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IN A COMPLEX SPACE FORM
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\S 1. Introduction

A complex n-dimensional K\"ahler manifold of constant holomorphic sectional
curvature $c$ is called a complex space form, which is denoted by $M_{n}(c)$ . A
complete and simply connected complex space form consists of a complex
projective space $P_{n}C$ , a complex Euclidean space $C^{n}$ or a complex hyperbolic
space $H_{n}C$ , according as $c>0,$ $c=0$ or $c<0$ .

In this paper, we consider a real hypersurface $M$ in $M_{n}(c)$ . Typical examples
of $M$ in $P_{n}C$ are the six model spaces of type $A_{1},$ $A_{2},$ $B,$ $C,$ $D$ and $E$ (cf. [10]), and
the ones of $M$ in $H_{n}C$ are the four model spaces of type $A_{0},$ $A_{1},$ $A_{2}$ and $B$ (cf. [1]),
which are all given as orbits under certain Lie subgroups of the group consisting
of all isometries of $P_{n}C$ or $H_{n}C$ . Denote by $(\phi, \xi, \eta, g)$ the almost contact metric
structure of $M$ induced from the almost complex structure of $M_{n}(c)$ and $A$ the
shape operator of $M$. Eigenvalues and einvectors of $A$ are called principal
curvatures and principal vectors, respectively.

Many differential geometers have studied $M$ from various points of view. In
particular, Bemdt [1] and Takagi [10] investigated the homogeneity of $M$.
According to Takagi’s classification theorem and Bemdt’s one, the principal
curvatures and their multiplicities of homogeneous real hypersurfaces in $M_{n}(c)$

are given. Moreover, it is very interesting to characterize homogeneous real
hypersurfaces of $M_{n}(c)$ . There are many characterizations of homogeneous ones
of type $A$ since these examples have a lot of beautiful geometric properties, where
type $A$ means type $A_{1}$ or $A_{2}$ in $P_{n}C$ and type $A_{0},$ $A_{1}$ or $A_{2}$ in $H_{n}C$ . Okumura [8]
and Montiel-Romero [7] proved the fact in $P_{n}C$ and $H_{n}C$ , respectively that $M$
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satisfies $A\phi=\phi A$ if and only if $M$ is locally congment to type $A$ . The following
theorem is proved by Kimura and Maeda [4] and Ki, Kim and Lee [2] for $M$ in
$P_{n}C$ and $H_{n}C$ , respectively.

THEOREM A. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geq 2$ . If it
satisfies

$\nabla_{\xi}A=0$ , $g(A\xi, \xi)\neq 0$ ,

then $M$ is of type $A$ , where $\nabla$ is the Riemannian connection on $M$.

In his previous paper [9], the third named auther proved the following

THEOREM B. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geq 2$ . If it

satisfies
$\nabla_{\xi}A=a(A\phi-\phi A)$ , $2a\neq-g(A\xi, \xi)$

for some non-zero constant $a$ , then $M$ is of type $A$ .

Motivated by these results, in this article we will give a generalization of
Theorems A and $B$ and another characterizations of homogeneous real hyper-
surfaces of type $A$ in $M_{n}(c)$ . The purpose of this paper is to prove the following

THEOREM 1. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geq 2$ . If it
satisfies

(1.2) $\nabla_{\xi}A=f(A\phi-\phi A)-df(\xi)I$ , $2f\neq-g(A\xi, \xi)$

for a smooth function $f$, where I denotes the identity transformation, then $M$ is of
type $A$ .

THEOREM 2. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geq 2$ . If it

satisfies

(1.3) $\mathscr{L}_{\xi}(H+fg)=0$ , $2f\neq-g(A\xi, \xi)$

for a smooth function $f$, then $M$ is of type $A$ , where $\mathscr{L}_{\xi}$ is the Lie derivative with
respect to $\xi$ and $H$ is the second fundamental form of $M$ in $M_{n}(c)$ , namely
$H(X, Y)=g(AX, Y)$ for any vecror fields $X$ and $Y$.
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\S 2. Preliminaries

