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NEUTRAL HYPERK\"AHLER STRUCTURES ON
PRIMARY KODAIRA SURFACES

By

Hiroyuki KAMADA

1. Introduction

In the present paper, we study neutral hyperk\"ahler structures on four-di-
mensional manifolds, which draw attention recently in differential geometry and
especially in mathematical physics (cf. $Hull[14]$ , Ooguri-Vafa [20]). A neutral
hyperk\"ahler stmcture on a pseudo-Riemannian four-manifold $M$ of metric sig-
nature $(2, 2)$ consists of a neutral metric $g$ and three endomorphisms ( $I,$

$//$ on
the tangent bundle $TM$ of $M$ such that

(1) $I^{2}=-Id$ , $/J^{2}=/K^{2}=Id$ and $I^{\prime}J=-/JI=$ ;

(2) $g(V_{1}, V_{2})=g(IV_{1}, IV_{2})=-g(JV_{1},JV_{2})=-g(KV_{1},KV_{2})$

for arbitrary vector fields $V_{1},$ $V_{2}$ on $M$, and that these structures enjoy some
desired properties similar to the K\"ahler condition. We shall call a triple $(I,$ $/J^{\prime}K)$

satisfying (1) a split-quatemion stmcture (or a paraquatemionic stmcture in some
literature (cf. Bla\v{z}i\v{c} [4], Garcia-Rio et al. [10])), $g$ satisfying (2) a compatible
metric with ( $I,$

$//$ and $(g, I, /J^{\prime}K)$ a neutral almost hyperhermitian structure.
For a four-manifold $M$ endowed with such a structure $(g, I, /J^{\prime}K)$ , the invariance
of $g$ by $I$ and the skew-invariance by $/J$ and $/K$ allow us to define three
nondegenerate 2-forms $\Omega_{I},$ $\Omega_{J},$ $\Omega_{K}$ , called the fundamental forms, as follows:

$\Omega_{I}(V_{1}, V_{2})$ $:=g(IV_{1}, V_{2}),$ $\Omega_{J}(V_{1}, V_{2})$ $:=g(/JV_{1}, V_{2}),$ $\Omega_{K}(V_{1}, V_{2})$ $:=g(/KV_{1}, V_{2})$ ,

where $V_{1},$ $V_{2}$ are vector fields on $M$.

DEFINITION. A neutral almost hyperhermitian four-manifold $(M, g, I^{\prime}J^{\prime}K)$
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is called a neutral hyperkahler surface if $I,$ $/J,$ $/K$ are integrable and if $\Omega_{I},$ $\Omega_{J},$ $\Omega_{K}$

are closed.
Here, $/J$ (resp. $/K$) is said to be integrable if the tangential distributions

corresponding to the $(\pm 1)$ -eigenspaces of $J$ (resp. $/K$) are integrable, and a
neutral almost hyperhermitian four-manifold with integrable split-quatemion
structure is called a neutral hyperhermitian surface. The fundamental 2-forms
on a neutral hyperkaher surface define three symplectic structures, with certain
algebraic identities, which is called a hypersymplectic structure in Hitchin [13].

For the Riemannian analogue, it is known that a compact hyperkahler
surface is biholomorphic and isometric to either a complex toms with the flat
metric or a $K3$ surface with the Ricci-flat Calabi-Yau metric. Taking account
of the Euler characteristics and the Hirzebruch signatures, we see that any
hyperk\"ahler metric on a toms (resp. a $K3$ surface) must be flat (resp. nonflat),
since it is Ricci-flat and anti-self-dual (cf. Besse [3]).

We will focus our attention on the indefinite case, i.e., neutral hyperk\"ahler
structures on compact four-manifolds. Any complex toms has a flat neutral
hyperk\"ahler structure associated with the standard one on the complex plane.
Moreover, we will observe in \S 2 that any neutral hyperkahler surface must be
biholomorphic to either a complex torus or a primary Kodaira surface. We are
then interested in seeking a compact complex surface with nonflat neutral
hyperk\"ahler structure, like a $K3$ surface in the Riemannian case.

Conceming the issue, we see that neutral hyperk\"ahler structures on compact
four-manifolds exhibit quite different properties to those of hyperk\"ahler structures
in the Riemannian case. We will give a characterization of neutral hyperk\"ahler
structures, in terms of a partial differential equation for the K\"ahler potentials,
and show that any primary Kodaira surface admits neutral hyperkahler stmc-
tures, whose compatible neutral metrics can be chosen to be flat or nonflat,
according as some particular functions are constant or not. Our main results will
be stated in Theorems 1 and 2.

