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THE UPPER BOUNDS FOR EIGENVALUES OF
DIRAC OPERATORS

By

Zhou JIANWEI

Abstract. Let D be a Dirac operator on a compact oriented
Riemannian manifold M of dimension 2m. The operator D can be
one of the four classical elliptic operators that arise from geometry,
or one of the twisted operators of these four operators. Let A7 be the

- k-th nonzero eigenvalue of the operator D? counting with multi-
plicity. We show that

N(a) L/m 2" Y mg+k—1) —27"my + 1 L/m
s eom ma"{ (Fan) ol (41 ) ¢

where N(a) is an integer determined by the geometry of M, mg the
dimension of the kernel of D? and ko an integer defined by the
operator D. These results, in case M being a surface, give a partial
answer to a conjecture of Yau.

1. Introduction

Let M be a compact Riemannian spin manifold, with a twisted classical
Dirac operator denoted by Djy. Vafa and Witten proved in [10] that there exist
universal upper bounds for the eigenvalues of operator Dy. By the methods of
Vafa and Witten, Baum [3] obtained the upper bounds for the eigenvalues of the
classical Dirac operator in geometrical terms of M. Bunke [4], Glazebrook and
Kamber made also the related works.

By using the motheds developed by Vafa, Witten and Baum, we prove that
there exist universal upper bounds for generalized Dirac operators. Our main
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results are Theorems and B.6. We also improve the estimates of the upper
bounds given by Baum. The Dirac operators discussed here can be one of the
four classical elliptic operators that arise from geometry, or one of the twisted
operators of these four operators. To prove we use Clifford bundles
C/(S*") and C/(v). In §2, we study the properties of these bundles, espectially
we compute the Chern character ch(CZ*(S™™)).

It is well known that the Hodge-de Rham operator D =d + ¢ acting on
the space of differential forms is a Dirac operator. In [12, Problem 79], Yau
asked how to estimate the first nonzero eigenvalue of Laplacian of D in terms of
computable geometry quantities. For these problems, we show in §4 that the
upper bounds of the first eigenvalue of Laplacian D? can be estimated by the
geometry and topology of M. For the case dim M = 2m and k sufficiently large,
the k-th nonzero eigenvalue 4] of D? counting with multiplicity can be bounded
by

2 m0+k'—l 1/m
lkSc(Zm)<——————2V(M)) ,

where my is the sum of Betti numbers of M. In [12, Problem 71], Yau asked the
validity of the following inequality for M being a surface

A c(g+1)

k = area(M)’
where ¢ is a universal constant, g the genus of M and /1,% the k-th eigenvalue of
Laplacian acting on functions. This inequality is valid for the case k =1 (see
Hersch , Yang and Yau ). We shall show that, in this case, the spectrum of
Laplacian D? acting on functions is the same as that of D? acting on differential
forms. Therefore Theorems B.1 and give a partial answer to this problem.

All manifolds considered in this paper are compact, oriented and without
boundary. The names of elliptic operators used in this paper follows from Gilkey

[6] and Lawson and Michelsohn [9].

2. Clifford Bundles on S

Let v be the unit outward norm on the unit sphere S?”. Let C/£(S*") and
C¢(v) be the associated Clifford bundles of 7S*" and the normal bundle on $2”
respectively, CZ(S?") = C£(S?)® C, C/(v) = C/(v) ® C. Let ¢,,...,0,, be an
oriented local orthonormal basis of TS?" and C/(S*") = C¢*(S?™) @ C¢™(S?™)
a decomposition, C£*(S2") = (1 + w,) - C£(S¥"), where w. = (V—1)"¢, - s,
and the notation - stands for the Clifford multiplication.
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LEMMA 2.1. Let V be a covariant derivative on C{(S*") determined by
the Levi-Civita connection on TS*". Then for any X e (TS*") and e
C(C¢*(S*)), we have

Veh =Xy —L[o- Xy —y 0 X].

<l

ProoF. Let (x!,...,x?"*!) be the Euclidean coordinates on RZ”’“ nd
the flat connection on R*"!. For any vector fields X = EX '(8/ox"), ¥
Z Y/(6/6x7) on R*™*', we have

Oxt 6xl

If X,Y e (TS?), the Levi-Civita connection V on S is defined by
VY = XY — {XY,v)v.

By {XY,v) = X{Y,v)— (Y, Xv) = —(X,Y), we have
VYY = XY + (X, Y)v.