First of all, we recall fundamental properties about real hypersurfaces of a
complex space form. Let $M$ be a real hypersurface of a complex n-dimensional
complex space form $M_{n}(c)$ of constant holomorphic sectional curvature $c$ , and let
$C$ be a unit normal vector field on a neighborhood in $M$. We denote by $J$ the
almost complex structure of $M_{n}(c)$ . For a local vector field $X$ on the neigh-
borhood in $M$, the images of $X$ and $C$ under the linear transformation $J$ can be
represented as

$JX=\phi X+\eta(X)C$ , $ JC=-\xi$ ,

where $\phi$ defines a skew-symmetric transformation on the tangent bundle $TM$ of
$M$, while $\eta$ and $\xi$ denote a l-form and a vector field on the neighborhood in $M$,

respectively. Then it is seen that $g(\xi, X)=\eta(X)$ , where $g$ denotes the Riemannian
metric tensor on $M$ induced from the metric tensor on $M_{n}(c)$ . The set of tensors
$(\phi, \xi, \eta, g)$ is called an almost contact metric structure on $M$. They satisfy the
following properties:

$\phi^{2}=-I+\eta\otimes\xi$ , $\phi\xi=0$ , $\eta(\xi)=1$ ,

where $I$ denotes the identity transformation. Furthermore the covariant deriva-
tives of the structure tensors are given by

(2.1) $\nabla_{X}\xi=\phi AX$ , $\nabla_{X}\phi(Y)=\eta(Y)AX-g(AX, Y)\xi$

for any vector fields $X$ and $Y$ on $M$, where $\nabla$ is the Riemannian connection on $M$

and $A$ denotes the shape operator of $M$ in the direction of $C$.
Since the ambient space is of constant holomorphic sectional curvature $c$ , the

equations of Gauss and Codazzi are respectively given as follows:

(2.2) $R(X, Y)Z=\frac{c}{4}\{g(Y, Z)X-g(X, Z)Y$

$+g(\phi Y, Z)\phi X-g(\phi X, Z)\phi Y-2g(\phi X, Y)\phi Z\}$

$+g(AY, Z)AX-g(AX, Z)AY$ ,

(2.3) $\nabla_{X}A(Y)-\nabla_{Y}A(X)=\frac{c}{4}\{\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi\}$ ,

where $R$ denotes the Riemannian curvature tensor of $M$ and $\nabla_{X}A$ denotes the
covariant derivative of the shape operator $A$ with respect to $X$.

Next, we suppose that the stmcture vector field $\xi$ is principal with the
corresponding principal curvature $\alpha$ , namely $ A\xi=\alpha\xi$ . Then it is seen in [3] and
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[6] that $\alpha$ is constant on $M$ and it satisfies

(2.4) $2A\phi A=\frac{c}{2}\phi+\alpha(A\phi+\phi A)$ .

\S 3. Proof of Theorems

Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geq 2$ . First of all, we shall
give a sufficient condition for the stmcture vector field $\xi$ to be principal. We
suppose that $\xi$ is principal, i.e., $ A\xi=\alpha\xi$ , where $\alpha$ is constant. Then, by (2.1) and
(2.4), we get

$\nabla_{X}A(\xi)=-\frac{c}{4}\phi X-\frac{1}{2}\alpha(A\phi-\phi A)X$ ,

from which together with (2.3) it follows that

(3.1) $\nabla_{\xi}A=-\frac{1}{2}\alpha(A\phi-\phi A)$ .

Taking account of this property and the already known some theorems, in order
to prove our theorems, we shall assert the following

PROPOSITION 3.1. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geq 2$ . If it
satisfies
(3.2) $\nabla_{\xi}A=f(A\phi-\phi A)-df(\xi)I$

for a smooth function $f$, then $\xi$ is principal, and hence $df(\xi)=0$ .

By the assumption (3.2) and (2.3), it tums out to be

(3.3) $\nabla_{Y}A(\xi)=f(A\phi-\phi A)$ Y–df $(\xi)Y-\frac{c}{4}\phi Y$ .

