ORBIT TYPES OF THE COMPACT LIE GROUP E_7 IN THE COMPLEX FREUDENTHAL VECTOR SPACE \mathfrak{P}^C

By

Takashi Miyasaka and Ichiro Yokota

1. Introduction

Let \mathfrak{J} be the exceptional Jordan algebra over R and \mathfrak{J}^C its complexification. Then the simply connected compact exceptional Lie group F_4 acts on \mathfrak{J} and F_4 has three orbit types which are

$$F_4/F_4$$
, $F_4/Spin(9)$, $F_4/Spin(8)$.

Similarly the simply connected compact exceptional Lie group E_6 acts on \mathfrak{F}^C and E_6 has five orbit types which are

$$E_6/E_6$$
, E_6/F_4 , $E_6/Spin(10)$, $E_6/Spin(9)$, $E_6/Spin(8)$

([5]). In this paper, we determine the orbit types of the simply connected compact exceptional Lie group E_7 in the complex Freudenthal vector space \mathfrak{P}^C . As a result, E_7 has seven orbit types which are

$$E_7/E_7$$
, E_7/E_6 , E_7/F_4 , $E_7/Spin(11)$, $E_7/Spin(10)$, $E_7/Spin(9)$, $E_7/Spin(8)$.

2. Preliminaries

Let $\mathfrak C$ be the division Cayley algebra and $\mathfrak J=\{X\in M(3,\mathfrak C)\,|\, X=X\}$ the exceptional Jordan algebra with the Jordan multiplication $X\circ Y$, the inner product (X,Y) and the Freudenthal multiplication $X\times Y$. Let $\mathfrak J^C$ be the complexification of $\mathfrak J$ with the Hermitian inner product (X,Y). (The definitions of $X\circ Y$, (X,Y), $X\times Y$ and (X,Y) are found in [2]). Moreover, let $\mathfrak P^C=\mathfrak J^C\oplus\mathfrak J^C\oplus C\oplus C$ be the Freudenthal C-vector space with the Hermitian inner product (P,Q). For $P,Q\in\mathfrak P^C$, we can define a C-linear mapping $P\times Q$ of $\mathfrak P^C$.

Received April 2, 1998. Revised December 24, 1998.

(The definitions of $\langle P, Q \rangle$ and $P \times Q$ are found in [2]). The complex conjugation in the complexified spaces \mathfrak{C}^C , \mathfrak{F}^C or \mathfrak{P}^C is denoted by τ . Now, the simply connected compact exceptional Lie groups F_4 , E_6 and E_7 are defined by

$$F_{4} = \{\alpha \in \operatorname{Iso}_{R}(\mathfrak{J}) \mid \alpha(X \circ Y) = \alpha X \circ \alpha Y\},$$

$$E_{6} = \{\alpha \in \operatorname{Iso}_{C}(\mathfrak{J}^{C}) \mid \tau \alpha \tau(X \times Y) = \alpha X \times \alpha Y, \langle \alpha X, \alpha Y \rangle = \langle X, Y \rangle\},$$

$$E_{7} = \{\alpha \in \operatorname{Iso}_{C}(\mathfrak{P}^{C}) \mid \alpha(P \times Q)\alpha^{-1} = \alpha P \times \alpha Q, \langle \alpha P, \alpha Q \rangle = \langle P, Q \rangle\}$$

$$= \{\alpha \in \operatorname{Iso}_{C}(\mathfrak{P}^{C}) \mid \alpha(P \times Q)\alpha^{-1} = \alpha P \times \alpha Q, \alpha(\tau \lambda) = (\tau \lambda)\alpha\}$$

(where λ is the C-linear transformation of \mathfrak{P}^C defined by $\lambda(X, Y, \xi, \eta) = (Y, -X, \eta, -\xi)$), respectively. Then we have a natural inclusion $F_4 \subset E_6 \subset E_7$, that is,

$$E_6 = \{ \alpha \in E_7 \mid \alpha(0, 0, 1, 0) = (0, 0, 1, 0) \} \subset E_7,$$

