{k}+f_{k}(X)R(Y, Z)U_{k}\}$ for any $X,$ $Y,$ $Z\in TM$ . Now
we choose a unit vector $Y\in D,$ $Z=\phi_{2}Y$ and $X=U_{1}$ , and introduce them in the
above equation, by (8), obtaining $0=R(Y, \phi_{2}Y)U_{1}=(c/2)U_{3}$ . This is a con-
tradiction. $\square $

COROLLARY 2.3. There do not exist real hypersurfaces in $QM^{m}(c),$ $m\geq 3$ ,
$c\neq 0$, satisfying $R\cdot A=0$ .
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