It should be pointed out that J. Petean [21] has independently studied in-
definite Ricci-flat Kahler metrics on compact complex surfaces. Furthermore, he
has successfully obtained a classification of compact complex surfaces which
admit indefinite Ricci-flat K\"ahler metrics.

2. Neutral Hyperkahler Structures

Let $\Omega_{I},$ $\Omega_{J},$ $\Omega_{K}$ be the fundamental forms of a neutral almost hyperhermitian
four-manifold $(M, g, I, /J, /K)$ . Then, $\wedge\Omega_{l}$ : $\wedge^{1}T^{*}M\rightarrow\wedge^{3}T^{*}M$ are isomor-
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phisms, and hence there exist three kinds of Lee forms $\beta_{I},\beta_{J},\beta_{K}$ such that $d\Omega_{l}=$

$\beta_{l}\wedge\Omega_{l}(l\in\{I, /J^{\prime}K\})$ .
For the later convenience, we must recognize the following (see [16], cf.

Boyer [6]):

PROPOSITION 1. $I,$ $/J$ and $/K$ are integrable if and only if $\beta_{I}=\beta_{J}=\beta_{K}$

$(=:\beta)$ .

For a neutral hyperhermitian surface $(M, g, I, /J, /K)$ , we call $\beta$ the Lee form.
If $\beta$ is exact (resp. closed), then the surface is globally (resp. locally), conformally
neutral hyperk\"ahler.

Recall that, given a neutral hyperk\"ahler surface $(M, g, I^{\prime}J^{\prime}K)$ , the 2-form
$\Omega_{J}+\sqrt{-1}\Omega_{K}$ is not only a nonvanishing holomorphic 2-form on $(M, I)$ but also
a parallel section of the canonical bundle $K_{(M,I)}$ . Then the Ricci curvature of
$(M, g)$ is identically zero, and therefore the first Chem class $c_{1}(M, I)$ vanishes.
On the other hand, any neutral hyperhermitian metric is (conformally) self-dual
(cf. Akivis and Goldberg [1], [14], [16]). Summarizing these, we have the fol-
lowing:

PROPOSITION 2. Any neutral hyperkahler surface is Ricci-flat and self-dual.

Remark that any scalar-flat neutral K\"ahler metric is self-dual (cf. [17], for the
Riemannian analogue, see Derzi\’{n}ski [7], Itoh [15]).

We now recall that the fundamental 2-forms $\Omega_{I},$ $\Omega_{J},$ $\Omega_{K}$ of a neutral
hyperk\"ahler surface $(M, g, I, /J, /K)$ satisfy the following: $d\Omega_{l}\equiv 0$ and

(3) $-\Omega_{I}^{2}=\Omega_{J}^{2}=\Omega_{K}^{2}$ , $\Omega_{l}\wedge\Omega_{m}\equiv 0$ , $(l\neq m;l, m\in\{I^{\prime}J^{\prime}K\})$ .

In particular, we note that $\Omega_{I}$ is compatible with the opposite orientation and
that $(\Omega_{J}, \Omega_{K})$ is a conformal symplectic couple on $M$ in the sense of Geiges [11].

By making use of analogous arguments in Geiges-Gonzalo [12] and Geiges
[11] (see [16]), we can obtain the following:

PROPOSITION 3. If a four-manifold $M$ admits three nondegenerate 2-forms
$\Omega_{1},$ $\Omega_{2},$ $\Omega_{3}$ satisfying the same relations as (3), then there exists a unique neutral
almost hyperhermitian structure $(g, I, /J^{\prime}K)$ on $M$ such that $\Omega_{1}=\Omega_{I},$ $\Omega_{2}=\Omega_{J}’$ ,
$\Omega_{3}=\Omega_{K}$ . If these 2-forms $\Omega_{1},$ $\Omega_{2},$ $\Omega_{3}$ are closed, then $(g, I, /J, /K)$ defines a neutral
hyperkahler structure.
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By Proposition 1, the closedness of $\Omega_{1},$ $\Omega_{2},$ $\Omega_{3}$ leads the integrability of
$I,$ $/J^{\prime}K$ .

In the rest of this section, we discuss compact neutral hyperk\"ahler surfaces.
According to the Enriques-Kodaira classification of compact complex surfaces (cf.
Barth et al. [2]), we see that for any compact neutral hyperk\"ahler surface
$(M, g, I, /J, /K)$ , the underlying complex surface $(M, I)$ must be biholomorphic to
one of the following possibilities:

(a) a complex toms, (b) a $K3$ surface, (c) a primary Kodaira surface,
since $\Omega_{J}+\sqrt{-1}\Omega_{K}$ defines a nonvanishing holomorphic 2-form on $(M, I)$ .
Among these candidates, it is already noted that a complex torus has the
standard flat neutral hyperk\"ahler structure.

