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1. Introduction

In this paper, we are concerned with an enumeration of rooted trees. We
consider isomers of chain saturated mono-hydroxy alcohols, that is to say, having
no double, triple bonds and cyclic structure. Since the carbon atom has a valency
of four and the hydrogen atom a valency of one, the structural formulas of these
isomers form ternary rooted trees. For example, the following figures indicates
that two isomers of propyl-alcohols:

C

—
¢

HO—C—C—C HO—C

Figure 1. Propyl-alcohol

In this figure, we regard that the remaining valencies of carbon atoms are bonded
with hydrogen atoms. Let C(n) be the number of the isomers of the alcohols
containing n carbon atoms. We define C(0) =1. Clearly C(n) >1 (n>0) is
nondecreasing. We define a power series g(z) by

g(z)=ZC(n)z"=1+z+22+2z3+4z4+825+17z6+---, (1)

n>0

which satisfies the functional equation:
z
g9(z) =1+¢ (9(2)* +39(2)g(z%) +29(2*)) (2)

(cf. Temperley [5], Polya [4]). Regarding the alcohol enumeration problem
considered in (2) Polya concluded that the number of isomeric hydrocarbons of
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formula C,H,,; is asymptotically equal to
An~3? ",
where 4 > 0 and / are constants with
0.35<17<0.36
(cf. Polya [4]). We can deduce from this result that
I'=r(9), 3)

where r(h) is the convergence radius of power series h(z).

We replace the carbon atoms by boron atoms which have a valency of three.
Then these structural formulas form binary rooted trees. In this paper, we study
these rooted trees as purely mathematical model and do not care about the real
existence of such chemical substances.

Let B(n) be the number of isomers containing n boron atoms. We put B(0) =
1, as above. Clearly B(n) > 1 (n > 0) is nondecreasing. We define a power series

f(z) by
f(Z):ZB(n)Z"=1+Z+22+223+3z4+625+1126+...‘ (4)

n>0

We can see that f(z) satisfies the functional equation (cf. Temperley [5]):

z

ﬂﬂ=1+2U@f+ﬂf» (5)

The purpose of this paper is to estimate the convergence radius of f(z) and
g(z). Also we prove the transcendency of the function f(z) over C(z) and its
values at algebraic points. Our theorem for g(z) improves the result of Polya
mentioned above.

THEOREM 1. Let f(z) be the power series defined by (4). Then
0.402696 < r(f) < 0.402699,

and hence B(n) < 0.402696" for all large n and B(n) > 0.4026997" for infinitely
many n.

THEOREM 2. Let g(z) be the power series defined by (1). Then
0.355179 < r(g) < 0.355183,

and hence C(n) < 0.3551797" for all large n and C(n) > 0.3551837" for infinitely
many n.
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A power series satisfying the functional equation such as (5) is one of the so-
called Mahler functions. Then the transcendency of values of f(a) for algebraic
numbers « are deduced from the transcendency of f(z) as a function (cf. Ku.
Nishioka [2], [3]). We state our results.

THEOREM 3. The function f(z) is transcendental over C(z).

COROLLARY. If o is an algebraic number with 0 < |a| < r(f), then the value
f(a) is transcendental.

Neither the transcendency of the function g(z) over C(z) nor the tran-
scendency of the value g(x) at an algebraic point has been proved so far.

2. Proof of Theorem 1

Assume that u(z) and v(z) are majorant and minorant power series of f(z),
respectively. Then we have

r(u) < r(f) < r(v). (6)

Our idea of the proof is to choose majorant and minorant power series of f(z)
among algebraic functions.
By the functional equation (5), we get the following recursive formulas:

n=1). (O

n—1 ‘
B(n) =%ZB(h)B(n— 1—h)+ {g((n— 1)/2)/2 (n: odd),
h=0

(n: even),

Let a > 0 be a parameter and ®,(z) be an algebraic function defined by

8

z 3z

(Da(Z) = 1 +2

(1 + 22424 425+ +cI>,,(z)2), ®,(0) =1,

1 —az?

so that we have

V1—zQ2+z+23+25+ 227+ 329/(1 — az?))

O, (z) = - .