Differentiating this equation with respect to $X$ covariantly and using (2.1), we get

(3.4) $\nabla_{X}\nabla_{Y}A(\xi)=f\{\nabla_{X}A(\phi Y)+g(Y, \xi)A^{2}X-g(AX, Y)A\xi$

$-g(AY, \xi)AX+g$ ($AX,$ A $Y$ ) $\xi-\phi\nabla_{X}A(Y)$ }

$-\frac{c}{4}\{g(Y, \xi)AX-g(AX, Y)\xi\}-\nabla_{Y}A(\phi AX)$

$+df(X)(A\phi-\phi A)Y$

for any vector fields $X$ and $Y$. Since the Ricci formula for the shape operator $A$ is
given by
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$\nabla_{X}\nabla_{Y}A(Z)-\nabla_{Y}\nabla_{X}A(Z)=R(X, Y)(AZ)-A(R(X, Y)Z)$ ,

it follows from (2.2), (2.3) and (3.4) that

(3.5) $\nabla_{X}A(\phi AY)-\nabla_{Y}A(\phi AX)+f\{\nabla_{X}A(\phi Y)-\nabla_{Y}A(\phi X)\}$

$=-\{fg(Y, \xi)+g(AY, \xi)\}A^{2}X+\{fg(X, \xi)+g(AX, \xi)\}A^{2}Y$

$+\{fg(AY, \xi)+g(A^{2}Y, \xi)\}AX-\{fg(AX, \xi)+g(A^{2}X, \xi)\}AY$

$+\frac{c}{4}\{fg(Y, \xi)+g(AY, \xi)\}X-\frac{c}{4}\{fg(X, \xi)+g(AX, \xi)\}Y$

$+\frac{c}{4}\{g(A\phi Y, \xi)\phi X-g(A\phi X, \xi)\phi Y\}-\frac{c}{2}g(\phi X, Y)\phi A\xi$

$+df(Y)(A\phi-\phi A)X-df(X)(A\phi-\phi A)Y$

for any vector fields $X$ and $Y$.
Now, in order to prove Proposition 3.1, we shall express (3.5) in the simpler

form. The inner product of (3.5) and $\xi$ , combining with (2.3) and (3.2), implies

(3.6) $fg((A\phi A\phi-\phi A\phi A)X, Y)$

$+f^{2}\{g(X, \xi)g(AY, \xi)-g(Y, \xi)g(AX, \xi)\}$

$-df(\xi)\{g((A\phi+\phi A)X, Y)+2fg(\phi X, Y)\}$

$+f\{g(X, \xi)g(A^{2}Y, \xi)-g(Y, \xi)g(A^{2}X, \xi)\}$

$+2\{g(AX, \xi)g(A^{2}Y, \xi)-g(AY, \xi)g(A^{2}X, \xi)\}$

$-df(X)g(A\phi Y, \xi)+df(Y)g(A\phi X, \xi)=0$

for any vector fields $X$ and $Y$. Since $Y$ is arbitrary, we get

$\{f(A\phi A\phi-\phi A\phi A)-df(\xi)(A\phi+\phi A)\}X-2fdf(\xi)\phi X$

$+\{fg(X, \xi)+2g(AX, \xi)\}A^{2}\xi+\{f^{2}g(X, \xi)$

$-2g(A^{2}X, \xi)\}A\xi-f\{fg(AX, \xi)+g(A^{2}X, \xi)\}\xi$

$+df(X)\phi A\xi+g(A\phi X, \xi)\nabla f=0$

for any vector field $X$, where we denote by $\nabla f$ the gradient of the function $f$ On
the other hand, taking account of (2.1) and the skew-symmetry of the trans-
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formation $\phi$ , we have

(3.7) $g((A\phi A\phi-\phi A\phi A)X, \phi X)=g(X, \xi)g(A\phi AX, \xi)$ .

Putting $Y=\phi X$ in (3.6) and applying the above property, we get

(3.8) $fg(X, \xi)\{g(A\phi AX, \xi)+fg(A\phi X, \xi)+g(A^{2}\phi X, \xi)\}$

$+2\{g(AX, \xi)g(A^{2}\phi X, \xi)-g(A\phi X, \xi)g(A^{2}X, \xi)\}$

$-df(\xi)\{g((A\phi+\phi A)X, \phi X)+2fg(\phi X, \phi X)\}$

$-df(X)g(A\phi^{2}X, \xi)+df(\phi X)g(A\phi X, \xi)=0$ .