For the second candidate, Matsushita [19] showed that $K3$ surfaces admit
many neutral metrics (see also Bonome et al. [5]). However, Draghici [8] recently
showed that $K3$ surfaces admit no symplectic structures compatible with the
opposite orientation. Noting that one of the fundamental forms of a neutral
hyperk\"ahler surface defines a symplectic structure compatible with the opposite
orientation, we see that $K3$ surfaces admit no neutral (hyper)k\"ahler structures.
Therefore, we must consider the other candidates.

3. Primary Kodaira Surfaces

In this section, we devote ourselves to a primary Kodaira surface $X$, which is
a compact complex surface, with $b_{1}(X)=3,$ $c_{1}(X)=0,$ $c_{2}(X)=0$ , obtained as
the total space of an elliptic fibre bundle over an elliptic curve. Moreover the
other numerical characters of $X$ are given as follows:

$h^{1,0}(X)=1$ , $q(X)=2$ , $p_{g}(X)=1$ , $b_{2}^{+}(X)=b_{2}^{-}(X)=2$ ,

where we denote respectively by $h^{1,0}(X),$ $q(X)$ and $p_{g}(X)$ the complex dimension
of the space of holomorphic l-forms, the irregularity and the geometric genus of
$X$ (see Barth et al. [2]). Any primary Kodaira surface cannot be K\"ahler, since its
first Betti number is three. Fem\’andez et al. [9] constmcted examples of (flat)
neutral K\"ahler structures on primary Kodaira surfaces of particular type.

It is well-known that every primary Kodaira surface $X$ is covered by the
complex plane $C^{2}$ and its fundamental group $\pi_{1}(X)$ can be represented injectively
into Affine $(C^{2})$ , the complex affine transformation group on $C^{2}$ :

$\rho:\pi_{1}(X)\rightarrow Affine(C^{2})$ , $p(\gamma)(z_{1}, z_{2})=(z_{1}+\alpha_{\gamma}, z_{2}+\overline{\alpha_{\gamma}}z_{1}+\beta_{\gamma})$ ,

where $(z_{1}, z_{2})$ is the standard complex coordinates of $C^{2}$ and $\alpha_{\gamma},\beta_{\gamma}$ are constants
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in $C$ depending only on $\gamma$ . If we put $G:=\rho(\pi_{1}(X))$ , then we can identify $X$ with
$C^{2}/G$ , as complex surface (see Kodaira [18]).

At this stage, we can state our main result:

THEOREM 1. Let $X=C^{2}/G$ be a primary Kodaira surface. Then the following

2-forms $\Omega_{1},$ $\Omega_{2},$ $\Omega_{3}$ define a neutral hyperkahler structure on $X$:

(4) $\Omega_{1}={\rm Im}(dw_{1}\wedge d\overline{w_{2}})+\sqrt{-1}{\rm Re}(w_{1})dw_{1}\wedge d\overline{w_{1}}+(\sqrt{-1}/2)\partial\overline{\partial}\varphi$ ,

$\Omega_{2}={\rm Re}(e^{\sqrt{-1}\theta}dw_{1}\wedge dw_{2})$ , $\Omega_{3}={\rm Im}(e^{\sqrt{-1}\theta}dw_{1}\wedge dw_{2})$ ,

where $(w_{1}, w_{2})$ is the standard complex coordinate system of $C^{2},$ $\theta$ is a real
constant and $\varphi$ is a solution to the equation:

(5) $ 4\sqrt{-1}({\rm Im}(dw_{1}\wedge d\overline{w_{2}})+\sqrt{-1}{\rm Re}(w_{1})dw_{1}\wedge d\overline{w_{1}})\wedge\partial\overline{\partial}\varphi=\partial\overline{\partial}\varphi\wedge\partial\overline{\partial}\varphi$ .

In particular, any primary Kodaira surface admits neutral hyperkahler structures.
Conversely, under suitable complex coordinates $(w_{1}, w_{2})$ of $C^{2}$ , the fundamental
forms of any neutral hyperkahler structure on $X$ can be expressed as (4).

