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REAL HYPERSURFACES IN A COMPLEX
HYPERBOLIC SPACE WITH THREE CONSTANT
PRINCIPAL CURVATURES

By

Jun-ichi SArTo

1. Introduction

Let H,(C) be a complex hyperbolic space of complex dimension n (> 2)
with the metric of constant holomorphic sectional curvature —4 and M be a real
hypersurface in H,(C) with the induced metric. We denote by J the natural
complex structure of H,(C).

S. Montiel gave the following classification theorem.

THEOREM. If M is a connected real hypersurface of H,(C) (n > 3) with two
distinct constant principal curvatures, then M is holomorphic congruent to an open
part of one of the following real hypersurfaces of H,(C): a geodesic hypersphere in
H,(C); a tube around H,_,(C) in H,(C); a tube of radius In(2+ /3) around
H,(R) in H,(C); a horosphere in H,(C).

Moreover, J. Berndt classified all real hypersurfaces with constant
principal curvatures in H,(C) under the assumption:
(C) The structure vector field is principal.

In this paper we prove that Berndt’s theorem holds without the condition (C)
for the case where the number of constant principal curvature is three and n > 3.
More precisely,

MAIN THEOREM. Let M is a connected real hypersurface in H,(C) (n = 3)
with three distinct constant principal curvatures. Then M is holomorphic congruent
to an open part of one of the following hypersurfaces:

(a) a tube of radius r € R* around H(C) for a ke {l,...,n—2},
(b) a tube of radius r e R"\{In(2 ++/3)} around H,(R).
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2. Preliminaries

Let n >3 and H,(C) be a complex hyperbolic space with the metric of
constant holomorphic sectional curvature 4c¢ (c <0) and M be a real hyper-
surface in H,(C) with the induced metric. Choose a local field {ey,...,es,} of
orthonormal frame in such a way that, restricted to M, the vectors ej,..., e 1
are tangent to M. Hereafter let the indices i, j, k,/ run through from 1 to 2n — 1
unless otherwise stated. We denote by 6;,0; and ®; the canonical 1-forms, the
connection forms and curvature form of M respectively. Then they satisfy

(2.1) do;=—> 0,0, 0;+6;=0,
J

(2.2) d0j == Ou A Oy + Oy
k

Let J be the natural complex structure of H,(C) and (Jij, fr) be the almost
contact structure of M, i.e., J(e;) = > Jiiej + fiean. Then (Jy, fi) satisfies

(2.3) > iy = fif; =85 > fiJi=0,
k J
S ofi=1, Jy+Ji=0.
The vector field ), fie; is called the structure vector field of M.

Let ¢, be 1-forms of M such that >, ¢,0; is the second fundamental form of
M for ep,. Then the parallelism of J implies

(24) dly = (Juby — JiO) = fi4; + £
k
(2.5) df; =D (fibii — Jiad)-
k
The equation of Gauss is given by
(2.6) @,-j = ¢i A ¢j + cO; A 01 + CZ(JiijI + J,~,~Jk,)0k NG,
k1

The equation of Codazzi is given by

(2.7) dp; = - ¢ n0i+cd (fiJi + fiJu)6; A
Jk

J
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3. Formulas

In this section we assume that all principal curvatures xi,...,xz,—1 (not
necessarily distinct) of M for ey, are constant. We may set ¢; = x;6,. Then by
(2.1) and we can write the connection forms 6; in the form

(3.1) (xi = x)05 = ¢ > (A + fiTw + fiJu) O
k

where Ay = Ajx = Auy (cf. [5]). In particular, we have

(32) Aijk = —f;JJk —_ j;-J,'k lf Xj = Xj,

(3.3) S =0 if x; =x = xx.

We quote an important formula,

202 xkixi (Age + fidy + filig)?

3.4
( ) A Xk — Xi
02 S~ (g + il + fiu)”
k J
— 6¢(xi = X)) + 3e(xif ] = x:/7) = (xi = %) (¢ + xix7) = 0
(cf. [3)-

For an index i, we denote by [i] the set of indices j with x; = x;. Then it is
obvious that the vector F; =3}, ; fj¢; is independent of the choice of ortho-
normal frame {e;||j € [i]} for the eigenspace belonging to x;. Therefore for any
index i we can indicate a special index i’ so that the vector F; linearly depends on
ey. In other words, we can choose an orthonormal frame for the eigenspace
belonging to x; so that f; =0 for je [{]\{i'}. In the same way, for Jy (j is any
index and fixed and k is the index that x; # x;;), we can indicate a special index
k' and choose an orthonormal frame for the eigenspace belonging x;: so that
Ji =0 for I e [k]\{K'}.