 $F_4 = \{ \alpha \in E_6 \mid \alpha E = E \} \subset E_6 \subset E_7,$

where E is the 3×3 unit matrix. The groups F_4, E_6 and E_7 have the following subgroups

$$Spin(8) = \{ \alpha \in F_4 \mid \alpha E_k = E_k, k = 1, 2, 3 \} \subset F_4 \subset E_6 \subset E_7,$$

$$Spin(9) = \{ \alpha \in F_4 \mid \alpha E_1 = E_1 \} \subset F_4 \subset E_6 \subset E_7,$$

$$Spin(10) = \{ \alpha \in E_6 \mid \alpha E_1 = E_1 \} \subset E_6 \subset E_7,$$

$$Spin(11) = \{ \alpha \in E_7 \mid \alpha(E_1, 0, 1, 0) = (E_1, 0, 1, 0) \} \subset E_7,$$

where E_k is the usual notation in \mathfrak{J}^C , e.g. $E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ ([2]).

3. Orbit Types of F_4 in \mathfrak{J} and E_6 in \mathfrak{J}^C

We shall review the results of orbit types of F_4 in \mathfrak{J} and E_6 in \mathfrak{J}^C .

LEMMA 1 ([1]). Any element $X \in \mathfrak{J}$ can be transformed to a diagonal form by some $\alpha \in F_4$:

$$\alpha X = \begin{pmatrix} \xi_1 & 0 & 0 \\ 0 & \xi_2 & 0 \\ 0 & 0 & \xi_3 \end{pmatrix}, \quad \xi_k \in \mathbf{R}, \quad (which is briefly written by (\xi_1, \xi_2, \xi_3)).$$

The order of ξ_1, ξ_2, ξ_3 can be arbitrarily exchanged under the action of F_4 .

THEOREM 2 ([5]). The orbit types of the group F_4 in \mathfrak{J} are as follows.

- (1) The orbit through (ξ, ξ, ξ) is F_4/F_4 .
- (2) The orbit through (ξ_1, ξ, ξ) (where $\xi_1 \neq \xi$) is $F_4/Spin(9)$.
- (3) The orbit through (ξ_1, ξ_2, ξ_3) (where ξ_1, ξ_2, ξ_3 are distinct) is $F_4/Spin(8)$.

LEMMA 3 ([3]). Any element $X \in \mathfrak{J}^C$ can be transformed to a diagonal form by some $\alpha \in E_6$:

$$\alpha X = \begin{pmatrix} \xi_1 & 0 & 0 \\ 0 & \xi_2 & 0 \\ 0 & 0 & \xi_3 \end{pmatrix}, \quad \xi_k \in C, \quad (which is briefly written by (\xi_1, \xi_2, \xi_3)).$$

The order of ξ_1, ξ_2, ξ_3 can be arbitrarily exchanged under the action of E_6 .

THEOREM 4 ([5]). The orbit types of the group E_6 in \mathfrak{J}^C are as follows.

- (1) The orbit through (0,0,0) is E_6/E_6 .
- (2) The orbit through (ξ_1, ξ_2, ξ_3) (where $|\xi_1| = |\xi_2| = |\xi_3| \neq 0$) is E_6/F_4 .
- (3) The orbit through $(\xi, 0, 0)$ (where $\xi \neq 0$) is $E_6/Spin(10)$.
- (4) The orbit through (ξ_1, ξ_2, ξ_3) (where $|\xi_1| \neq |\xi_2| = |\xi_3| \neq 0$) is $E_6/Spin(9)$.
- (5) The orbit through (ξ_1, ξ_2, ξ_3) (where $|\xi_1|, |\xi_2|, |\xi_3|$ are distinct) is $E_6/Spin(8)$.

4. Orbit Types of E_7 in \mathfrak{P}^C

LEMMA 5 ([2]). Any element $P \in \mathfrak{P}^C$ can be transformed to the following diagonal form by some $\alpha \in E_7$:

$$\alpha P = \left(\begin{pmatrix} ar_1 & 0 & 0 \\ 0 & ar_2 & 0 \\ 0 & 0 & ar_3 \end{pmatrix}, \begin{pmatrix} br_1 & 0 & 0 \\ 0 & br_2 & 0 \\ 0 & 0 & br_3 \end{pmatrix}, ar, br \right), \quad r_k, r \in \mathbb{R}, 0 \le r_k, 0 \le r, \\ a, b \in C, |a|^2 + |b|^2 = 1.$$