(8)
We denote the Taylor expansion of ®,(z) by

Dy(z) =Y ba(n)z".

n>0
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Then we get the following recursive formulas:

Zb(h a(n—1—h)

B((n—l)/2)/2 (n: 1a3a5a7,9)7
+{ 3a"1V/2-4/2  (n—1: even, n>11), (n=1). (9)
0 (n—1: odd),

We note that b,(n) > 0 (n > 0). We have the following lemmas.
LEMMA 1. ®3(z) is a majorant series of f(z).
LEMMA 2. ®,94(z) is a minorant series of f(z).

We deduce from and 2. By and 2, we see that
r(@2) < r(f) < r(Proa). (10)

First we calculate the convergence radius of ®,(z). The roots of the following
equation can be the singular points of ®,(z) defined by (8) with a =2:

9
(1—222)2(1—z<2+z+z3+25+227+1i2222>) =0. (11)

Let {; be a root of having the minimum absolute value. Using a calculator,
it is proved that {; is a real single root and {; = 0.402696---. Then z={; is a
branch point of ®,(z) and

r(d)z) =
Therefore we have by

0.402696 < r(®>) < r(f).

Next we calculate the convergence radius of @;94(z). We see that the roots of
the following equation can be the singular points of ®j4(z):

3 9
(l—1.94z2)2(1—2<2+z+z3+25+227+t1—zm)) = 0. (12)

Let {, be a root of (12) having the minimum absolute value. Using a calculator,
we see that (, is a real single root and {, = 0.402698 - - -. Then z = {, is a branch
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point of ®;q4(z) and
r(®194) = (3.
Therefore we have by
r(f) < r(®p94) < 0.402699.

Hence follows.
It remains to prove and 2.

PrROOF OF LEMMA 1. We prove the following inequality by induction:
by(n) > B(n) (n>=0).
This holds for 0 < n < 26 by Table 1. Assume that n > 26 and
by(h) = B(h) (0 <h <n).
Then we have by (7) and (9)

n

ba(n+1) — B(n+1) =Y (ba(h)by(n — h) — B(h)B(n — h))

N { (32724 _ B(n/2))/2 (n: even),
0

(n: odd).

h=0
Putting 6(h) = by(h) — B(h) >0 (0 <h <n), we get

%i(bz(h)bz(n —h) — B(h)B(n — h))
h=0

[(n+1)/2]

> iB(h)cS(n —h) = B([n/2]) > a(h),
h=0

h=0
and so
[(n+1)/2]
br(n+1) — B(n+1) 2 B(n/2) > _ (h)

h=0

N (3-2724 — B(n/2))/2 (n: even),
0 (n: odd).

Thus, if n is odd, b,(n+1) > B(n+1). If n is even, we have
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m

by(n+1) — B(n+1) = B(m)Y (k) +3-2" -
h=0

3 B,

where n = 2m. Since m > 13 and 6(13) = 0.5, we obtain by(n+1) = B(n+1).
This completes the proof.

PROOF OF LEMMA 2. First we explain why the value a = 1.94 is chosen for
®,(z) to be a minorant series of f(z). By (7) and (9), we have

B(n) = b,(n) (1 <n<10)

and
3 1
B(11) — b,(11) = §B(5) —5a= 3(1 — —a)
Putting
a=2—§s (e >0),
we get

B(11) — b,(11) = 3(1 -1 +%s> =e.
Hence we obtain
B(12) — b,(12) = (B(h)B(11 — h) — ba(h)ba(11 — h))

:% 1 B(h)B(ll—h)—%<2ba(0)ba(11)+§:ba(h)ba(ll—h))
h=1

10
= % B(h)B(ll—h)—% (23(0)(3(11) —&)+ Y _ B(h)B(11 —h))
h=0 h=1
1 11 1 11
=3 B(h)B(ll—h)—EZB(h)B(ll——h)—&—s:a,
h=0 h=0

so that we have
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3, 1&
ba(13) =3 a +§Zba(h)ba(12—h)
h=0
10
_ %az +% (2@,(0)@,(12) +2ba(1)ba(11) + ;ba(h)ba(lz - h))

10

— %az +% (2(3(12) —&) +2(B(11) —¢) + >_ B(h)B(12 — h))
h=2

=24’ — 28+§ZB(I1)B(12 —h).