PROOF. Let $\Psi$ : $ X\rightarrow\Delta$ be an elliptic fibre bundle structure over the base
elliptic curve $\Delta$ . Then we can verify the following commutative diagram:

$\overline{\Psi}c_{I^{2}}$
$\rightarrow^{\varpi^{\overline}}X_{\Psi}\downarrow$

$C$
$\rightarrow^{\varpi}\Delta$

where $\tilde{\Psi}$ is the projection from $C^{2}$ to the first factor $C$ , and $\tilde{\varpi},$ $\varpi$ are the covering
maps. In this picture, if we denote by $(z_{1}, z_{2})$ the standard complex coordinate
system of $C^{2}$ , then $\phi$ $:=dz_{1}$ is a nonvanishing holomorphic l-form on $X$, which
generates the cohomology group $H^{0}(X, \Omega_{X}^{1})\cong H_{\frac{1}{\partial}}^{0}(X)$ , and moreover, $\sigma^{0,1}$

$:=$

$d\overline{z_{2}}-z_{1}d\overline{z_{1}}$ is a $\overline{\partial}$-closed $(0, 1)$-form on $X$. Hence $H^{1}(X, \mathcal{O}_{X})\cong H_{\frac{0}{\partial}}^{1}(X)$ , the
Dolbeault cohomology group, is generated by the $\overline{\partial}$-cohomology classes of $\overline{\phi}$ and
$\sigma^{0,1}$ . Since $d\sigma^{0,1}=-dz_{1}\wedge d\overline{z_{1}}$, a real l-form $\sigma:=\overline{\sigma^{0,1}}+\sigma^{0,1}$ is a d-closed l-form
on $X$. Furthermore, we see that the cohomology classes of $\phi,\overline{\phi},$

$\sigma$ generate
$H^{1}(X, C)$ .

Note that $\psi:=dz_{1}\wedge(dz_{2}-\overline{z_{1}}dz_{1})$ gives a nonvanishing holomorphic 2-form
on $X$.

We now define real d-closed 2-forms $\Omega_{2},$ $\Omega_{3},$ $\Omega_{2}^{-},$ $\Omega_{3}^{-}$ respectively by

$\Omega_{2}+\sqrt{-1}\Omega_{3}$ $:=dz1\wedge dz_{2}$ , $\Omega_{\overline{2}}+\sqrt{-1}\Omega_{3^{;=}}^{-\sqrt{-1}d\overline{z_{1}}\wedge(dz_{2}-\overline{z_{1}}d_{Z_{1}})}$ .
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Then the cohomology classes of $\Omega_{2},$ $\Omega_{3}$ (resp. $\Omega_{2}^{-},$ $\Omega_{3}^{-}$ ) in $H^{2}(X, R)$ generate the
cohomology group $H_{+}^{2}(X, R)$ (resp. $H^{\underline{2}}(X,$ $R)$ ). Moreover it is easy to see that
$(\Omega_{2}^{-}, \Omega_{2}, \Omega_{3})$ and $(\Omega_{3}^{-}, \Omega_{2}, \Omega_{3})$ give neutral hyperkahler structures on $X$, re-
spectively.

We next consider arbitrary neutral hyperk\"ahler structures on $X$. Suppose that
three symplectic structures $\Omega_{1},$ $\Omega_{2},$ $\Omega_{3}$ define a neutral hyperk\"ahler structure. Then
$\Omega_{1}$ is a real $(1, 1)$-form on $X$ and defines an element in $H^{\underline{2}}(X, R)$ . Thus there
exists a real l-form $\eta$ and real constants $a,$

$b$ such that $\Omega_{1}=a\Omega_{2}^{-}+b\Omega_{3}^{-}+d\eta$ . It
then follows from $\Omega_{1}^{2}=(\Omega_{2}^{-})^{2}=(\Omega_{3}^{-})^{2}$ that

$(a^{2}+b^{2}-1)\Omega_{1}^{2}=d(\eta\wedge(2(a\Omega_{2}^{-}+b\Omega_{3}^{-})+d\eta))$ .

By integrating the equation above, we obtain $a^{2}+b^{2}=1$ , so we may put
$a=\cos\theta,$ $ b=\sin\theta$, where $\theta$ is a real constant.