Moreover, any element $P \in \mathfrak{P}^C$ can be transformed to the following diagonal form by some $\varphi(A)\alpha \in \varphi(SU(2))E_7$:

$$\varphi(A)\alpha P = \left(\begin{pmatrix} r_1 & 0 & 0 \\ 0 & r_2 & 0 \\ 0 & 0 & r_3 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, r, 0\right), \quad r_k, r \in R, 0 \le r_k, 0 \le r,$$

(which is briefly written by $(r_1, r_2, r_3; r)$), where $\varphi(A) \in \varphi(SU(2)) \subset E_8$ and commutes with any element $\alpha \in E_7$. The order of r_1, r_2, r_3, r can be arbitrarily exchanged under the action of E_7 . (As for the definitions of the groups E_8 and $\varphi(SU(2))$, see

[2]). The action of $\varphi(A), A \in SU(2)$, on \mathfrak{P}^C is given by

$$\varphi(A)P = \varphi\left(\begin{pmatrix} a & -\tau b \\ b & \tau a \end{pmatrix}\right)(X, Y, \xi, \eta)$$
$$= (aX + \tau(bY), aY - \tau(bX), a\xi + \tau(b\eta), a\eta - \tau(b\xi)).$$

THEOREM 6. The group E_7 has the following seven orbit types in \mathfrak{P}^C :

$$E_7/E_7$$
, E_7/E_6 , E_7/F_4 , $E_7/Spin(11)$, $E_7/Spin(10)$, $E_7/Spin(9)$, $E_7/Spin(8)$.

More details,

- (1) The orbit through (0,0,0;0) is E_7/E_7 .
- (2) The orbit through (0,0,0;1) or (1,1,1;1) is E_7/E_6 .
- (3) The orbit through (1, 1, 1; 0) or (1, 1, 1; r) (where $0 < r, 1 \ne r$) is E_7/F_4 .
- (4) The orbit through (1,0,0;1) or (1,r,r;1) (where $0 < r, 1 \ne r$) is $E_7/Spin(11)$.
 - (5) The orbit through (1,0,0;r) (where $0 < r, 1 \ne r$) is $E_7/Spin(10)$.
- (6) The orbit through (1,1,r;0) or (1,1,r;s) (where 0 < r, 0 < s and 1,r,s are distinct) is $E_7/Spin(9)$.
- (7) The orbit through (1, r, s; 0) or (1, r, s; t) (where r, s, t are positive and 1, r, s, t are distinct) is $E_7/Spin(8)$.

PROOF. From Lemma 5, the representatives of orbit types (up to a constant) can be given by the following.

$$(0,0,0;0), (0,0,0;1), (0,0,1;1), (0,0,1;r), (0,1,1;1), (0,1,1;r), (0,1,r;s), (1,1,1;1), (1,1,1;r), (1,1,r;r), (1,1,r;s), (1,r,s;t)$$

where r, s, t are positive, 0, 1, r, s, t are distinct and the order of 0, 1, r, s, t can be arbitrarily exchanged.

- (1) The isotropy subgroup $(E_7)_{(0,0,0;0)}$ is obviously E_7 . Therefore the orbit through (0,0,0;0) is E_7/E_7 .
- (2) The isotropy subgroup $(E_7)_{(0,0,0;1)}$ is E_6 . Therefore the orbit through (0,0,0;1) is E_7/E_6 .
- (2') The isotropy subgroup $(E_7)_{(1,1,1;1)}$ is conjugate to E_6 in E_7 . In fact, we know that the following realization of the homogeneous space $E_7/E_6: E_7/E_6 = \{P \in \mathfrak{P}^C \mid P \times P = 0, \langle P, P \rangle = 1\} = \mathfrak{M}$ ([4]). Since $1/2\sqrt{2}(E, E, 1, 1)$ and $(0, 0, 1, 0) \in \mathfrak{M}$, there exists $\delta \in E_7$ such that

$$\delta\left(\frac{1}{2\sqrt{2}}(E, E, 1, 1)\right) = (0, 0, 1, 0).$$

Hence the isotropy subgroup $(E_7)_{(E,E,1,1)}$ is conjugate to the isotropy subgroup $(E_7)_{(0,0,1,0)}$ is $E_7:(E_7)_{(E,E,1,1)} \sim (E_7)_{(0,0,1,0)}$. On the other hand, since

$$\varphi\left(\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}\right)(E, 0, 1, 0) = \frac{1}{\sqrt{2}}(E, E, 1, 1),$$

we have $(E_7)_{(E,0,1,0)} = (E_7)_{(E,E,1,1)} \sim (E_7)_{(0,0,1,0)} = E_6$. Therefore the orbit through (1,1,1;1) is E_7/E_6 .