2 h=0
Thus we get
1 3,
B(13) — b,(13) =§B(6)—§a + 2¢
11 3 2\ 2, 1
—7—5(2—§8> +28———§8 +68"‘2‘,

and so B(13) > b,(13) if and only if
—§SZ+68—% >0,

which implies

9 — 78 9+ /78

<e<

2 2
Since
a=2~gesz—9“m= VI8 -3 _ 1.9439. ..,
3 3 3
we may choose a = 1.94.
Now we prove the inequality
B(n) >3-1.94"* (n>0), (13)

by induction on n. We see by Table 1 that holds for 0 < n < 7. Assume that
n>7 and

B(h) >3-1.94"% (0<h<n).
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Then we have by (7)
B(n+1) > %Z B(h)B(n — h)
h=0

l(2B(O)B( Y+ 2B(1)B(n — 1) + 2B(2)B(n — 2) + 2B(3)B(n — 3))

N

= B(n) + B(n—1) + B(n — 2) + 2B(n - 3),
and so
B(n+1)>3-1.94"%4+3.1.94"5 +3.1.94"6 4 6.1.94"7
>3.1.94"7,

Finally we prove
B(n) > byoa(n) (n>=0), (14)

by induction on n. We see by Table 1 that holds for 0 < n < 10. Assume that
n>10 and

B(h) = byoa(h) (0 <h <n).
By (7) and (9), we have

B+ 1) — busa(n+ 1) = S (BU)B(n — k) — by sa(h)bysa(n — )
h=0

N (B(n/2) —3-1.94"2%)/2  (n: even),
0 (n: odd).

This and imply B(n+ 1) > bjos(n+ 1), and the proof is completed.

3. Proof of

As in the proof of the proceeding theorem, we shall choose a suitable
majorant and minorant of g(z) among algebraic functions.
By the functional equation (2), we get the following recursive formulas:

n—1n— (n—1)/2]

) =62 Z W —1-h-)+1 Y CthCn—1-2n)

h=0 =0 h=0

C((n—1)/3)/3 (3 divides n—1),
0 (3 does not divide n — 1),

I —_

+

(n>1). (15)
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Table 1: by(n), B(n), bros(n), 3(n) (1 <n < 26).
n by(n) B(n) bi.9a(n) o(n)
1 1 1 | 0
2 1 1 1 0
3 2 2 2 0
4 3 3 3 0
5 6 6 6 0
6 11 11 11 0
7 23 23 23 0
8 46 46 46 0
9 98 98 98 0
10 207 207 207 0
11 451 451 450.- - - 0
12 983 983 982.- - - 0
13 2179.5 2179 2178.--- 0.5
14 4850.5 4850 4849.. - - 0.5
15 10906.5 10905 10903.. - - 1.5
16 24633.5 24631 24629.. - . 2.5
17 56017.5 56011 56005.- - - 6.5
18 127925 127912 127901.. - - 13
19 293575.5 293547 293515.--- 28.5
20 676223 676157 676094.- - - 66
21 1563518.5 1563372 1563204.- - - 146.5
22 3626501.5 3626149 3625792.- - - 352.5
23 8437179.5 8436379 8435475.- - - 800.5
24 19682222.5 19680277 19678254.. - - 1945.5
25 46031154.5 46026618 46021651.- - - 4536.5
26 | 107901616 107890609 | 107879110.--- | 11007

427
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For a > 0 and any positive integer /, we put

. C(2)z2 z2
ha(z) = C(0) + C(1)z + [ —ar = 1+z+ o’
Cc(3)z3 223
_ 2 _ 2
ko(z) = C(0)+ C(1)z+ C(2)z° + T l+z+4+2z°+ i
Let ¥,(z) be an algebraic function defined by ¥(0) =1 and
z 3 z 2 z 3
Y,(z) =1 +6‘Pa(z) +§ha(z YW, (z) + gka(Z ). (16)
We put
Y,(z) = Zda(n)z”.
n>0
Then it follows from that
1 n—1 n—1-h
do(n) = ¢ 2 ; d,(h)d,()d,(n — 1 — h — i)
12 (=172
+5) da(h)da(n—1=2h) + 5 Y a"2dy(n—1-2h)
275 2 =

C((n—1)/3)/3 (n=1,47),
+< 2-a03-3/3 (3 divides n, n—1>10), (n>1). (17)
0 (3 does not divide n — 1),

We have the following lemmas.
LemMA 3. W,0,(2z) is a majorant series of g(z).
- LEMMA 4. W,(z) is a minorant series of g(z).