Let $T_{0}$ be the distribution defined by the subspace $T_{0}(x)=\{u\in T_{X}M$ :
$g(u, \xi(x))=0\}$ of the tangent space $T_{X}M$ of $M$ at any point $x$ , called a holo-
morphic distribution.

Now, suppose that the stmcture vector field $\xi$ is not principal. Then we can
put $A\xi=\alpha\xi+\beta U$ , where $U$ is a unit vector field in the holomorphic distribution
$T_{0}$ , and $\alpha$ and $\beta$ are smooth functions on $M$. So we may consider the case that
the function $\beta$ does not vanish identically on $M$. Let $M_{0}$ be the non-empty open
subset of $M$ consisting of points $x$ at which $\beta(x)\neq 0$ . And we put $AU=$
$\beta\xi+\gamma U+\delta V$ , where $U$ and $V$ are orthonormal vector fields in $T_{0}$ , and $\gamma$ and $\delta$

are smooth functions on $M_{0}$ . And let $L(\xi, U)$ be a distribution spanned by $\xi$ and
$U$.

For any vector field $X$ belonging to the holomorphic distribution $T_{0},$ $(3.8)$

can be simplified as

$2\{g(AX, \xi)g(A^{2}\phi X, \xi)-g(A\phi X, \xi)g(A^{2}X, \xi)\}$

$-df(\xi)\{g((A\phi+\phi A)X, \phi X)+2fg(\phi X, \phi X)\}$

$+\beta\{df(X)g(X, U)+df(\phi X)g(\phi X, U)\}=0$ .

Furthermore, we can see that this equation holds for any vector field $X$. By the
polarization of the above equation, we have

$2\{g(AX, \xi)g(A^{2}\phi Y, \xi)-g(A\phi X, \xi)g(A^{2}Y, \xi)$

$+g(AY, \xi)g(A^{2}\phi X, \xi)-g(A\phi Y, \xi)g(A^{2}X, \xi)\}$

$-df(\xi)\{g((A\phi+\phi A)X, \phi Y)+g((A\phi+\phi A)Y, \phi X)$

$+4fg(\phi X, \phi Y)\}+\beta\{df(X)g(Y, U)+df(\phi X)g(\phi Y, U)$

$+df(Y)g(X, U)+df(\phi Y)g(\phi X, U)\}=0$
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for any vector fields $X$ and $Y$. Hence we have

(3.9) $df(\xi)\{\phi(A\phi+\phi A)X+(A\phi+\phi A)\phi X+4f\phi^{2}X\}$

$-2\{g(AX, \xi)\phi A^{2}\xi+g(A\phi X, \xi)A^{2}\xi-g(A^{2}\phi X, \xi)A\xi$

$-g(A^{2}X, \xi)\phi A\xi\}+\beta\{df(X)$ U–df $(\phi X)\phi U$

$+g(X, U)\nabla f+g(\phi X, U)df(\phi I)\}=0$ .

First, in order to prove Proposition 3.1, we shall assert the following

LEMMA 3.2. The distribution $L(\xi, U)$ is A-invariant on $M_{0}$ , namely we have

(3.10) A $U=\beta\xi+\gamma U$

on $M_{0}$ .

PROOF. On the open subset $M_{0}$ , by the forms $A\xi=\alpha\xi+\beta U$ and $A$ $U=\beta\xi+$

$\gamma U+\delta V$ , it tums out to be

$A^{2}\xi=(\alpha^{2}+\beta^{2})\xi+\beta(\alpha+\gamma)U+\beta\delta V$ .