Recalling the decomposition $\eta=\eta^{1,0}+\eta^{0,1}(\overline{\eta^{0,1}}=\eta^{1,0})$ , we see that $\eta^{0,1}$ is $\overline{\partial}-$

closed, since $\Omega_{1},$ $\Omega_{2}^{-},$ $\Omega_{3}^{-}$ are real $(1, 1)$-forms, and hence that

$\eta^{0,1}=k\overline{\phi}+l\sigma^{0,1}+\overline{\partial}\mu$ , $d\eta=(\overline{l}-l)dz_{1}\wedge d\overline{z_{1}}+\partial\overline{\partial}(\mu-\overline{\mu})$ ,

where $k,$ $l$ are constants and $\mu$ is a complex-valued function on $X$. Setting
$\sqrt{-1}c:=\overline{l}-l(c\in R)$ and $\sqrt{-1}\varphi:=2(\mu-\overline{\mu})$ , we then see that

$\Omega_{1}=\cos\theta\Omega_{2}^{-}+\sin\theta\Omega_{3}^{-}+\sqrt{-1}cdz_{1}\wedge d\overline{z_{1}}+(\sqrt{-1}/2)\partial\overline{\partial}\varphi$ .

By making use of the coordinates $(w_{1}, w_{2}):=(e^{\sqrt{-1}\theta}z_{1}+c, z_{2})$ , we can express
$\Omega_{1},$ $\Omega_{2},$ $\Omega_{3}$ as

$\Omega_{1}=\Omega_{0}+(\sqrt{-1}/2)\partial\overline{\partial}\varphi(=:\Omega_{\varphi})$ , $\Omega_{2}+\sqrt{-1}\Omega_{3}=e^{\sqrt{-1}\theta}dw_{1}\wedge dw_{2}$ ,

where $\Omega_{0}$ is given by

$\Omega_{0}$ $:=(\sqrt{-1}/2)(d\overline{w_{1}}\wedge dw_{2}-dwl\wedge d\overline{w_{2}}+(w_{1}+\overline{w_{1}})dw1\wedge d\overline{w_{1}})$ .

Therefore we see that $(\Omega_{1}, \Omega_{2}, \Omega_{3})$ defines a neutral hyperk\"ahler structure on $X$ if
and only if $\varphi$ satisfies the following equation:

$ 4\sqrt{-1}\Omega_{0}\wedge\partial\overline{\partial}\varphi=\partial\overline{\partial}\varphi\wedge\partial\overline{\partial}\varphi$ .

This concludes the proof. $\square $

We note that the corresponding metric $g=g_{\varphi}$ is explicitly given by

$ g_{\varphi}=(w_{1}+\overline{w_{1}})|dw_{1}|^{2}-(dw_{1}d\overline{w_{2}}+d\overline{w_{1}}dw_{2})+D^{2}\varphi$ ,
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where $D_{\varphi}^{2}$ denotes the complex Hessian of $\varphi$ . Clearly, the pullback of an arbitrary
function on the base torus $\Delta$ is a solution to (5).

4. Flat Neutral Hyperk\"ahler Structure on Primary Kodaira Surfaces

In this section, we shall prove the following:

THEOREM 2. Let $g_{\varphi}$ be the neutral hyperkahler metric on a primary Kodaira
surface $X$ defined by (4). Then $g_{\varphi}$ is flat $lf$ and only if $\varphi$ is constant.

This shows that each nonconstant function $\varphi$ on the base torus of any
primary Kodaira surface defines a nonflat neutral hyperk\"ahler metric $g_{\varphi}$ (cf.
Petean [21]).

PROOF. We first recall some preliminaries for a neutral K\"ahler surface
(X, $g,$

$I$). Let $(w_{1}, w_{2})$ be local holomorphic coordinates on $X$. For simplicity, we
set

$\partial_{\alpha}:=\partial/\partial w_{\alpha}$ , $\partial_{\overline{\alpha}}:=\partial/\partial\overline{w_{\alpha}}$ and $g_{\alpha\overline{\beta}}:=2g(\partial_{\alpha}, \partial_{\overline{\beta}})$

$(\alpha,\beta=1,2)$ . Let $\nabla$ be the Levi-Civita connection of (X, g) and $\{\omega_{B}^{A}\}$ the
connection form of $\nabla$ with respect to $\{\partial_{A}\}(A, B=1,2, \overline{1},\overline{2})$ . Then $\omega_{\beta}^{\overline{\alpha}}=\omega_{\overline{\beta}^{\alpha}}\equiv 0$ ,

since $\nabla I\equiv 0$ . Moreover $\omega_{\beta^{\alpha}}$ (resp. $\omega_{\overline{\beta}}^{\overline{\alpha}}$ ) is a local $(1, O)-(resp. (0,1)-)$ form, since $\nabla$

is torsion-free. Hence the components of $\{\omega_{B}^{A}\}$ , except for $\{\omega_{\beta^{\alpha}}(\partial_{\gamma})\}$ and $\{\omega_{\overline{\beta}}^{\overline{\alpha}}(\partial_{\overline{\gamma}})\}$ ,
must vanish. Since $\nabla$ preserves the metric $g$ , we have

