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1. Introduction

Let 3 be the exceptional Jordan algebra over R and JC its complexification.
Then the simply connected compact exceptional Lie group F4 acts on § and Fy
has three orbit types which are

Fy/Fy, F4/Spin(9), Fs/Spin(8).

Similarly the simply connected compact exceptional Lie group Eg acts on 3¢ and
Es has five orbit types which are

EG/E6, Es/F4, E6/Spin(10), E(,/Spin(9), E6/Spin(8)

([5)). In this paper, we determine the orbit types of the simply connected compact
exceptional Lie group E; in the complex Freudenthal vector space BC. As a
result, F7 has seven orbit types which are

E;/E;, Eq/Es, E;/Fy, Eq/Spin(11), E;/Spin(10),

E;/Spin(9), E:/Spin(8).

2. Preliminaries‘

Let € be the division Cayley algebra and I ={X e M(3,€)| X = X} the
exceptional Jordan algebra with the Jordan multiplication X o Y, the inner
product (X,Y) and the Freudenthal multiplication X x Y. Let I be the
complexification of J with the Hermitian inner product (X, Y. (The definitions
of XoY, (X,Y), X xY and <(X,Y) are found in [2]). Moreover, let B =
3@ 3I°® C @ C be the Freudenthal C-vector space with the Hermitian inner
product (P, Q). For P,Q € B, we can define a C-linear mapping P x Q of PC.
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(The definitions of (P, Q> and P x Q are found in [2]). The complex conjugation
in the complexified spaces ce, SC or PC is denoted by 7. Now, the simply
connected compact exceptional Lie groups Fi, E¢ and E; are defined by

Fy={aelsor(J)|e(XoY)=aXoal},
E¢ = {0 € Ts0c(3€) |tat(X x ¥) = aX x aY,{aX,aY) = (X, YD},

E; = {aeIsoc(PC) | (P x Q)a~' = aP x aQ,{aP,aQ) = (P, 0>}
= {a e Isoc(PE) |a(P x Q)a~! = aP x aQ,a(7d) = (td)a}

(where 4 is the C-linear transformation of PBC defined by A(X, Y, &) =(Y,-X,
n,—&)), respectively. Then we have a natural inclusion Fy — Eg < E7, that is,

E¢ = {OCGE7|(X(0,0,1,0) = (an’ 1,0)} < Ey,
Fy = {OCGE6|O(E=E} c E¢ CE7,

where E is the 3 x 3 unit matrix. The groups F4, Es and E; have the following
subgroups

Spin(8) = {a € F4|aEx = Ex,k =1,2,3} « F4 c Eg c E7,
Spin(9) = {a € Fs|aE, = E\} c Fy c Eg < Ey,

Spin(10) = {a € E¢ |aE| = E1} = E¢ < Ey,

Spin(11) = {a € E7|a(E1,0,1,0) = (E1,0,1,0)} < E7,

1 00
where E, is the usual notation in 3¢, eg. E;=(0 0 0 (2).
0 0 O
3. Orbit Types of F4 in J and Es in 3¢

We shall review the results of orbit types of F4 in I and Eg in S°.

LEMMA 1 ([1]). Any element X € J can be transformed to a diagonal form by
some o € Fy:

& 0 0
aX = (0 &0 ), € R, (which is briefly written by (&1,&,&3)).
0 0 &

The order of &,,&5,E3 can be arbitrarily exchanged under the action of Fjy.
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THEOREM 2 ([5]). The orbit types of the group Fy in J are as follows.

(1) The orbit through (&,&,&) is Fy/Fs.

(2) The orbit through (&,&,&) (where & # &) is F4/Spin(9).

(3) The orbit through (&1,&,,&3) (where &1, &y, &5 are distinct) is Fy/Spin(8).

Lemma 3 ([3]). Any element X e XC can be transformed to a diagonal form
by some o € Eg:

& 0 0
aX = (O & 0 ), & € C,  (which is briefly written by (&1,&,,&3)).
0 0 &

The order of &,,&,,E3 can be arbitrarily exchanged under the action of Eg.

THEOREM 4 ([5]). The orbit types of the group Es in 3¢ are as follows.

(1) The orbit through (0,0,0) is Eg/Es.