Let Yy =g, ---¢;, be a local section of C/(S*"). From

v- X ¢11 = ~—2<X ¢11 >U¢12 wik +¢i1 U X¢i2 ...wik
k
:-——2Z¢l_] <X?¢lj>v¢lk+(pll ...(oik 'U'X,
=1

we have
VX‘//:ZWI”'VX(P;;”'%,(
:sz—%[u-X-l//—z//-v-X].

Since Vyw. =0, the covariant derivative Vy preserves the decomposition
C/(S*™) = C£T(S?) @ C¢~(S*™). The lemma is proved. O

PROPOSITION 2.2. The Chern character of C¢*(S*") is given by
Ch(Cfi(Szm)) — 2m(2m—1a0 + Otzm),

where a; are the generators of H'(S*™ Z).

Lemma 2.3. Let Ctpy = Ct5, ® Ct5, be the decomposztzon defined as
usually. For any ¢ = e; ---e,,, Yy =e¢; ---¢€;, | < - <ix, j; <--- < j, we define
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a map F,y:Clty — Cf5  F, (&) =@ & Y, where ey,... e, is an oriented
orthonormal basis of R*". Then we have
221, o=y =1
r(Foylees) = £(=V-1)"2"""", g9=eer---e2, ¥ =1,
0, otherwise.

This lemma can be proved easily. We prove |Proposition 2.2/ only.

PrOOF. Let w',...,w?" be a dual basis of ¢,,...,0,, and R=1/85" -
Rjiaw’ A’ ® @9, be an operator acting on I'(C£*(S?™)), where Ry = dudi —
00y are the components of curvature tensor on sphere S2m_ Since

R0, =33 Rjpio' N/ @ ¢, + ¢, - R,
the curvature operator on the Clifford bundle C£*(S?") is given by
R— R:T(Ct*(8*™)) — A%(S*) @ [ (CL*(8*™)),
(R-RE=R-E—¢-R, EeD(CLE(S™)).
Then the Chern character of C/*(S?") is defined by the closed form

C/’i(SZ'")}.
By Lemma 2.3, we need only to compute

VAN -
(27: ER"’— 87z) mu S G A A A0 @ 0,0, 0,

(\/_)()12

(82)"m W' NP A A ® 910y Py,

ch(CtE(S*™)) = tr{exp [% (R-R)

We obtain
ch(C£*(S?™) = 2" (2" ag + agm),
where oy, = (=1)"((2m)!/2 - m!z™4™)w' A --- AwP" is a generator of
H2m(s2m;z). O
3. Upper Bounds for Eigenvalues of Dirac Operators

Let M be a compact oriented Riemannian manifold of dimension 2m and
S=S8"® S be a bundle of left modules over C/(M). Let D : T'(S) — I'(S) be
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a generalized Dirac operator on M. The operator D is selfadjoint and D° =
D:T(SY) —-TI(S7), D" =D:TI'(S")—TI(S"). Let e,...,esn be a local
orthonormal basis on M and V° be a covariant derivative on S, then we have

(see [9], IL. §5)

The spectrum of the Dirac operator D : I'(S) — I'(S) is symmetric to zero. If
A% is an eigenvalue of D2, +/ are the eigenvalues of D. Let 0 = A3 < A2 < ---
denote the eigenvalues of D? and m; be the multiplicity of Ajz. If j > 0, m; is even.
Let f: M — S?" be a smooth map. Define
df (v
= sup LU ser arl, = max

veT M |v]

where df is the tangent map of f. One can show that the norm of the cotangent

map £ of f equals ||df]],.
The following theorem is a generalization of [3] and [10].

THEOREM 3.1. Let S be a Dirac bundle over M and D :T'(S) — I'(S) be a
Dirac operator with the index ind(D°) = [,, F, where F =ko+--- is a charac-
teristic form on M, ko € C. We assume that ko # 0. Let f: M — S*" be a smooth
map with degree deg(f) which satisfies |ko|deg(f) >2""1(mg+ - +myp_1) —
27"myq. Then the k-th eigenvalue of D is bounded by

[kl < vm(m + 1)||df || o,

The proof of is similar to that of Baum [3].
Let V/ be the covariant derivative on the induced bundle f*[CZ*(S*):
C/(v)] defined by

V(1) = f*(Vagrx)t), X eT(TM), teT[CL*(S™)- Ct(v)),

where V is the covariant derivative on C/*(S?").C/(v) defined in §2 and
Vo = 0. Let V° be the covariant derivative on f*[C/(S?") - C/(v)] defined by the
trivial connection on T'S%" @ v =~ $2” x R¥"*!_If there is no danger of confusion
we omit the symbol f*. Define operators DJZ—L and Dy as follows:

Df :T(S® Cr*(8*) - C£(v)) — T(S® C£*(S™) - C(v)),

DF =3 ¢Vi®1+1®V/];
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Do : T(S® C£(S*™) - Ct(v)) — T(S® C£(S*™) - CL(v)),
Dy=> ¢Vi®1+1®V,]

The twisted Dirac operators Dy and DflL are essentially selfadjoint. Denote
Dy = D7 @ D; and Ly = Dy — Do. The proof of is based on the
comparison of the spectrum of the twisted operators Dy and Dj. Since S ®
fI[C(S¥™) - CL(v) = S@ - @S =218, for each j, the eigenvalue A7 of D?
is also the eigenvalue of D3 with multiplicity 22"*!m;. By the perturbation theory,
to prove [Theorem 3.1, we need only to estimate the norm of L, and the di-
mension of ker Dy.

We first calculate the norm of L,. Let ey,...,es, and ¢,,...,0,, be lacal
orthonormal frame fields on M and S respectively, df (e;) = > awoy.

LemMA 3.2. The operator Ly is a selfadjoint morphism in the bundle S ®
C/(S*™) - C¢(v) which satisfies:

k
Ly®p, - 0)=>_) ey ®p, -9, a0 0,
j r=1

Lf(!p ® ¢i1 o '¢ikv) = —Zejw ®¢i| te '¢ik Z aj1¢17

1#iy,..., i

yel(S), i<-- <.

Proor. By Lemma 2.1 and Vg_v = f*(df (e)), Vefjvz 0, for any y € I'(S),
peT(Ct(S*)), a,be C, we have

L ® f(p® (a+ b))
=S ew @3l dfe)- v -0 diteat b ~bo-dr(e)}.
Then

Ly ®e, 0,)=> ey ®0p, - <df(€),0,>0 0,
J,r

The second equation of the lemma follows from
LW ®g, - 0,0) = ey ®g, - <df (&), 0, v ¢,
_Zejl// ® ¢i1 te .¢ik ) df(ej)a
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and

,

1#10y,..., ix
Denote ¢, ) the inner product on S ® C/(S*")- C/(v). Define the norm of
Ly by |

L = max e ce s cotsmy - cow), xem

LemMa 3.3. || L/||, < /m(m+ 1)|df||,-

Proor. We need only to prove the following two cases:

Case 1. Let &= Y Y, ., ®o; -0, V. €Sx, k=1,2,...,2m, then

i< <y

€17 = ¥ ¥ /I*. From Lemma 3.2, we have

i< <y

Lysé, Lfé> = Z Z <ej!/lil"‘ik’ etl//jl"'}'k>

J.i s
Py @V Py, P A 9.
It is easy to see that
(s @D @y, @AV D

= (_1)r+s < ¢i1 .. .¢ir .. '¢ik’¢jl .. @]s . '¢jk>ajl'ratjs

aj,-ra,,-r, r=s:, il =j1,...,ik =jk;
= iajiratjﬂ {ila---aih'"aik}:{j17"'7.js7"'7jk}a js?‘:ilv'-'aik;
0, otherwise.

Hence

(L&, L&y = ) ey iy Vi, s,

stor
+Z Z + ey i €W i i1 i, Al

I tr l#l‘l,...,ik

Using the fact that the Clifford multiplication by unit vectors of 7. M on Si
preserves the inner product of Sy, then we have
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2

Z<Zaﬁ,€ﬂ//n---w Zajf,ejlﬂf,~~fk> =D il Z"ﬂ"ef'
= Z ||¢il.--ik||2zaj2i,
J,r

iy < <ig

and

, Z * <Z agi. e\ . i Za,;e,;//il___i;“_ik,>
1 2 2
= EZ liH Z i &V, || + H Zazleﬂ//i,...,-;...ik, }

1 1
= 5 (2m — k) Z “!ﬁ,'l...,'k ”2 Z ajzi, + 5 (zm - k) Z ”lﬁ,‘l...{,...,‘k[llz Za’zl
= 2m— k)Y Wy 2D a.
I

We have
ILE)7 < (k + (2m — k)| EI12 11 113

It is easy to see that

max_ {k+ (2m —k)k} <m(m+1).

l<k<2m

Then
ILrEll, < V/m(m + 1)|iE]| Jldr |,
Case 2. Letn=3 4, , ®¢, 9,0, then
CLn, Loy = ey €y,
L0 D @G, > A,