- (3) The isotropy subgroup $(E_7)_{(1,1,1;0)}$ is F_4 . In fact, for $\alpha \in E_7$ and $P \in \mathfrak{P}^C$, we have $\alpha(\tau\lambda((P \times P)P)) = \tau\lambda(\alpha((P \times P)P)) = \tau\lambda(\alpha(P \times P)\alpha^{-1}\alpha P) = \tau\lambda((\alpha P \times \alpha P)\alpha P)$. Now, let P = (1,1,1;0). Since $\tau\lambda((P \times P)P) = 3/2(0,0,0;1)$, if $\alpha \in E_7$ satisfies $\alpha P = P$, then α also satisfies $\alpha(0,0,0;1) = (0,0,0;1)$. Hence $\alpha \in E_6$, so together with $\alpha E = E$, we have $\alpha \in F_4$. Therefore the orbit through (1,1,1;0) is E_7/F_4 .
- (3') The isotropy subgroup $(E_7)_{(1,1,1;r)}$ is F_4 . In fact, let P=(1,1,1;r). Since $\tau\lambda((P\times P)P)=3/2(r,r,r;1)$, if $\alpha\in E_7$ satisfies $\alpha P=P\cdots(i)$, then α also satisfies $\alpha(r,r,r;1)=(r,r,r;1)\cdots(ii)$. Take (i)–(ii), then we have $\alpha(1-r,1-r,1-r;r-1)=(1-r,1-r,1-r;r-1)$. Since $1-r\neq 0$, we have $\alpha(1,1,1;-1)=(1,1,1;-1)$. Together with $\alpha P=P$, we have $\alpha(0,0,0;1)=(0,0,0;1)$ and $\alpha(1,1,1;0)=(1,1,1;0)$. Hence $\alpha\in E_6$ and hence $\alpha\in F_4$. Therefore the orbit through (1,1,1;r) is E_7/F_4 .
- (4) The isotropy subgroup $(E_7)_{(1,0,0;1)}$ is Spin(11). Therefore the orbit through (1,0,0;1) is $E_7/Spin(11)$.
- (4') The isotropy subgroup $(E_7)_{(1,r,r;1)}$ is Spin(11). In fact, let P = (1,r,r;1). Since $\tau \lambda((P \times P)P) = 3/2(r^2,r,r;r^2)$, if $\alpha \in E_7$ satisfies $\alpha P = P \cdots (i)$, then α also satisfies $\alpha(r^2,r,r;r^2) = (r^2,r,r;r^2) \cdots (ii)$. Take (i)–(ii), then we have $\alpha(1-r^2,0,0;1-r^2) = (1-r^2,0,0;1-r^2)$. Since $1-r^2 \neq 0$, we have $\alpha(1,0,0;1) = (1,0,0;1)$. Hence $\alpha \in Spin(11)$. Therefore the orbit through (1,r,r;1) is $E_7/Spin(11)$.
- (5) The isotropy subgroup $(E_7)_{(1,0,0;r)}$ is Spin(10). In fact, for $\alpha \in E_7$ and $P \in \mathfrak{P}^C$, we have $\alpha((P \times P)\tau\lambda P) = (\alpha(P \times P)\alpha^{-1})\alpha(\tau\lambda P) = (\alpha P \times \alpha P)\tau\lambda(\alpha P)$. Now, let P = (1,0,0;r). Since $(P \times P)\tau\lambda P = -1/2(r^2,0,0;r)$, if $\alpha \in E_7$ satisfies $\alpha P = P \cdots$ (i), then α also satisfies $\alpha(r^2,0,0;r) = (r^2,0,0;r) \cdots$ (ii). Take (i)–(ii), then we have $\alpha(1-r^2,0,0;0) = (1-r^2,0,0;0)$. Since $1-r^2 \neq 0$, we have $\alpha(1,0,0;0) = (1,0,0;0) \cdots$ (iii). Take (i)–(iii), then $\alpha(0,0,0;r) = (0,0,0;r)$, that is, $\alpha(0,0,0;1) = (0,0,0;1)$. Hence $\alpha \in E_6$ and $\alpha E_1 = E_1$. Thus $\alpha \in Spin(10)$. Therefore the orbit through (1,0,0;r) is $E_7/Spin(10)$.