(6)
$\omega_{\beta}^{\alpha}=\sum_{\epsilon}g^{\overline{\epsilon}\alpha}\partial g_{\beta\overline{\epsilon}}$

,
$\omega_{\overline{\beta}}^{\overline{\alpha}}=\sum_{\epsilon}g^{\overline{\alpha}\epsilon}\overline{\partial}g_{\epsilon\overline{\beta}}$

,

where $g^{\overline{\alpha}\beta}$ is given by $\sum_{\epsilon}g_{\alpha\overline{\epsilon}}g^{\overline{\epsilon}\beta}=\sum_{\epsilon}g^{\overline{\beta}\epsilon}g_{\epsilon\overline{\alpha}}=\delta_{\alpha}^{\beta}$ . The curvature form $\{R_{B}^{\Lambda}\}$ of $\nabla$

is given as follows:

(7) $R_{\beta}^{\alpha}=\overline{\partial}\omega_{\beta^{\alpha}}$ , $R_{\overline{\beta}}^{\overline{\alpha}}=\partial\omega_{\overline{\beta}}^{\overline{\alpha}}$ .

Therefore we see that $g$ is flat (i.e., $R\equiv 0$) if and only if $\omega_{\beta^{\alpha}}$ is a local holo-
morphic l-form on $X$.

Let $X=C^{2}/G$ be a primary Kodaira surface, $g$ a neutral hyperk\"ahler metric
on $X$ and $\Omega_{1},$ $\Omega_{2},$ $\Omega_{3}$ the fundamental forms. By making use of complex
coordinates $(w_{1}, w_{2})$ satisfying $\Omega_{2}+\sqrt{-1}\Omega_{3}=e^{\sqrt{-1}\theta}dw_{1}\wedge dw_{2}(\theta$ is a real con-
stant), the condition $-\Omega_{1}^{2}=\Omega_{2}^{2}=\Omega_{3}^{2}$ can be written as follows:

(8) $g_{1\overline{1}}g_{2\overline{2}}-g_{1\overline{2}}g_{2i}\equiv-1$ .
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Thus the components $g^{\overline{\alpha}\beta}$ satisfy

$g^{\overline{1}1}=-g_{2\overline{2}}$ , $g^{i2}=g_{1\overline{2}}$ , $g^{\overline{2}1}=g_{2i}$ , $g^{\overline{2}2}=-g_{1i}$ .

The connection form $\{\omega_{\beta}^{\alpha}\}$ is given by

(9) $\omega_{1^{1}}=-g_{2\overline{2}}\partial g_{1}i+g_{2\overline{1}}\partial g_{12}$ , $\omega_{2^{1}}=-g_{2\overline{2}}\partial g_{2\overline{1}}+g_{2i^{\partial g_{22}}}$ ,

$\omega_{1}^{2}=g_{1\overline{2}}\partial g_{1\overline{1}}-g_{1\overline{1}}\partial g_{1\overline{2}}$ , $\omega_{2}^{2}=g_{1\overline{2}}\partial g_{2}i^{-}g_{1i}\partial g_{2\overline{2}}$ .

In particular, it follows from (8) that

(10) $\omega_{1}^{1}+\omega_{2}^{2}\equiv 0$ .

Recall that the fundamental form $\Omega_{1}$ may be written as

$\Omega_{1}=(\sqrt{-1}/2)(-dw_{1}\wedge d\overline{w_{2}}-dw_{2}\wedge d\overline{w_{1}}+(w_{1}+\overline{w_{1}})dw_{1}\wedge d\overline{w_{1}}+\partial\overline{\partial}\varphi)$ ,

where $\varphi$ is a smooth function on $X$. The components $g_{\alpha\overline{\beta}}$ are given explicitly in
the following fashion:

$g_{1\overline{1}}=w_{1}+\overline{w_{1}}+\frac{\partial^{2}\varphi}{\partial w_{1}\partial\overline{w_{1}}}$ , $g_{1\overline{2}}=-1+\frac{\partial^{2}\varphi}{\partial w_{1}\partial\overline{w_{2}}}(=\overline{g_{2\overline{1}}})$ , $g_{22}=\frac{\partial^{2}\varphi}{\partial w_{2}\partial\overline{w_{2}}}$ .

From (9) and (7), if $\varphi$ is constant, then $g$ is flat.
For any $\gamma\in G$ , we define $\rho_{\gamma}$ : $C^{2}\rightarrow C^{2}$ by

$\rho_{\gamma}(w_{1}, w_{2})=(w_{1}+\alpha_{\gamma}, w_{2}+\overline{\alpha_{\gamma}}w_{1}+\beta_{\gamma})$ .