Hereafter we assume that dim M > 5 and that M has three distinct constant
principal curvatures x, y, and z. Let m(x),m(y) and m(z) be the multiplicities of
x,y and z respectively. We shall make use of the following convention on the

range of indices:

| <abe<mx), mx)+1<rst<m)+my)
m(x)+m(y)+1<u,v,w<2n-1.

Now, we quote a Lemma.
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Lemma 3.1 (3)). If fof.f, # 0 then

L 1 =13 fda=0, £.)  fidw—fo ) fulua =0,
35) D Sdw— i Sudw =0, LD fidu— [ Y fudu =0,

f;JZfaJav _vaf;zJau - 0’ fqu;Jrv "fqurJru =0.

4. Proof of Main Theorem

It is sufficient to prove that two of f,, f, and f, are 0. For this, first, suppose
that £, f,f, # 0. Then, from [3.3), Jo» = Jos = Juy = 0. We quote equations which
are obtained by taking the exterior derivative of J, =0, Js, =0 and J,, = 0.

(4.1) 2c(y —2) Y _(falbu — fodau)ue

u

—(z— x)(x2 — yx+2¢)(f,06c — fy0ac) =0,

(42) 2c(y - Z) Z(f;v]br - f};Jar)Jrc

= (x = »)( = 2x + 26)(fubbe — fydac) =0,
(4.3) 2¢(z — x) ;(f,fm — fira)ar

— (x = Y)(9? — 2y + 26)(fdu — fiBu) = O,
(4.4) 2c(z = x) Y _(fidou = fiIru) s

— (¥ = 2)(3? — xy +2¢)(f,05 — f:0n) = O,
(4.5) 2¢(x - y) ‘;(fuJu, — fodur) o

= (y = 2)(2* = x2+2¢) (/0w — f,0u) = 0,
(4.6) 2¢(x ~ y) z;(fufw — folua)Jaw

—(z —x)(z* — ¥z +2¢)(f.0ow — fbuw) =0,
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(4.7) 2¢(y —z) Z Z ) x)(x* — yx 4+ 2¢)(m(x) — 1) =0,

y)(x? — zx + 2¢)(m (x)—1)=0,

4.8) 2¢(y —z) (Z

u

)(y* = xy +2c)(m(y) — 1) =0,

4.9) 2z X)<Zf2 Z )—(x—y)(y2—2y+2c)(m(y)~1)=0,
(4.10)  2¢(z—x (Z fi- }: )

(4.11)  2c(x—y) (Zfz ZJZ) —2)(2% = xz +2¢)(m(z) — 1) = 0,
(4.12)  2c(x—y) (Z N ) — x)(z2 = yz + 2¢)(m(z) — 1) = 0,
(cf. [5].

Lemma 4.1. If f.f.f, # 0 then m(x), m(y), m(z) > 2.
PROOF. At first, we assume m(x) = 1. Then from (4.7) and (4.8) we have
(4.13) 2IT=2 e D Si=d e
which imply
=2 Jut 2 IS
=D Sat D TR+ T

= m(z).

Hence m(y) = m(z) > 2 since dim M > 5. Then from (4.9) and (4.12) we have
y2—zy+2c=0 and 22 — yz+2c =0, and so

(4.14) z=—y, y*=—c

On the other hand, from [4.3), we have (f,Js — f;Jra)Jar =0. Multiply the
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equation by J, and sum over . Then, since ), JuJuw = f,f, # 0, we have
(4.15) Sidsa — foJra = 0.

Similarly from [(4.6), we have

(4.16) fidva = fua = 0.

Here we indicate a special index r’ (resp. #’) and choose an orthonormal frame
{e;} (resp. {e,}) for the eigenspace belonging y (resp. z) so that f, =0 if s #r/
(resp. f, =0 if v # u’). Then f,.f,, #0. Put r=1r', s'#r' in and u=u/,
v#u' in to get

(4.17) Ja=Jwu=0 s#r v#u.
From and [4.17) we have

0= fJsa=—SfypJsus
hence
(4.18) Jau =0 s#r.

