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CURVATURE PINCHING THEOREMS FOR MINIMAL
SURFACES IN COMPLEX GRASSMANN MANIFOLDS

By
Wu BING-YE

Abstract. In this paper we study the curvature pinching property for
minimal surfaces in complex Grassmann manifolds and obtain some
results.

1. Introduction

Harmonic maps and minimal immersions of a Riemann surface M into
complex projective space CP" and complex Grassmann manifold G(m,n) have
been studied from a variety of viewpoints (see e.g. [1-5, 7]), and the basic work
of which was established by Chern and Wolfson in [3, 4]. For minimal surfaces
in CP" there is an invariant « called the Kaehler angle which is related to the
complex structure J of CP". The Kaehler angle, whose importance in the theory
of minimal surfaces in Kaehler manifolds was pointed by Chern and Wolfson [3],
gives a measure of the failure of the immersion to be a holomorphic map. For
harmonic isometric immersions from surfaces into complex Grassmann manifolds,
or equivalently, for minimal surfaces in complex Grassmann manifolds, there is
an analogous invariant i.e., the Kaehler angle, and we shall use this invariant to
study the curvature pinching property for harmonic isometric immersions from
surfaces into complex Grassmann manifolds.

2. Preliminaries

A. The Geometry of G(m,n)
We equip C" with the standard Hermitian inner product, so that, for Z,
WecCn,

ZZ(Zl,...7Zn), WZ(W],...,Wn),
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we have

here and later on we agree on the following convension of the ranges of indices:
1<AB,... <n, 1<apf,...<m m+1<ij,... <n

A frame consists of an ordered set of n linearly independent vectors Z4 so that
Zi A - NZ,#0.
It is called unitary, if
(Z4,ZB) =48

The space of unitary frames can be identified with the unitary group U(n). With

dZA = ZwABZB, (21)
B

the forms w4p are the Maurer-Cartan forms of U(n). They are skew-Hermitian,
i.e., we have

Wyp + Oy = 0 (2.2)

Taking the exterior derivative of (2.1), we get the Maurer-Cartan equations of
U(n):

deB = ZwAC AN WCB- (23)
C

Let G(m,n) be the complex Grassmann manifold of all m-dimensional subspace
C" in C". An element C™ of G(m,n) can be defined by the multivector
Zi A -+ ANZy #0, defined up to a factor. The vectors Z, and their orthogonal
vectors Z; are defined up to a transformation of U(m) and U(n — m), respec-
tively, so that G(m,n) has a G-structure, with G = U(m) x U(n — m). In par-
ticular, the form

ds> =) Wity (2.4)
o, i

is a positive definite Hermitian form on G(m,n), which defines a canonical
Hermitian metric. It is easy to see that ds? is infact a Kaehler metric on G(m, n).
Note that when m = 1, this induced metric on G(1,n) = CP""! has constant
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holomorphic sectional curvature 4. Let
Wy = Oni + V' —10,++, (2.5)

ie., 6, and 0, are the real and imaginary parts of w, respectively. Let
{Esi, Ey+i»} be the dual frame of {6,;, 0,+;«}. The complex structure J of G(m,n) is
defined by

JEyi = Eyriny  JEyj» = —Ey, (26)
so that {E,, E,;+} is the J-canonical frame of G(m,n).
B.  Harmonic Maps from Surfaces into G(m,n)
Let M be an oriented Riemannian surface and f : M — G(m,n) be a non-

constant harmonic map. Let e, e, be a local orthonormal frame of M adapted to
the orientation, and 6,0, be the dual frame. The structure equations of M are

de; = pe;, de, = —pe;, dp = —kb) A 0, (2.7)

where p is the real connection form and x is the Gaussian curvature of M. If we
set ¢ = 0; + v —10,, then we have the following complex version of (2.7):

V-1
dp=—V—1p A g, a’pz——2 KQ A Q. (2.8)
Let
S (0ui) = @yip + byip. (2.9)

Since ds2, = @, it is easy to know that fis an isometric immersion if and only if

Z aail;a,‘ = 0, Z(aa,-da,- + baigai) = 1. (210)

o, i

In terms of a, and b, Chern and Wolfson defined the so-called J- and
o-transformations as follows [4].