1#i0y,..., 7 P F iy J
Similar to the Case 1, we have

<¢ll U wlk Zajlwl’ ¢j| e ¢jk Z atp¢p>

(> @pan, b =ik =i

= 9 Z iati,aﬂ, {ila"'aik’l} = {jl7"'sjk7p}a P:ila---7ik;
r.d

\ 0, otherwise.
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Then

Ly, Liny < (2m — k + k(2m — k))|[7]|2]|df 1I3-
In this case we also have

ILn|)2 < m(m+ 1) 2lldf 13-

The lemma is proved. ]

2
Define ||L;|* = supLiﬁé%—, EeT(S® C£(S?™) - C¢(v)). Then
4 M

ILs [l < vm(m + 1)|df ||

Since Dy = Dy— Ly, by the perturbation theory, in the interval
(=1 Lsll, IILs|l], there are at least dim(ker Dy) eigenvalues of Do. Now we estimate
the dimension of ker Dy and complete the proof of Theorem 3.1. By Atiyah-

Singer index theorem, the indices of the operators
D% = D} :T(ST ® C/E(S™) - C/(v)) = T(S™ ® C£E(S) - C£(v))
are
ind(D;*) = 2*"(m§ —my) £ (=1)"2"" ko deg(f),

where m{ = dimker(D|s.), my = dimker(D|s-) and my = mg + my. Assuming
(—=1)"ko = |ko|, it is easy to see that

dim ker(Df | g+ ¢ (smycew) = 27 kol deg(f) + 22" (mg —mg) + 2my,
dim ker(Df |s-cp+(s2mycrw) = 2Mg »
dimker(Dy |s+cr-(smmycew) = 2mg
dim ker(l')ﬂs-cz*(sm)cz(u)) > 2" ko| deg(f) — 22" (mg — my ) + 2my.
Hence
dim ker(Dy) = 2™ |ko| deg(f) + 4my.

For the case of (—1)"ko = —|ko|, one can get the same inequality.
We have by assumption

dim(ker Df) > 22m+1(m0 + -4 mkq).
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Therefore in the interval [—||Ls|,||Ls||] there are at least 1+ 2%*1.
(mo + --- + my_,) eigenvalues of Dy. But, as mentioned above, Dy has the same
eigenvalues as D, and the number of the eigenvalues +4;, 0 < j<k —1, of Dy
with their multiplicities is just 22"*!(mg + --- 4+ my_;). Hence, the eigenvalues
+ /4 of Dy lie in the interval [—||Ls||,||Ls|l]. This proves Theorem 3.1. O

By [6] and [9], we know that the four classical elliptic operators (such as the
Hodge-de Rham, Signature, classical Dirac operators and the Dolbeault operators
on Kaehler manifolds) and their twisted operators are all generalized Dirac
operators. From [Theorem 3.1, we have

CorOLLARY 3.4. Let Dy be a twisted operator of one of the four classical
operators and f:M — S*™ be a smooth map with degree |ko|deg(f) >
2" Vmg + -« 4+ mg_) — 27™my, then the k-th eigenvalue + iy of Dy is bounded
by

(4| < vm(m + 1)ldf ||,

where ko = 2™ rank V', for the case D° is the Signature or Hodge-de Rham op-
erator on M; ko = rank V, for the case D° is the classical Dirac operator on spin
manifold M or Dolbeault operator on kaehler manifold M.

ProOF. Let Dy :T'(S® V) - T'(S® V) be a twisted operator of D: I'(S) —
['(S) mentioned above. Then the index of D° and DY can be represented by
ind(D°) = [,, F and ind(DY,) = [,, F - ch(V) = [,, ko + - - - respectively. If DY is
not the twisted Hodge-de Rham operator, ky is a nonzero integer. Then the
corollary follows from [Theorem 3.1. For the Hodge-de Rham operator the
number kj is zero. But the spectrum of the twisted Hodge-de Rham operator and
the corresponding twisted Signature operator are the same. O

REMARK. The Dolbeault operator D on an almost complex manifold is not
the Dirac operator in the sense of [9]. Theorem 3.1 and [Corollary 3.4 still holds
for such an operator. In fact, holds for the operators which satisfy
the conditions of [9, II. §5] but (5.4) in p. 114.