- (6) The isotropy subgroup $(E_7)_{(1,1,r;0)}$ is Spin(9). In fact, let P=(1,1,r;0). Since $\tau\lambda((P\times P)P)=3/2(0,0,0;r)$, if $\alpha\in E_7$ satisfies $\alpha P=P$, then α also satisfies $\alpha(0,0,0;1)=(0,0,0;1)$. Hence $\alpha\in E_6$, so together with $\alpha P=P$, we have $\alpha\in Spin(9)$ (Theorem 4.(4)). Therefore the orbit through (1,1,r;0) is $E_7/Spin(9)$.
- (6') The isotropy subgroup $(E_7)_{(1,1,r;s)}$ is Spin(9). In fact, let P=(1,1,r;s). Since $\tau\lambda((P\times P)P)=3/2(rs,rs,s;r)$, if $\alpha\in E_7$ satisfies $\alpha P=P\cdots(i)$, then α also satisfies $\alpha(rs,rs,s;r)=(rs,rs,s;r)\cdots(ii)$. Take (i) $\times r-(ii)\times s$, then we have $\alpha(r(1-s^2),r(1-s^2),r^2-s^2;0)=(r(1-s^2),r(1-s^2),r^2-s^2;0)$. Since $r(1-s^2),r^2-s^2$ are non-zero and $r(1-s^2)\neq r^2-s^2$, from (6) we have $\alpha\in Spin(9)$. Therefore the orbit through (1,1,r;s) is $E_7/Spin(9)$.
- (7) The isotropy subgroup $(E_7)_{(1,r,s;0)}$ is Spin(8). In fact, let P=(1,r,s;0). Since $\tau\lambda((P\times P)P)=3/2(0,0,0;rs)$, if $\alpha\in E_7$ satisfies $\alpha P=P$, then α also satisfies $\alpha(0,0,0;1)=(0,0,0;1)$. Hence $\alpha\in E_6$, so together with $\alpha P=P$, we have $\alpha\in Spin(8)$ (Theorem 4.(5)). Therefore the orbit through (1,r,s;0) is $E_7/Spin(8)$.
- (7') The isotropy subgroup $(E_7)_{(1,r,s;t)}$ is Spin(8). In fact, let P=(1,r,s;t). Since $\tau\lambda((P\times P)P)=3/2(rst,st,rt;rs)$, if $\alpha\in E_7$ satisfies $\alpha P=P\cdots(i)$, then α also satisfies $\alpha(rst,st,rt;rs)=(rst,st,rt;rs)\cdots(ii)$. Take $(i)\times rs-(ii)\times t$, then we have $\alpha(rs(1-t^2),s(r^2-t^2),r(s^2-t^2);0)=(rs(1-t^2),s(r^2-t^2),r(s^2-t^2);0)$. Since $rs(1-t^2),s(r^2-t^2)$ and $r(s^2-t^2)$ are non-zero and distinct, from (7) we have $\alpha\in Spin(8)$. Therefore the orbit through (1,r,s;t) is $E_7/Spin(8)$.

References

- [1] H. Freudenthal, Oktaven, Ausnahmegruppen und Oktavengeometrie, Math. Inst. Rijksuniv. te Utrecht, 1951.
- [2] T. Miyasaka, O. Yasukura and I. Yokota, Diagonalization of an element P of \mathfrak{P}^{C} by the compact Lie group E_7 , Tsukuba J. Math., to appear.
- [3] I. Yokota, Simply connected compact simple Lie group $E_{6(-78)}$ of type E_6 and its involutive automorphisms, J. Math., Kyoto Univ., **20** (1980), 447-473.
- [4] I. Yokota, Realization of involutive automorphisms σ of exceptional Lie groups G, part II, $G = E_7$, Tsukuba J. Math., 14 (1990), 379-404.
- [5] I. Yokota, Orbit types of the compact Lie group E_6 in the complex exceptional Jordan algebra \mathfrak{J}^C , Inter. Symp. on nonassociative algebras and related topics, Hiroshima, Japan, World Scientific, 1990, 353–359.

Takashi Miyasaka Misuzugaoka High School Matsumoto 390-8602, Japan

Ichiro Yokota 339-5, Okada-Matsuoka Matsumoto 390-0312, Japan