It then follows that

(11) $\rho_{\gamma}^{*}(dw_{1})=dw_{1}$ , $\rho_{\gamma}^{*}(dw_{2})=dw_{2}+\overline{\alpha_{\gamma}}dw_{1}$ ,

(12) $\rho_{\gamma^{*}}(\partial_{1})=\partial_{1}+\overline{\alpha_{\gamma}}\partial_{2}$ , $\rho_{\gamma^{*}}(\partial_{2})=\partial_{2}$ .

Then we can verify the following relations:

$g_{1}i^{O}p_{\gamma}=g_{1i}-\alpha_{\gamma}g_{12}-\overline{\alpha_{\gamma}}g_{2}i+|\alpha_{\gamma}|^{2}g_{2\overline{2}}$

(13)
$g_{1\overline{2}}\circ\rho_{\gamma}=g_{1\overline{2}}-\overline{\alpha_{\gamma}}g_{2\overline{2}}$ , $g_{2i^{O}p_{\gamma}=g_{2}i^{-\alpha_{\gamma}g_{2\overline{2}}}}$ , $g_{2\overline{2}}\circ\rho_{\gamma}=g_{2\overline{2}}$ .

By making use of the relations above, we can also verify the following

(14) $\rho_{\gamma}^{*}\omega_{1}^{1}=\omega_{1^{1}}-\overline{\alpha_{\gamma}}\omega_{2^{1}}$ , $\rho_{\gamma}^{*}\omega_{2^{1}}=\omega_{2^{1}}$ , $\rho_{\gamma}^{*}\omega_{1}^{2}=\omega_{1}^{2}+2\overline{\alpha_{\gamma}}\omega_{1^{1}}-\overline{\alpha_{\gamma^{2}}}\omega_{2^{1}}$ .
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If we set

$\eta_{1}$
$:=\omega_{1^{1}}+\overline{w_{1}}\omega_{2^{1}}$ , $\eta_{2}$

$:=\omega_{2^{1}}$ , $\eta^{3}$ $:=\omega_{1}^{2}-2\overline{w_{1}}\omega_{1^{1}}-\overline{w_{1^{2}}}\omega_{2^{1}}$ ,

then $\eta_{1},$ $\eta_{2},$ $\eta_{3}$ may be regarded as l-forms on $X=C^{2}/G$ .
In what follows, we suppose that $g$ is flat. Then $\eta_{2}$ is a holomorphic l-form

on $X$. Since $h^{1,0}(X)=1$ , we can write $\eta_{2}$ as

$\eta_{2}=Adw_{1}$ ,

where $A$ is a constant. In particular,

$d\eta_{2}=\partial\eta_{2}=\overline{\partial}\eta_{2}\equiv 0$ .

LEMMA. $\eta_{2}\equiv 0$ .

PROOF. From the flatness of $g$ and (10), we have

$0\equiv d\eta_{2}=d\omega_{2^{1}}=-(\omega_{1^{1}}\wedge\omega_{2^{1}}+\omega_{2^{1}}\wedge\omega_{2}^{2})=-2\omega_{1^{1}}\wedge\omega_{2^{1}}$ .

Thus we also have

$\eta_{1}\wedge\eta_{2}=(\omega_{1^{1}}+\overline{w_{1}}\omega_{2^{1}})\wedge\omega_{2^{1}}\equiv 0$ .

If $A\neq 0$ , then $\eta_{1}\wedge dw_{1}\equiv 0$ . Since $\eta_{1}$ is a $(1, 0)$ -form on $X$, we can find a function
$F$ on $X$ such that

$\eta_{1}=Fdw_{1}$ , i.e., $\omega_{1^{1}}=(F-A\overline{w_{1}})dw_{1}$ .

By the flatness of $g$ again, we obtain

$0\equiv\overline{\partial}\omega_{1^{1}}=(\overline{\partial}F-Ad\overline{w_{1}})\wedge dw_{1}$ .

Namely, we see that $\overline{\partial}F=Ad\overline{w_{1}}$ , and hence that $\partial\overline{\partial}F\equiv 0$ . From the mean value
property for the operator $\partial\overline{\partial}$ , we conclude that $F$ must be constant. Thus
$Ad\overline{w_{1}}=\overline{\partial}F\equiv 0$ , i.e., $A=0$ . This contradicts the assumption $A\neq 0$ . $\square $

From the lemma above and (14), $\eta_{1}=\omega_{1^{1}}$ is a holomorphic l-form on $X$.
Hence there exists a constant $B$ such that

$\eta_{1}=Bdw_{1}$ .