Similarly, we have

(4.19) Joy=0 v#u
From and (4.17), we have
(4.20) > Jada=fifi=0, > fiJu=0

Z‘]su«]ur = f_;fr - 5sr == —5sr

if s # r’. We shall take the exterior derivative of J,, =0 (s # r’). From [4.17),
(4.18), [(4.19) and [4.20), we have

(421) - ar’er’s + Z Jsueua - au’eu’s + yf;zes =0
u

We shall take the exterior derivative of f, =0 (s # r’). From [4.17), [4.18), [(4.19)
and (4.20), we have

(4.22) SoOas + fBrs + foibus — > Jusp, =0




Real hypersurfaces in a complex 359

Canceling 6,; from (4.21) and (4.22), we get

C
Jar’{ x — yfa Zu:(Aasu + faJsu)eu

+ f y fu' (Aasu’ea -2 ;f,,]usﬁu) - Z;Jusﬂu}

z

+ f;" { z _f x Z (Z JsuAaru - faasr> 0,
— 4 (Jau’Aasu’ga - 2qu,Jau/va0,,) —+ ny‘aésrgr} = (.

z=ry

Taking account of the coefficients of 6,, we have
(fiydarr — frudaw)Aase = 0.

Here we assert f,J, — fJa # 0. If not so, multiplying (f,,Ja — f,Jaw) = 0 by
f.» we have

0= f2du — fifirdar = (f2 + f2) 0.

Hence

Jor = 0.
But implies that

0= Ju’aJar’ = ZJu’kar’ = f;uf;"a
k
which contradicts f, f,, # 0. Hence Aq = 0. Putting i =5 (#r') and j=u' in
(3.4), we get

2c?
ny,f,Juzs+ 3cyf5, —(y—2z)(c+yz)=0
u

Z__

by and [4.18). From this equation, and >, J2 =1, we have

8c2(f2 ~1)=0.

Hence f2, =1, which contradicts and f,, #0.
We can prove similarly in the case where m(y) =1 or m(z) = 1. Q.E.D.
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Now multiply (resp. [4.2)) by J.r (resp. Jo,) and sum over c. Then by
Lemma 3.1 we have

(4.23) (x? — yx +2¢)(f, Jor — fodw) = 0.
Similarly from (4.3), we have

(4.24) (22 = xz + 2¢)(fidoa — foJua) = 0.

Since x2 — yx+2c#0 or x> —zx+2c #0, we may assume x> — yx + 2c # 0.
Then [4.2) and [(4.23) imply x? — zx + 2c = 0. Hence z? — xz + 2¢ # 0. In fact, if
z2 —xz42c =0, then x = —z and it follows from (4.10) and (4.11) that y?—
xy+2c=0. Hence y2+ zy +2c=0. From (4.8), (4.9) and x> — xz4+2c =0 we
have y? —zy+2c=0. Then we have yz =0, which contradicts ¢ # 0. Hence
(4.6) and imply z2 — yz+2c=0. Then (4.7) and (4.12) imply x?-—
yx +2¢ = 0. From x? — xz +2c = 0 we have x = 0, which contradicts ¢ # 0. We
can prove similarly if x2 — zx + 2¢ # 0.

Owing to the above result, we may set f, =0.

Next, we prove f,f, = 0. For this, we suppose that f,f, # 0.

We need to consider three cases.

Case 1: m(y),m(z) = 2. Then J,; = J,, = 0. Here we indicate a special index
r’ (resp. u') and choose an orthonormal frame {e,} (resp. {e,}) so that f, =0 if
s #r' (resp. f, =0 if v+ u'). Then, from [2.3), we have

0="> " fili = fudur
i

Hence

(4.25) Jrw = 0.
Similarly

(4.26) Jry =0.

If m(x) > 2, then we choose an orthonormal frame {e,} so that Jj,» # 0,
Jar =0 if a # 1. Then, from [2.3), we have

0= ZJaiJir’ = Jal-]lr’-

Hence J), =0 for any a. Similarly we get
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(4.27) Jy=Jw=0 if s#r,v#u,
(4.28) Jur =0 if a#1,
from [2.3). Taking the exterior derivative of J,,, = 0 and f, =0 (s # r’), we have

Jr’lglu - ZJuaaar' - Zjusgsr’ - f;’¢u + f;4¢r’ = 0’
a s

fr’ar’s + fu’eu’s - Z'Ibs¢b - Zva¢u =0.
b v

Canceling 0,; from these equations, we get

Cc

Soden Y (Avuie + f,71) O
x

X—2Z

C

fr’ Z Jua Z(Aar’k + fr’Jak)Bk

X—=Yy 2 A

fu’ Z Jus Z(Asu’k + f;Ju’k + fu"]sk)ek
s k

C
y—z

+ bz:JstuS¢b + ZvaJuS¢u - fr’¢u + fu¢r’ = 0.
8 S, 0

+

Taking account of the coefficient of 6, (z 5 r’) and using [(2.3), (4.26), (4.25),
and (4.28), we have

JrnAim = 0.
Hence
(4.29) A1 =0 (s#71).
Similarly, from dJ,,, =0 and df, =0 (v # u’), we have
(4.30) Ay =0 (v#u).