We deduce from and 4. By and 4, we have
r(¥201) < r(g) < r(¥2).
Let D,(z) denote the discriminant of equation

_ Zy3 2 2 < 3
X_1+6X +2ha(z)X+3ka(z)
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corresponding to [16). Then we have

Da(z) = (zha(2?) — 2)° + z(zka(2%) + 3)%.
We note that

r(¥.) < {(a),

where {(a) is a root of D,(z) = 0 having the minimal absolute value. If {(a) is
a single root,

r(¥a) = {(a).
Using a calculator, we see that
{(2) =0.355182..., ((2.01) =0.355179...,
and that {(2) and {(2.01) are single roots. Hence

0.355179 < r(g) < 0.355183.

ProorF OF LEMMA 3. First we show that
dro1(n) = C(n) (n=0) (18)

by induction on n. This holds for 0 < n < 24 by Table 2. Suppose that n > 24
and

dro1(h) = C(h) (0<h<n).
We have to show that dyo1(n+ 1) > C(n + 1). Put d(n) = ds1(n) for brevity and

S(hy=d(h) — C(h)y =0 (0<h<n).

Since
n n—h
(d(h)d(iYd(n — h — i) — C(h)C(i)C(n — h — i)
h=0 i=0
n n—h n/2) 2h
>3 C(h)3(i)C(n — h — i) Z > " C(k)6(2h — k)C(n — 2h),
h=0 i=0 h=0 k=0

we get
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/2
din+1) — zzi 5(2h — k)C(n — 2h)

h=0 k=0
i (d(h)d(n — 2h) — C(h)C(n — 2h))

1 2
+= Z (2.01"2d(n — 2h) — C(h)C(n — 2h))

N (2-2.01#/3-3 — C(n/3))/3 (3 divides n),
0 (3 does not divide n),

using (15) and (17). Noting that d(h)d(n — 2h) = C(h)C(n —2h) if h =0,1,2 and
2.01"-2 > C(h) if h=3,4,5, we have

2
din+1)— C(n+ ZSZZ C(k)5(2h — k)C(n — 2h)

h: k=0

In/2)
E }2: C(k)o(2h — k) — C(h) + 2.01"-2) C(n — 2h)
k=0

(2-2.010/3=-3 — C(n/3))/3 (3 divides n),
0 (3 does not divide n).

Using a calculator and Table 2, we see that

‘22,[1 C(k)o(2h — k) — C(h) +2.01"2 >0 (h=6,7),

2h
> Ck)s(2h —k) — C(h) +2.01" 2 =1 (8 <h<11),
and
2h
> C(k)5(2h — k) Z C(k)o(2h — k) h)Zé > C(h) (h=12).
k=0
Hence we get

(i C(k)6(2h — k) — C(h) + 2.01"—2) C(n—2h) > C(n—2h) (n=38),
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and so
[n/2]
dn+1)—Cn+1)> EZ C(n — 2h)
h=8

N (2-2.01"33 - C(n/3))/3 (3 divides n),
0 (3 does not divide n).

If n is not divided by 3, then d(n+ 1) > C(n+ 1). Assume that » is divided by 3
and write n = 3m. Noting that m > 8, we have
1
dn+1)— Cn+1) = zC(m)+2.01" —gC(m) > 0,

and is proved.

N —

ProorF oF LEMMA 4. First we prove
C(n) =2"2 (n>0) (19)

by induction on n. Since {C(n)},., = {1,1,1,2,4,8,...}, holds for 0 <n <
5. Suppose that n > 5 and

C(h) =2"2 (0<h<n).

We show that C(n+ 1) > 2"!. By (15), we have

=

n_ n-— (/2]
Cn+1)> -é—hz C(h)C(i)C(n—h—i)—+—12C(h)C(n—2h).