of : M — G(my,n), dof(x)= span{ZaaiZi l<a< m}, if E Iaoa-l2 # 0,

of : M — G(m_1,n), Of(x)= span{ZbaiZi 1l <a< m}, if z:lbm,-l2 # 0,
i o, i

where m; and m_; are positive integers, called the ranks of df and Jf re-
spectively. For convenience we will drop f* in such formulae when its presence is
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clear from context. Taking the exterior derivative of and using and
[2.8), we see that there exist locally defined complex-valued functions p.;, ¢, rxi

such that
Py + 42 = day; — Z agityp + Z a,jwji — vV —layp,
B J

i@ + i = dbsi — D _ bpiop+ Y by + V= 1bip. (2.11)
7 j

The quadratic differential form p.p> + 2¢..0p + r,@* is the complex version of
the second fundamental form of /. It is well-known that the vanishing of its trace
is the condition that f be harmonic, so that ¢, = 0, c.f. [4]. By we know that
the quantities ) ; |la,|* and 3, ; |by|* are globally defined invariants on M, and
we shall give the geometric meanings of them. Let

S (0xi) = cxnn 01 + cai2s,
ST (0xi+) = Cxrir161 + Cyri20s. (2.12)
Then from and we get

1 _
Cyil = 3 (@yi + @yi + byi + byi),
vV—1 _
Caid = 3 (@yi — @xi — bai + bai), (2.13)
Cyrit] = —2——1 (—yi + @y — by + byy),
1

Cyri*2 = 3 (i + @yi — by — chi)-

From we can easily get
Siler) = Z(CailE:zi + Caris1 Exviv),
a0

fuler) = (canEui + cariaEniv). (2.14)
%

If fis conformal, ie., Y, ;a.,b, =0, then from [2.6), [2.13) and (2.14) we see
that the cosin of the angle between Jf.(e;) and f.(e>) is

Jfuler),fule2)) S illas)® = [bail?)
[KIfule)| - 1f(e)]l 3, (awl? + |bail®)

cosa = (2.15)
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which is an invariant on M. Therefore, for conformal harmonic map
f M — G(m,n), we can define the Kaehler function cosa and Kaehler angle a
as above. In particular, when M = S?, the topological 2-sphere, all harmonic
maps from S? into G(m,n) are always conformal [4, 7]. Thus for harmonic
2-sphere in G(m,n), there is an invariant «, called the Kaehler angle, which gives
a measure of the failure of f to be a holomorphic map. Now we assume that
f: M — G(m,n) is a harmonic isometric immersion, i.e., an isometric minimal

immersion from M into G(m,n). Then and yields

> sl = COSZ%, S bul® = sinzg, (2.16)
o, o, i

which gives the geometric meanings of ), |a,;])* and D i |bsi)*. As in the special
case of m =1, we call the isometric minimal immersion f : M — G(m,n) is
holomorphic, anti-holomorphic and totally real if o = 0, = and n/2 respectively. It
is clear that f is holomorphic if and only if df = 0, ‘while f is anti-holomorphic if
and only if df =0. In terms of matrix notation we collect the fundamental
formulae for a minimal isometric immersion f : M — G(m,n) as follows.

(48 =0, |4* =cos’Z, |BI® =sin’3,
d4 — ¢ A + Ady, — V—14p = Py, (2.17)

dB — ¢11B + B¢y, + V—1Bp = Ry,

where
al, m+1 R /5 P bl,m—{—l e bln
A= , B= )
Anm+1  °°  Amn bm,m-H o by
Pim+1 - Pln Fim+1 -+ Fin
P= , R= ,
Pmm+1  *°* DPmn Ymom+1  *°° Tmn
w1]  cr Wim Om+l,m+l " Wmiln
=1 : ] P =
Oml - Wmm W, m+1 T Wpn

Here we define the norm ||C|| of a matrix C by ||C||* = tr(CC") in a standard
way, o is the Kaehler angle of f.
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3. Curvature Pinching Theorems for Minimal Surfaces

In this section we shall study the curvature pinching property for a minimal
isometric immersion f : M — G(m,n). For this porpose let us first prove the

following

LemMma 3.1. Let f : M — G(m,n) be an isometric minimal immersion from an
oriented Riemannian surface M into G(m,n). Then we have the following Gauss

equation for f:

K =4(| 44" + |1BB||* — | 4'BI* — I|4B'|1*) = 2(I|PI* + IR|*).  (3.1)

PrOOF. By and we have
déiy = ¢ A ¢y + (BB'— AA")p A @,
dgyy = ¢y A ¢+ (A'4 - B'B)g A §. (3.2)
Taking the exterior derivative of (2.17),_3 and using and we get
dP—'¢“P+P¢22 "ZV—IPP:P’]¢+P’2¢,
. 1 _ _ -
with P, = axA + BB'A+ AB'B—-2A4A4'4;
dR-¢”R+R¢22+2V—1Rp=R’]¢+R,2¢, (33)

1 _ _ _
with Ry =>KkB+AA'B+BA'A~2BB'B.