Now put i=1, j=s (s #r') in (3.4). Then, using (3.2), (4.27), (4.28) and
(4.29), we have

—(x—y)(c+xy) =0.
Hence
(4.31) c+xy=0.
Moreover put i =1, j=v (v # «’) in [3.4). Then, using 3.2), (4.27), (4.28) and
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(4.30), we get
(4.32) c+xz=0.

Canceling ¢ from [4.31) and (4.32), we get x = 0, which contradicts ¢ # 0.
If m(x) =1, then we can get same equations [4.27), [(4.29), [(4.30), (4.31) and

and prove similarly.

Case 2: m(y)=1,m(z) >2. So we can indicate a special index u’ and
choose an orthonormal frame {e,} so that f, = 0 if v # u’. Moreover from
we have

(4.33) T = 0.

Then Y, JauJaw = 0w — f,f,- This implies that there are m(z) linearly independent
m(x)-dimensional vectors. Hence, m(x) > m(z) > 2.

Let us take the exterior derivative of f, = 0. Then, using [2.3), {2.4), [(3.1)
and [3.2), we have

(4'34) X i Z quAaru = - (x3_c 2 Zf ) ar,

(4.35) Lyf,Aamz—(xfyfh 2¢ Zf,f—z)Jau

Canceling A, from (4.34) and (4.35), we get
c(x

X —

(4.36) f,ar{ (_yz)f,—i- y)ng—yx—zx-i-Zyz-%-c}:O

since f? + S, f2=1. We assert J,, # 0. In fact, we suppose that J,, = 0. Then
by we have

0= ZJZ =1-f2=12,
which contradicts f,f, # 0. Hence it follows from (4.36) and the relation
fI+X, /=1 that

3e(y —2)2x-y—2)
(x=»)(x-2)

3e(x - )

2
=yx+zx—2yz—c— .
fr=yxtz ¥ (x—2)
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If 2x — y —z #0, then f ,2 is constant. Taking account of the coefficient of 6, in
df, =0, we have
(4.37) (x=y)(x—2z)+x(x—y)+x(x—2z)—c=0.
This equation holds if 2x — y —z = 0. From and (4.36), we get
(4.38) c(x—2)2f 4 c(x— )’ fi+ (x-p)*(x—z)2 =0.

Now we choose an orthonormal frame {e,} so that Jy,» # 0, J,, =0 if a # 1
and then, for a special index v’ € [u]\u/, Jo,» # 0, Jo =0 if a # 1,2. Then, from

[2.3), we have
(4.39) | Jia = Jog = Jiy =0
Jo=0 if a# 1.
Put a=1 and u=v" in to get
(4.40) Aty = 0.
Then putting i =1, j =10’ in [3.4), from and [4.40), We have
~(x—=z)(c+xz)=0
Hence
(4.41) c+xz=0.

Taking account of the coefficient of 6, in dJ,, =0, we have z?> — xz+2c =0.
From this and [4.41), we get z?> = —3¢, 3x? = —¢, z = 3x. Then, from [(4.37), We
have y =0. On the other hand, puting a =2, u =v" in (4.35), we have

(4.42) cfy Ay = =2¢f 2T
Put i =2, j =’ in [3.4). Then, from z = 3x, 3x? = —¢, y = 0 and [2.3), we have

2¢2
3xf?

{(=3(=2f/L + [P+ 6f2f0 +(=2f2 - fH?—6f7} =0.

Hence
~@2fF-1’=0

Then f? = 2, = 1/2, which contradicts [4.38).
We can prove similarly for the case m(y) > 2, m(z) = 1.
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Case 3: m(y) =m(z) = 1. Then m(x) > 3. Moreover J,, = 0. Hence J, # 0
since rank J = 2n — 2. Let us take the exterior derivative of f, =0, then, using

(2.3), [2.4), [3.1] and [3.2), we have

¢ 2 c 2
(4’43) x_yfr+x_zfu x_()’
c 3c c
(4.4 o fuers =~ (S S T 1 9V
c _ (2 3¢ 2
(445) x_yf;-Aaru'— (x_-yfr +X—qu Z)Jau.