0 i 2h=0

It
o

Noting that n > 5, we get

Cn+1) > é(3C(0)2C(n) +6C(0)C(1)C(n—1)
+6C(0)C(2)C(n—2) +3C(1)2C(n —2))
+%(C(O)C(n) + C(1)C(n —2)),

and so
Cn+1)>=Cn)+Cn—1)+2C(n-2)

> 2n—2 + 2n—3 + 2. 2n——4 — 2n—1.
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We have to prove the inequality
C(n) = dy(n) (n=0).

This holds for 0 <n < 7 by Table 2. Assume that n > 7 and
C(h) = dy(h) (0<h<n).
It follows from (15) and (17) that

Cn+1)—dy(n+1)

n —h
Z ())C(n — h — i) — do(h)dr(i)da(n — h — i))

i=0

CJ\I'—'

2
+1 }: h)C(n — 2h) — dy(h)d2(n — 2h))

2

[n/2]

41 Z(C(h)C(n —2h) — 2"2d,(n — 2h))

0 (3 does not divide n).

Hence we have using [19) and [2I),
Cn+1)>=dy(n+1)

{(C(n/3) —2.20/39-3)/3 (3 divides n),

and the inequality is proved.

4. Proof of

We use the following lemma.

Lemma 5 (Ke. Nishioka [1], cf. Ku. Nishioka [3]). Suppose that h(z) € C[z]

satisfies the following functional equation for an integer q > 1

h(z) = ¢(z, h(z?)),
where ¢(z,u) is a rational function in z, u over C. If h(z) is algebraic over C(z)
then h(z) € C(z).

PrROOF OF THEOREM 3. Assume that f(z) is algebraic over C(z). Then by

Lemma 5, we may put
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Table 2: dy1(n), C(n), dr(n), d(n) (1 <n<24).
n dro1(n) C(n) dy(n) o(n)
1 1 1 1 0
2 1 1 1 0
3 2 2 2 0
4 4 4 4 0
5 8 8 8 0
6 17 17 17 0
7 39.005 39 39 0.005
8 89.01 89 89 0.01
9 211.040- - - 211 211 0.040. - -
10 507.090- - - 507 507 0.090- - -
11 1238.265- - - 1238 1238 0.265- - -
12 3057.641- - - 3057 3057 0.641
13 7640.240- - - 7639 7638.5 1.240- - -
14 19244.. .. 19241 19240 3.
15 48871..-- 48865 48859.5 6.
16 124924.. .. 124906 124894 18.---
17 321240.. - - 321198 321159 42.. .-
18 830343.. - - 830219 830127 124.. -
19 2156328.. - - 2156010 2155747.- - 318..--
20 5623020.- - - 5622109 5621458.. - - 911.---
21 14718271.- - - 14715813 14714048.. - - 4223.. .-
22 38656055.- - - 38649152 38644609. - - 6903. - -
23 | 101840877.--- 101821927 | 101809755.--- | 18950.---
24 | 269063227.- - 269010485 | 268978422.--. | 52742.--

433
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1) = bﬁ; a(z),b(z) € CL2),  (al2),b(z)) = 1.

Then we have by the functional equation (5)
2a(z)b(2)b(2%) = 2a(z)*b(z?)b(z)* + za(z)*b(z?) + za(z?)b(z)*. (22)

Suppose that b(z) is not a constant. Since f(z) € C[z] and (a(z),b(z)) =1, we
have b(0) #0. Let &£ be a root of b(z) having the minimum argument argé e
(0,2n] and let &; be one of /& with arg&, = (arg&)/2. Noting that argé > 0, we
get argé, < argé, and so b(&;) # 0. Substituting z =&, in (22), we have

&1a(€)b(¢))* = 0. (23)

Since (a(z),b(z)) =1 and b(&) =0, we get a(¢) #0 and so by [23), (&) =0,
which contradicts b(&;) # 0. Therefore, b(z) is a constant and hence f(z) is a
polynomial. This contradicts the fact that B(n) > 1 for all n > 0.

The authors are grateful to Professor Yuri Nesterenko, Moscow University,
for his helpful advice.
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