Thus we can rewrite (3.9) as

(3.11) $df(\xi)\{\phi(A\phi+\phi A)X+(A\phi+\phi A)\phi X+4f\phi^{2}X\}$

$+2\{\alpha g(A^{2}\phi X, \xi)-(\alpha^{2}+\beta^{2})g(A\phi X, \xi)\}\xi$

$+2\beta\{g(A^{2}\phi X, \xi)-(\alpha+\gamma)g(A\phi X, \xi)\}U-2\beta\delta g(A\phi X, \xi)V$

$+2\beta\{g(A^{2}X, \xi)-(\alpha+\gamma)g(AX, \xi)\}\phi U-2\beta\delta g(AX, \xi)\phi V$

$+\beta${$df(X)$ U–df $(\phi X)\phi U+g(X,$ $U)\nabla f+g(\phi X,$ $U)df(\phi I)$ }

$=0$

for any vector field $X$. The inner product of (3.11) and $\xi$ implies that

$\alpha g(\phi X, A^{2}\xi)-(\alpha^{2}+\beta^{2})g(\phi X, A\xi)=0$

for any vector field $X$. This gives us

$\alpha A^{2}\xi-(\alpha^{2}+\beta^{2})A\xi=0$

on $M_{0}$ and hence we have

$\beta\{(\alpha\gamma-\beta^{2})U+\alpha\delta V\}=0$ .
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Consequently, we have

(3.12) $\beta^{2}=\alpha\gamma$ , $\delta=0$

on $M_{0}$ . So it completes the proof. $\blacksquare$

Furthermore, by (3.12), we also get

(3.13) $ A^{2}\xi=(\alpha+\gamma)A\xi$

on $M_{0}$ .
Let $M$ ‘ be a closed subset in $M$ containing all points $x$ where $f(x)=0$ .

Suppose that $M_{0}-M^{\prime}$ is not empty. Then we have the following

LEMMA 3.3. If (3.2) is satisfied, then we have

(3.14) $A\phi U=-\lambda\phi U$ , $\lambda=f+\alpha+\gamma$

on $M_{0}-M^{\prime}$ .

PROOF. By using the polarization of (3.8) together with (3.13), we have

$fg(X, \xi)\{g(A\phi AY, \xi)+fg(A\phi Y, \xi)+g(A^{2}\phi Y, \xi)\}$

$+fg(Y, \xi)\{g(A\phi AX, \xi)+fg(A\phi X, \xi)+g(A^{2}\phi X, \xi)\}$

$-df(\xi)\{g((A\phi+\phi A)X, \phi Y)+4fg(\phi X, \phi Y)+g((A\phi+\phi A)Y, \phi X)\}$

$-df(X)g(A\phi^{2}Y, \xi)+df(\phi X)g(A\phi Y, \xi)$

$-df(Y)g(A\phi^{2}X, \xi)+df(\phi Y)g(A\phi X, \xi)=0$

for any vector fields $X$ and $Y$. Putting $ Y=\xi$ , we have

$f\{g(A\phi AX, \xi)+fg(A\phi X, \xi)+g(A^{2}\phi X, \xi)\}=0$

because $ A\phi A\xi$ is orthogonal to $\xi$ . Since $f$ has no zero points on $M_{0}-M^{\prime}$ , we
have

$A\phi A\xi+f\phi A\xi+\phi A^{2}\xi=0$ .

This equation, by (3.13), completes the proof. $\blacksquare$

Next, we give the following
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LEMMA 3.4. Assume that A $\xi+hA\xi=0$ , where $h$ is a smooth function on
$M_{0}-M^{\prime}$ . Then it satisfies

(3.15) $f\lambda^{2}+(4f\gamma-2h\gamma+\frac{c}{4})\lambda-f^{2}\gamma-\frac{c}{4}(2h+2\alpha+\gamma)-\beta dh(\phi U)=0$

on $M_{0}-M^{\prime}$ .

PROOF. Differentiating our assumption $A^{2}\xi+hA\xi=0$ with respect to $X$ and
taking account of (2.1), (2.3) and (3.3), we get

$\nabla_{X}A(A\xi)+fA(A\phi-\phi A)X+fh(A\phi-\phi A)X+A^{2}\phi AX$

$+hA\phi AX-df(\xi)(AX+hX)-\frac{c}{4}A\phi X-\frac{c}{4}h\phi X+dh(X)A\xi=0$

for any vector field $X$. The inner product of this equation with any vector field $Y$

implies

$g(\nabla_{X}A(Y), A\xi)+fg(A(A\phi-\phi A)X, Y)+fhg((A\phi-\phi A)X, Y)$

$+g(A^{2}\phi AX, Y)+hg(A\phi AX, Y)-df(\xi)g(AX+hX, Y)$

$-\frac{c}{4}g(A\phi X, Y)-\frac{c}{4}hg(\phi X, Y)+dh(X)g(A\xi, Y)=0$ .