It follows from and the relation f>+ f2 =1 that f? is constant. Taking
account of the coefficient of 8, in df, =0, from and we have

(4.46) (x=y)(x—-2)+x(x—y)+x(x—2)—c=0.

Now we choose an orthonormal frame {e,} so that J;, #0, J, =0 if a # 1.
Then, from |2.3), we have

Vi

(447) ler = 5’ leu = rz’
Jau=0, Jig=0 if a#l.
Hence, from (4.44), we get

(4.48) Ay =0 if a#1.

We put i =2, j=r in [3.4]. Then, from [4.47) and [4.48), we have

2¢2

(4.49) - yf,2+3cxf3— (x — y)(c+ xy) = 0.

x_

Similarly, putting i =2, j=u in [3.4), we get

2¢2

X—2Z

(4.50) - f242exf2— (x—z)(c+xz) =0.

Canceling f? and f2? from [4.49), [4.50) and [4.43), we have
(x= ) (x—2)(y+2z-3x) =0
by using (4.46). Hence we get

(4.51) 3x—-y—-2z=0.
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And from [4.51), [4.46), [4.43) and f2+ f2=1, we get

(4.52) c(y-o)ff =(x=y) cz=pfi=(x-2".
On the other hand, from (4.44) and (4.49), we have

c

(4.53) SuAir = —%{3cxf,2 — xy(x — y) i,

X =2

Similarly, from (4.45) and [4.50), we have

c

(4.54) o

S = —%{3cxf,f — xz(x — 2) }J14-

Then, from these equations, (4.46) and (4.51), we have

C C
(x_ Z_ x — y)frqulru

=~ Bex—xy(x— y) — w2l — D}

= ——xf,.h,.

Here, we may set Jj, = f, by (4.47). Then Jy, = —f,, and cAi, = x(x—y)-
(x —z)/(y — z). Moreover we obtain

(x—2ff+(x-»)fa
y—z '
since x(x — y)(x — z) = c(x — 2)f} + c(x — y)f} by [4.43).
Let a # 1. We take the exterior derivative of J,, = 0. Then, using [2.3), [2.4),
(4.47) and (4.48), we have

(4.55) Alpy =

Cc
4.56 a= - -
(4.56) fitha = (25 - %) 16
Similarly, from dJ,, =0, we have

C
(4.57) — fb1a = (x —- x) f.Ba.
From above two equations and f?+ f2 =1 we get

c(y —2)

4.58 01, = S04

Let us take the exterior derivative of [4.58). First, using (2.1) and [(4.58), we have
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c(y—z)
a = — 0(1 ar r au u
do, (x_y)(x_z)f,fu{%: 5 A Oy + O A Oy + 0 /\0}

_dy-2)
G- -2

{Zgab/\gb+ )Zf, N iz)z_f;,-]abeb/\gu}
D

because of [4.47) and [4.48). Next, using [2.6), we obtain
db, = — Z 016 A Opa + 01y A Oup + 014 A Oy + O
b

___cy-2
BCEECER P

3¢? 5 2 , :
_ Z{(x— y)Zfr + (x_z)z(Alru —f) +c}fw]ab9b/\0r

3¢

(x—2)

2(Alru+fr2)_

_zb:{(sz

+ (c+ x2)6, A 6,

because of (4.47), and [(4.58). Hence
. - 2 - -
(4.59) cZ{ c(3x y 2) g2 et x= 2 Z)Z)} £ Tas05 A6,

fi- c} fTa05 A B,

—2)7 (x—2)(y -

c(3x =2y —z) c—(x=y)y—2)
*"Z{ EE T i e ) }“"”"”“9“

—(c+x%)0, A0, =0.
Taking account of the coefficient of 6, A6, in (4.59), we have

(4.60) c+x*=0.

We can get the same equation if J1, = —f,. From the [4.60), (4.46) and (4.51), we
get ( z?) = ( c,—4c), (—4c,—c). Hence x = —y or x = —z, which contradicts

(@46) and [@31)

Owing to the above result, we get f, or f, =0. Hence the proof of Main
is complete. :
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