EXaMPLE 1. If M is the unit sphere $?" and f : S — S?" be the identity
mapping, then ||df||, = 1. Let D: S — S be the classical Dirac operator on the
spinor bundle. We have my = 0 and ko = 1. Hence the first norzero eigenvalue /112
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of D? is bounded by
A2 <m(m+1).

C. Bar [2] showed that A = m? in this case.

When D: A*(S?") — A=(S?) is the Signature operator on S”, we have
mo=2 and ko =2". Then the first norzero eigenvalue A} of Laplacian of
Signature operator is also bounded by ’

A <mm+1).

In order to give the estimates of the upper bounds of /1,3 in geometrical terms
of M, we set

V(M), the volume of M,

(M), the injective radius of M,

K, the upper bound of the sectional curvature of M,

(2m — 1)Ky, the lower bound of Ricci curvature of M,

V(Ko,r), the volume of the geodesic balls of radius r in space form of
constant curvature Kj.

LemMma 3.5. Let N(r) be the maximal number of pairwise disjoint geodesic
disks in M all having radius r < 1(M). Then

V(M) V(M)
VKo2r) = V0 = vy
Proor. Cf. p. 78 in [5]. U

Let a > 0 be the largest number such that a’K; < 72, a?|Ky| < 72, a < 1(M).
Let Ni be the integer part of 27" '(mg + - -- + myg_1) — 27"mp + 1.

THEOREM 3.6. Let D be a Dirac operator satisfying the conditions of Theorem
3.1. For any integer k, we have, if Ny < (lko|V(M)/V (Ko, 2a)),

1/m
AE < c(2m) < g(@ﬂ;))) ;

if N = ([kolV(M)/V (Ko, 24)),

where ¢(2m) is a constant.
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PrROOF. It is easy to see that |ko|V(M)/V (Ko, 2r) is a continuous function of
r>0. If Ny = (lko|V(M)/V(Ko,2a)), we can choose a real number r > 0 such
that

kol V(M)

< < N(r).
V(Ko 2r) = Mk < oIV

Then there exist N(r) pairwise disjoint geodesic disks B; of M all having the
radius r. Define a map f : M — S?” which maps each B; onto S*" with degree 1.
Then

|ko| deg(f) = |ko|N(r) = Nk > 2" '(mg + - + my_1) — 27"myq.

We can apply Mheorem 3.1. By assumption, Kjr? < n?, we can claim (cf. the
proof of Proposition 1 in §3 of [3])

2
2 A
larl < %

Obviously

w o V(Ko 2r) Vm e N A\
rz = rm lko|V (M) '

Since r?|Ko| < n?, V(Ko,2r)/r*™ is bounded above.

The case of Ny < (Jko|V(M)/V(Ko,2a)) < |ko|N(a) can be proved as fol-
lows.

In this case, there exists N(a) pairwise disjoint geodesic disks B; of M all

having the radius a. The map f : M — S?" is defined as above. In this case, we
also have

kol deg(f) > 2" (mo + - - + my_1) — 27" my.
By assumption, Kja> < n?, we also have
72
_2 .

ldf 1% <

a

3 <o) )

1/
Set ¢(2m) = su m(m + 1)7? L@},’TZ'—) " . This proves the theorem. M
p r

r?|Ko| < m?

Similarly
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4. Laplacian on Forms

Let M be a compact Riemannian manifold of dimension 2m and D? be the
Laplacian of D = d + ¢ acting on the differential forms. As shown in the proof of
(Corollary 3.4, we may consider that kg = 2. From [Theorem 3.1 we have

e < m(m+1) inf 9115

where f: M — S* may be any smooth map with degree deg(f) > (1/2)-
(mo + - +mg_1) —27%"my. Notice that my = dim(ker D) is the sum of Betti
numbers of M which is nonzero. Then 27 !(mg + - -+ + my_;) = Ny, where Ny is
defined in §3. From [Theorem 3.6, we have

1) if Ny < (2"V(M)/V(Kp,2a)), then

2) if Ny > 2"V (M)/V(Ky,2a)), |

1/m m M 1/m
A £c(2m)<§r—n%ﬁl—)) £c(2m)< O+2V(AZ) k 1) .

For the odd dimensional manifold, we have the following theorem.