From (2.17); we can calculate out that
d(AA") — ¢, AA' + AA'¢,, = PA'p + AP'}. (3.4)

So, by taking the trace on both sides of we get

o

2
By virtue of [2.17), and we obtain

d cos? dtr(AA") = tr(PA")p + tr(AP")p. (3.5)

1 2 N N L T - A S\ =
4Acos Egp/\(p—aacos 2—d(6cos 2) = d(tr(AP")p)

1 i, _ )
- (Ecoszg-x—2||AA’||2+||P||2+[IA’B|IZ+||AB’|IZ)¢ A @, (3.6)
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where A denotes the Laplacian of M. Similarly we have

1 . | _ _ _
LAsin?d = Lin2 %2 BE + [RIP+ B+ 4B (37)

Combining (3.6) and (3.7) we can get (3.1) immediately.
Using this Gauss equation, we can prove the following

THEOREM 3.2. Let f: M — G(m,n) be an isometric minimal immersion
of a connected surface (not necessary complete) M into G(m,n). If k=
max{4cos?(«/2),4sin’(«/2)}, then one of the following two cases holds:

(a) k =4, and f is either holomorphic or anti-holomorphic;

(b) k =2, f is totally real, and f = [f, + V], where fi : M — G(2,n) is a

totally real isometric minimal immersion, and V is a constant complex
vector subspace of C" with dimension m — 2.

Proor. It is clear that
JAA? < ||4)1* = cos*Z, (38)
and the equality holds if and only if rank(4) = rank(df) < 1. Similarly,

1BB'|1* < [1B* = sin*3, (3.9)

and the equality holds if and only if rank(B) = rank(Jf) < 1. Therefore, from
(3.1), and we have

0 =i — 4(|| 44" + 1 BB|I*) + 4(|A"B|* + | 4B'|1*) + 2(I PII* + | RII*)

> 0052% (K — 4 ¢cos? %) + sinzg— (;c — 4sin’ g)

+4(|| 4" BII” + [4B"|*) + 2(|[ PII* + | RII®), (3.10)
and the equality holds if and only if rank(éf) < 1, rank(df) < 1. By [3.10) and
the curvature condition it is clear that if f is not totally real, then f must be
holomorphic or anti-holomorphic with x = 4, which is contained in case (a) of

the theorem. Now we consider the case when fis totally real. Then by we
have ¥ =2, and

A'B=0, AB'=0, P=R=0, rank(df)=rank(df)=1. (3.11)

So we can choose the local unitary frame Z,,...,Z, of C" along f suitably so
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that f=[Z, A -+ AZy], Of =[Zns1] and ker(df)=[Z2 A -+ A Z,]. Fur-
thermore, since 4B’ = 0 implies that df L Jf, we can require that df = [Z,.]

and ker(df)Nker(3f) =[Z3 A --- A Z,]. In summary, the pull back of the
Maurer-Cartan form of U(n) by f is given by

1 1 m—2 1 1 n—

m—2
[ on w12 Qi a1 m19 0 0 \ 1
w21 w2 Q3 0 by mi20 0 1
Q3 Qs Qi3 0 0 0 m—2
((1),43) = = _
ay, m+19 B 0 0 Om+1.m+1 Om+1.m+2 Q46 1
0 —brm+20 0 Wmt2.mel Omi2me2  Qse 1
\ 0 0 0 Q4 Qss Qe ) n—m=—2
(3.12)
By virtue of (2.17),_3, (3.11) and (3.12) we get
armer 00 wi; w1 Q3 aims1 0
d 0 0 0 — Wy W 923 0 0
0 0 0 Q3 Qn Qi3 0 0
ar, m+1 0 O Omil.mel Omil,me2 a6
+ 0 0 0 Wm+2 . m+1 Wip+2, m+2 QS6
0 0 0 Q4 Qs Qe
AL, m+1 0 0
—V-lp 0 0 0] =0,
0 00
0 0 0 w1 o Qs 0 0
dl 0 bomez O | — | wa w2 Qi 0 by mi2
0 0 0 Q31 Q3 Q3 0 0
0 0 0 Omtl,m+l Omit,me2 a6
+10 b2,m+2 0 Omi2,m+1 Omy2,mr2  s6
0 0 0
+VZipl 0 boms 0] =0, (3.13)
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from which it follows that
Q3 = Q3 =0. (3.14)

Put fi=1[Z AZ)]: M — G(2,n) and V =[Z3 A --- A Z,]. Then by (3.12) and
(3.14), we can get the conclusion of the theorem easily.
The following theorem is a generalization of Theorem 2.1 of [7].