Exchanging $X$ and $Y$ in the above equation and substituting the second one from
the first one, we have

$g(\nabla_{X}A(Y)-\nabla_{Y}A(X), A\xi)+fg((A^{2}\phi-2A\phi A+\phi A^{2})X, Y)$

$+g((A^{2}\phi A+A\phi A^{2})X, Y)+2hg(A\phi AX, Y)$

$-\frac{c}{4}g((A\phi+\phi A)X, Y)-\frac{c}{2}hg(\phi X, Y)$

$+dh(X)g(A\xi, Y)-dh(Y)g(A\xi, X)=0$

for any vector fields $X$ and $Y$. Putting $X=U$ and $Y=\phi U$ in this equation and
taking account of (2.3), (3.10), (3.12) and (3.14), we can easily see that the
equation (3. 15) holds. $\blacksquare$

Now, we are in position to prove Proposition 3.1, namely to prove the fact
that under the condition (3.2), the stmcture vector $\xi$ is principal. We suppose that
the open set $M_{0}-M^{\prime}$ is not empty. Then, differentiating the form $A\xi=\alpha\xi+\beta U$
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with respect to $\xi$ covariantly on $M_{0}-M^{\prime}$ , we have by (2.1)

$\nabla_{\xi}A(\xi)=d\alpha(\xi)\xi+\alpha\beta\phi U+d\beta(\xi)U-\beta A\phi U+\beta\nabla_{\xi}U$ .

This, combining with the assumption (3.2) and (3.14), implies

$d(f+\alpha)(\xi)\xi+d\beta(\xi)U+\beta(2f+2\alpha+\gamma)\phi U+\beta\nabla_{\xi}U=0$ .

From the inner product of $\xi$ and $U$ respectively, we get

(3.16) $\nabla_{\xi}U=-(2f+2\alpha+\gamma)\phi U$ , $d(f+\alpha)(\xi)=0$ , $d\beta(\xi)=0$

on $M_{0}-M^{\prime}$ , where we have used that $g(\nabla_{\xi}U, \xi)=0$ and $g(\nabla_{\xi}U, U)=0$ . By
making use of (3.2) and (3.10), $\gamma=g(AU, U)$ gives us $d\gamma(\xi)=-df(\xi)$ .
Therefore, from (3.14) and (3.16), we get $d\lambda(\xi)=-df(\xi)$ . Differentiating (3.14)
with respect to $\xi$ covariantly, and taking account of (2.1) and the above property,
we get

$\nabla_{\xi}A(\phi U)-g(AU, \xi)A\xi-\lambda g(AU, \xi)\xi+(A\phi+\lambda\phi)\nabla_{\xi}$ U–df $(\xi)\phi U=0$ .

By (3.2), (3.10), (3.12), (3.14) and the first equation of (3.16), the above equation
gives the following

(3.17) $(f+\alpha+\gamma)(f+2\alpha+2\gamma)=0$ , $df(\xi)=0$

on $M_{0}-M^{\prime}$ . Since $f\neq 0$ , we have $\alpha+\gamma\neq 0$ on $M_{0}-M^{\prime}$ by the above equation.
Now, we consider the first case $f+\alpha+\gamma=0$ . By (3.14) and (3.16), we get

(3.18) $A\phi U=0$ , $\nabla_{\xi}U=\gamma\phi U$ .

Differentiating $A\xi=\alpha\xi+\beta U$ with respect to any vector field $X$ covariantly, and
taking account of (2.1), (3.3) and the second equation of (3.17), we get

$f(A\phi-\phi A)X-\frac{c}{4}\phi X+A\phi AX-d\alpha(X)\xi-\alpha\phi AX-d\beta(X)U-\beta\nabla_{X}U=0$ .