THEOREM 4.1. Let M be a compact oriented Riemannian manifold of di-
mension 2m — 1, lf be the first nonzero eigenvalue of Laplacian D?. Then

A < 2m(2m = 1) inf [ldf |1,
where f: M — S?-1 is any smooth map with deg(f) > (vV2%m=3 —1/22"m,,

PROOF. Let M = M x M be Riemannian product of M with itself. Then A?

is also the first nonzero eigenvalue of Laplacian on M. Let f: M — S%"! be a
map with degree deg(f) > (V247-3 — 1/2?"~1\m,. We shall show that there exists
a smooth map g : ¥ ! x §¥7=1 _, §4m=2 of degree 1 such that for any pe M,

ld(g o (£, Ny < Id(f, Nl < ldf 1%
The degree of the map go (f,f): M — S*"~2 satisfies

deg(g o (/1)) = de(f) > (3= 55
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where m{ is the sum of Betti numbers of manifold M. Then follows
from [Theorem 3.6. The map g can be constructed as follows.

Let (a,0) be the polar coordinates on B" = {xe R"||x| <=}, aeS"!,
0<60<n n=2m-—1. Define

exp, : B" x B" — §" x §",
exp, ((a, 0), (a’,0")) = ((asinf,cos ), (a’sinf’,cos §')).
Then the standard metric on S” x S” can be represented by
ds? = sin? 0 da® + d6” + sin” 6’ da” + d§'?
(0d0’ — 0'do)* (0d0+ 0’ do')?
Fi0° | 010

On the other hand, set B> = {x e R*"||x| < n} = B" x B", the exponential
map exp, : B> <« TS? — S? can be written as

= sin? 0 da® + sin*6’ da”? +

exp,(a”,0") = (a” sin0",cos 6").
The coordinates on B?* and B” x B" are related by
all _ 0 a 0’ a/ 9// __ /02 + 0/2
Ve e Veter ) |

Hence the metric of $?* can be represented by

ds3 = sin* 0" da" + d6"

—— 2 ” 1 2

6% + 0’? 0% + 07 (6 + 0%)?

(0d6 + 6’ do')?
+ 02 + 0/2 '

Define a map §: S" x S" — S by § = exp, - exp; |, where exp, maps points
of B"x B"—B?" to (0,...,0,—1). When 0 < x <, sinx/x is a decreasing
function. Hence

sinv/0® +0”% 0 _ |
Vo* + g% sinf '

Therefore there are orthonormal bases of 7,(S" x S") and Tg(x)Sz" respectively,
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x € 8" x §". With these bases the matrix of tangent map dg, is diagonal whose
elements are all equal to or less than 1. The map § may not be smooth on
the boundary of B?". Using the map §, we can construct a smooth map
g:S" x S" — S?" with requaired properties. O

Notice that we can not use M = M x S! to estimate the first nonzero
eigenvalue of D? on M.
The proof of the following corollary is similar to that of Theorem 3.6,

COROLLARY 4.2. The first nonzero eigenvalue of Laplacian on an odd di-
mensional manifold M is bounded by

2/(2m—1) 2/(2m—-1)
i s omymad (B (i)

where ¢(2m — 1) is a constant and P the integer part of V243 — 1mgy + 1.

Finally we consider the eigenvalue problem on surfaces. Let M be an
oriented Riemannian surface with genus g, then my =2(1+g¢) and y(M) =
2(1 — g) is the Euler-Poincare number of M.

LEMMA 4.3. The number A* # 0 is an eigenvalue of D? acting on differential
forms with multiplicity n, if and only if A* is an eigenvalue of D? acting on
functions with multiplicity n/4.

PrROOF. Let A2(4'(M)) = {& e LE(AY(M)) | D*¢ = A*¢}, i =0,1,2, be eigen-
spaces of D?. The maps
x: AY(M) — 4*(M),
d+06:A4A°M)® A*(M) — A (M)
induce isomorphisms between A%(4°(M)) and A%(4%(M)); between A2(4A°(M) ®
AX(M)) and A*(4'(M)) respectively. The lemma has been proved. O
THEOREM 4.4. Denote l,f the k-th nonzero eigenvalue of D? acting on

functions counting with multiplicity. Then

Ze < 2inf 4115,

where f: M — S? is any smooth map with deg(f) > (1/2)(g+ 1) + 2k — 2.
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This theorem follows from Lemma 4.3 and Theorem 3.1. From [Theorem 3.6,

we have the following

THEOREM 4.5. If g+ 4k —2 < (2V(M)/V(Ko,2a)), we have

A,fsc(Z)-II/v—((]%;

otherwise

g+4k -2

A £c(2)-W

EXAMPLE 2. Let M be the sphere S? with standard metric. From Example 1,
we have

A <2.

As is well known, the first nonzero eigenvalue on S? is 2. The estimate is sharp.
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