THEOREM 3.3. Let f: M — G(m,n) be an isometric minimal immersion of
a compact surface M into G(m,n) which is not anti-holomorphic (resp. not
holomorphic). If Kk > 4cos?(a/2)/rank(df) (resp. x > 4sin’(a/2)/rank(3f)),
then k = 4 cos?(«/2)/rank(3f) (resp. k = 4sin*(a/2)/rank(df)).

Proor. We will give the proof for the case x > 4cos?(a/2)/rank(df) only

because the other can be shown similarly. As in the proof of Theorem 3.2, we can
choose a local unitary frame Zi,...,Z, of C" along f suitably so that the pull
back of the Maurer-Cartan form of U(n) by f is given by
k1 m — k] kl n—m— kl
Q) Qp, Aue+ Bug B>¢ ki
(©48) Q) Q» B¢ By m—ky |
w = - _ _ _
A —A,,¢- B¢ —Byo Q33 Qa4 ki
*Bltz(l) —By0 Qa3 Qu n—m—k
(3.15)
where ki = rank(df). (2.17)2 and (3.15) yields
4 Ay 0 Q Qp\[An 0 N A 0\ [ Q33 Qi
0O O Q) Qx» 0 o0 0 0 Quz Qu
A O Py P
—V=1p _ o, (3.16)
0 O Py Py
from which it follows that
dAy — QA + A11Qa3 — V—=1pAdy = Puo,
A1 Q3q = Piap, Q1A = Prnp, Pp=0. (3.17)

It is easy to see that |det 4| is a scalar invariant of f [7]. Noticing that for
a nonsingular matrix-valued function C we have dlog(det C) = tr(dC - C!), we

get, from (3.17),
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d(logdetA”) — tI‘(Q“) + tI‘(Q33) —V-=lkip= tr(P“Al_ll)(p,
dlog|det 41| = tr(P1147])p. | (3.18)
Taking the exterior derivative of (3.18), and using (2.3), [(2.8), (3.15) and

we obtain

Alog|det A, |2

o — —
=2k, -x+4(—zcos2§ + 20 Bull* +1Bull* + B2 |I* + |45/ Prall” + ||P21A,,’||2).
(3.19)

It should be pointed out that (3.19) holds only in points of det 4;; # 0. However,
when x > 4cos?(a/2)/k;, by (3.19) and the continuity of |det 4;;|*> we can deduce
that |det 4,;|* is a subharmonic function on M, it must be a constant. Therefore,
k = 4cos*(x/2)/k;, so we are done.

CoroLLARY 3.4V Let f: M — G(m,n) be a harmonic isometric immersion
of a compact surface M into G(m,n) which is not anti-holomorphic (resp. not
holomorphic). If k = 4/rank(0f) (resp. x = 4/rank(df)), then k = 4/rank(of)
(resp. k = 4/rank(0f)), and f is holomorphic (resp. anti-holomorphic).

EXAMPLE. Let f : S — G(m,n) be defined by

k] k2 m—k1 —kg
o -
Z)
2k,
20
7
20
Zo 4|
f[zl] 2k,
20
Z)
1
m—k1 —kz
1
| 0 fn—m-k —k
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then in the induced metric from that of G(m,n), S?> has constant curva-
ture k = 4/(ky + k). Also, we have k; = rank(df), k; = rank(df), cos?(«/2) =
ki/(ki +ky), and sin(a/2) = ky/(ky +k2), so k =4cos?(«/2)/rank(df) =
4sin*(a/2) /rank(Jf). Moreover, if k; =k, = 1, then x =2 and f is totally real.