By taking the inner product of this equation with $\xi$ and $U$ respectively, we get

(3.19) $d\alpha(X)=f\beta g(\phi X, U)$ , $d\beta(X)=(f\gamma-\frac{c}{4})g(\phi X, U)$ ,

where we have used (3.10) and the first equation of (3.18). Owing to $\beta^{2}=\alpha\gamma$ , it is
easily seen that

$2\beta d\beta(X)=\gamma d\alpha(X)+\alpha d\gamma(X)$ ,
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from which together with (3.19), it tums out to be

$\beta(f\alpha+f\gamma-\frac{c}{2})g(\phi X, U)+\alpha df(X)=0$

for any vector field $X$, where we have used $f+\alpha+\gamma=0$ . This implies
$\beta(f^{2}+c/2)+\alpha df(\phi U)=0$ . Hence, by the first equation of (3.12) and (3.15), we
get $\beta=0$ on $M_{0}-M^{\prime}$ , where we have used that $\lambda=0$ and $h=f$ . It is a
contradiction.

Lastly, we suppose that $f+2\alpha+2\gamma=0$ in the first equation of (3.17).
Putting $ X=\xi$ and $Y=U$ in (3.5) and from the inner product of $\xi$ and $U$

respectively, we obtain

$\beta g(\phi\nabla_{U}U, U)=(f+\gamma)(f+\alpha+\gamma)+\gamma(f+\alpha)+\frac{c}{4}$

and

$\beta(f+\alpha+2\gamma)g(\phi\nabla_{U}U, U)=f(f+2\gamma)(f+\alpha+\gamma)+\gamma^{2}(f+\alpha)-\frac{c}{4}(f+\alpha)$ ,

where we have used (3.2), (3.10), (3.13), (3.14), (3.16) and $df(\xi)=d\gamma(\xi)=0$ .
Combining the above two equations, we get

$(f+\alpha+\gamma)(f\alpha+2f\gamma+2\alpha\gamma+2\gamma^{2}+\frac{c}{2})=0$ .

By the supposed condition $f+2\alpha+2\gamma=0$ , we have $f^{2}=c$ . Therefore, we
obtain $\alpha=0$ , where we have used (3.15), $f+2\alpha+2\gamma=0$ and $h=\lambda=f/2$ .
Hence $\beta=0$ on $M_{0}-M^{\prime}$ by the first equation of (3.12). It is also a contradition.

Consequently, these two cases mean that the subset $M_{0}-M^{\prime}$ is empty and
hence the subset $M_{0}$ is contained in the subset $M^{\prime}$ . Hence it satisfies

$\nabla_{\xi}A=0$ , $g(A\xi, \xi)\neq 0$

on $M_{0}$ . Since Theorem A is a local property, we see that the structure vector field
$\xi$ is principal on $M_{0}$ . Then it is a contradiction. Therefore the subset $M_{0}$ of $M$ is
empty and hence $\xi$ is principal on $M$. Thus, comparing (3.1) with (3.2), we get
$df(\xi)=0$ . It completes the proof of Proposition 3.1. $\blacksquare$

The following is immediate from Proposition 3.1.

COROLLARY 3.5. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geq 2$ . If it

satisfies $\nabla_{\xi}A=0$ , then $\xi$ is principal.
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REMARK. Kimura and Maeda [4] proved Corollary 3.5 in the case where
$c>0$ .

PROOF OF THEOREM 1. By Proposition 3.1, the structure vector $\xi$ is principal
and $df(\xi)=0$ . Combining (3.1) with the assumption (1.2) of Theorem 1, we
have

$(2f+\alpha)(A\phi-\phi A)=0$ ,

which implies that $A\phi-\phi A=0$ by the assumption. Thus, the real hypersurface
$M$ is of type A. $\blacksquare$

PROOF OF THEOREM 2. Since $\mathscr{L}_{\xi}(H+fg)(X, Y)=g(\nabla_{\xi}A(X), Y)-fg((A\phi-$

$\phi A)X,$ $Y$ ) $+df(\xi)g(X, Y)$ for any vector fields $X$ and $Y$, by the assumption (1.3)
of Theorem 2, we have

$\nabla_{\xi}A=f(A\phi-\phi A)-df(\xi)I$ .

Hence Theorem 2 is proved by Theorem 1. $\blacksquare$

REMARK. Theorem $B$ which was introduced in \S 1 can be obtained by
Theorem 1.
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