It is easy to see that

(15) $\overline{\partial}\eta_{3}=2Bdw_{1}\wedge d\overline{w_{1}}$ , $\partial\eta_{3}=2Bdw_{1}\wedge\eta_{3}$ .



330 Hiroyuki KAMADA

We may assume that $\eta_{3}$ is expressed as

$\eta_{3}=f_{1}dw_{1}+f_{2}(dw_{2}-\overline{w_{1}}dw_{1})$

for smooth functions $f_{1},f_{2}$ on $X$. It then follows from (15) that

(16) $\overline{\partial}(f_{1}-\overline{w_{1}}f_{2})+2Bd\overline{w_{1}}\equiv 0$ , $\overline{\partial}f_{2}\equiv 0$ .

In particular, $f_{2}$ is a holomorphic function on $X$. Namely, $f_{2}$ must be a constant,
say $C$. It follows from (16) that

$\partial\overline{\partial}f_{1}=\partial((-2B+C)dw_{1})\equiv 0$ .

From the mean value property for $\partial\overline{\partial}$ again, we see that $f_{1}$ is also constant, say
$K$. It is easy to see from (15) that

$2Bdw_{1}\wedge d\overline{w_{1}}=\overline{\partial}\eta_{3}=\overline{\partial}(Kdw_{1}+C(dw_{2}-\overline{w_{1}}dw_{1}))=Cdw_{1}\wedge d\overline{w_{1}}$ ,

$2BCdw_{1}\wedge dw_{2}=\partial\eta_{3}=\partial(Kdw_{1}+C(dw_{2}-\overline{w_{1}}dw_{1}))\equiv 0$ ,

and hence $B=C=0$ . Thus we obtain

$\eta_{1}=\eta_{2}\equiv 0$ , $\eta_{3}=Kdw_{1}$ .

Using (8) and (9), we have the following:

$\partial g_{2\overline{2}}=-\partial g_{2i}\equiv 0$ , $\partial g_{12}=-Kg_{2\overline{2}}dw_{1}$ , $\partial g_{1\overline{1}}=-Kg_{2i}dw_{1}$ .

In particular, $g_{22}$ is a constant, since $\partial g_{22}=\overline{\partial}g_{22}\equiv 0$ . By integrating $g_{22}=\partial^{2}\varphi/$

$\partial w_{2}\partial\overline{w_{2}}$ on each fibre $T$ of $\Psi$ : $ X\rightarrow\Delta$ , we obtain

$g_{22}\int_{T}dw_{2}\wedge d\overline{w_{2}}=\int_{T}\frac{\partial^{2}\varphi}{\partial w_{2}\partial\overline{w_{2}}}dw_{2}\wedge d\overline{w_{2}}=0$ ,

i.e., $g_{22}\equiv 0$ . Then $\varphi$ is depending only on the variable $w_{1}$ , so $\varphi$ may be regarded
as a function on $\Delta$ . In particular, $g_{1\overline{2}}=g_{2\overline{1}}\equiv-1$ . On the other hand, we note
that $g_{1i}-(w1+\overline{w_{1}})$ can be regarded as a function on $X$, and moreover that

$\partial\overline{\partial}(g_{1i}-(w_{1}+\overline{w_{1}}))=-\overline{\partial}(\partial g_{1i}-dw_{1})=-\overline{\partial}(K-1)dw_{1}\equiv 0$ .

Then $g_{1i^{-}}(w_{1}+\overline{w_{1}})$ must be constant, say $L$ . Integrating $L=\partial^{2}\varphi/\partial w_{1}\partial\overline{w_{1}}$ on
$\Delta$ , we also have $L=0$ . Therefore $\varphi$ is constant. Namely, $g$ must coincide with
$g_{0}$ . $\square $

We finally remark on neutral hyperk\"ahler structures on complex tori. By
using arguments similar to those in \S \S 3-4, we can obtain an analogous result for
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flat neutral hyperk\"ahler structures on complex tori. We thus see that complex tori
of particular type (e.g., the product of elliptic curves) admit nonflat neutral
hyperk\"ahler structures. Such an example was given in Petean [21]. We are then
led to the question whether all of complex tori admit nonflat neutral hyperk\"aher
structures. This will be the future problem.

I am grateful to Professor Yasuo Matsushita for many valuable comments
and encouragement. I would like to thank Professors Kazuo Akutagawa and Shin
Nayatani for their suggestions, and also would like to thank Professor Kaoru
Ono for discussion.
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