4. Minimal 2-spheres in G(2,4) with Constant Curvature and
Kaehler Angle

In this section, we look at minimal 2-sphere S? in G(2,4) with constant
curvature and Kaehler angle. Let f : S? — G(2,4) be a minimal isometric im-
mersion. By [4, 7] we know that at least one of the d-transformation and the o-
transformation is degenerate. For simplicity we assume that f is neither holo-
morphic nor anti-holomorphic. Let us say rank(df) =1 and rank(df) > 1.
Choosing a suitable local unitary frame Z,, Z,, Z3, Z4 along f as before, we have

az 0 b1z b
A= B = . 4.1
( 0 O>, (b23 b24> ( )

By (2.17); and we get
dayz + a;3(w33 — w;p — V-1p) =0 modg,
W34 = ap, w1 = b(p. (4.2)

(4.2); and a result of Chern [2] show that a3 is a function of analytic type. Since
rank(df) = 1, a;3 has only isolated zeros. But tr(4B’) = aizbiz =0, so b3 =0,
and consequently,

w13 = app, 4 =bug, w3 =by3p, 0u=>bup (4.3)
Now from (2.17); and (4.2), we have
dbis + bia(was — w11 + V—1p) =0 mod p,
dby; + byy(w33 — wpp + V—=1p) =0 mod§, (4.4)
dbzs + bra(was — w2 + V—1p) + (abyz — bbis)p =0 mod §.

It follows that b4 and b,3 are functions of analytic type. By taking the exterior
derivative of (4.2); we obtain

da + a(was — w33 — V—1p) = by3bu¢ modoy,
db + b(w“ —wy —V —Ip) = —514b24(ﬁ mod ¢. (45)
From (4.2), and (4.4),_, we can calculate out as in the proof of [Lemma 3.1,
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that
1 1
ZAmgmﬂz=§K—2MM2+wmﬁ+wxﬁ+mP+uf,
1 1
ZAmgmuz:ix—zwm2+mﬂz—wmﬁ+mﬁ—uﬁ, (4.6)

1 1
ZA10g|b23|2 = EK — 2|b23|2 + |6113|2 — lb24|2 — |a|2 + ‘blz,

from which it follows that

1
ZA]Oglb14b23|2 =K +2(|a13l2 — |b14|2 - |b2312 - |b24l2) =K+ 2cosa. (4.7)

Since both x and « are constant, if b14by3 # 0, then by Lemma 4.1 of , there 1s
a nonnegative integer N such that

—nN = (k + 2cosa) - 4n/k, (4.8)

and consequently, k = —8cosa/(N +4), and of course this is possible only if
cosa < 0. If bisb3 =0, we can assume that b4 = 0 without loss of generality.
Then in this case (4.5); yields

1 1
ZAmgmz:§x+wﬂﬁ+wmf+mmﬁ-um? (4.9)

Combining and we get

%Amgmwnmzzgm (4.10)

so bby; =0 and consequently b =0 or b3 =0. If b =0, then
%A]og|a13b23|2 =K — 1, (4.11)
which yields that by; =0 or as in [4.8),

—aN' = (k—1)-4n/k, (4.12)

where N’ is a nonnegative integer. In the latter case, x = 4/(N’ +4). Now we
consider the case bj4 = b3 = 0. Then by (4.4);, (4.5) and (4.6); we have

1 1
0= ZAlogIa13|2 =5K— 2las|* + |al® + b,
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1 1
0 = Aloglby|” =3k = 2|bx|” +|al” + |bI’, (4.13)

1 1
ZAlog|a{2 = §K+ 1 —2|al?,

1 21 2
=-K+ 2|b|°.
4Alog|b| ¥ 1 |b|

It is easy to see from (4.13);_, that |a3|> = |by|® = 1/2, i.e., fis totally real. Now

(4.13) yields
%Alog|a13b24ab|2 = 2K, (4.14)

so ab = 0. Without loss of generality we assume that « = 0, then we have

1 3

—Aloglapsbyub|* ==Kk — 1. (4.15)
4 2

Consequently, we have b =0 or as in the above argument, x =4/(N" + 6),
where N” is a nonnegative integer. In the case where a = b =0, by we get
k = 2. In summary, we have shown

THEOREM 4.1. Let f : S* — G(2,4) be an isometric minimal immersion from
S? into G(2,4) with constant curvature k and constant Kaehler angle o, and « # 0,
n. Then k = 8|cosa|/(N +4) or k =4/(N + 4) or k =2, where N is a nonnegative
integer. In the last case, f is totally real. ‘

COROLLARY 4.2. Let f:S% — G(2,4) be a totally real isometric minimal
immersion from S* into G(2,4) with constant curvature x. Then k = 4/(N + 4) or
=2, where N is a nonnegative integer.
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