(2) The orbit through (£1,&, &) (where |&1] = |&o| = |&| # 0) is Eo/Fs.

(3) The orbit through (£,0,0) (where & # 0) is Eg¢/Spin(10).

(4) The orbit through (&1,&3,&3) (where |&1] # || = |&3] # 0) is Eg/Spin(9).

(5) The orbit through (&1,&;,&3) (where |&|,|&z],|E3| are distinct) is Ee/
Spin(8).

4. Orbit Types of E; in P€

LEMMA 5 ([2]). Any element Pe B can be transformed to the following
diagonal form by some o € E;:

arp, 0 0 bry 0 0 RO<r 0<
uP — 0 ary 0 ’ 0 brz 0 ’ar’br , Fr, ¥ € R, _Zrka 2_r)
0 0 ar; 0 0 br; a,beCla”+b]" = 1.

Moreover, any element P € B can be transformed to the following diagonal form
by some p(A)o € p(SU(2))E7:

rnr 0 O 0 0 0
p(A)oP = 0 r» 0,10 O O0},r,0], re,reRO<r,,0<r,
0 0 r; 0 0 0

(which is briefly written by (ri,ra,r3;r)), where ¢p(A) € p(SU(2)) < Eg and com-
mutes with any element o € E;. The order of ry,r2, r3, r can be arbitrarily exchanged
under the action of E;. (As for the definitions of the groups Eg and ¢(SU(2)), see
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[2). The action of p(4),4 € SU(2), on BE is given by

P(A)P = (p((‘; ;Zb))(x, Y, &)

= (aX +1(bY),aY — t(bX),al + t(bn),an — 1(b)).

THEOREM 6. The group E; has the following seven orbit types in B
E7/E7, E7/E6, E7/F4, E7/Spin(ll), E7/Spin(10),
E7/Spin(9), E;/Spin(8).

More details,
(1) The orbit through (0,0,0;0) is E;/E-.

(2) The orbit through (0,0,0;1) or (1,1,1;1) is E;/FEs.
(3) The orbit through (1,1,1;0) or (1,1,1;r) (where 0 <r,1 #7r) is E7/Fy.
(4) The orbit through (1,0,0;1) or (1,r,r;1) (where 0 <r,1#7r) is E;/

Spin(11).

(5) The orbit through (1,0,0;r) (where 0 <r,1 #7r) is E;/Spin(10).

(6) The orbit through (1,1,r;0) or (1,1,r;s) (where 0 < r,0 <s and 1,r,s are
distinct) is E;/Spin(9).

(7) The orbit through (1,r,s;0) or (1,r,s;t) (where r,s,t are positive and
1,r,s,t are distinct) is E;/Spin(8).

Proor. From [Lemma 3, the representatives of orbit types (up to a constant)
can be given by the following.

(0,0,0;0), (0,0,0;1), (0,0,1;1), (0,0,1;r),
(0,1,1;1), (0,1,L;r), (0,1,r;s), (1,1,1;1),
(LL L, (L1,rr, (1,1,rs), (1,rs?)

where r,s,t are positive, 0,1,r,s, ¢t are distinct and the order of 0,1,r,s,t can be
arbitrarily exchanged.

(1) The isotropy subgroup (E7) g,0,0) 18 Obviously E7. Therefore the orbit
through (0,0,0;0) is E7/E5.

~ (2) The isotropy subgroup (E7)q0,1) 18 Ee¢. Therefore the orbit through
(0,0,0;1) is E7/E6.

(2") The isotropy subgroup (E7); 1 ;1) is conjugate to Ee in E;. In fact, we
know that the following realization of the homogeneous space E;/Eq : E7/E¢ =
{(PeBC|Px P=0,{P,PY)=1} =M ([4]). Since 1/2v2(E,E,1,1) and (0,0,
1,0) € 9, there exists J € E7 such that



Orbit types of the compact Lie group E; 233

<2\1[(E E, 1,1)) = (0,0,1,0).

Hence the isotropy subgroup (E7)(E E,1,1) 18 conjugate to the isotropy subgroup
(E7)0,0,1,0) 18 E7: (E7)(g, 1,1y ~ (E7)(0,0,1,0)- On the other hand, since

1 1
¢(( 7 f))(E,o,l,O)-——\/%(E,E,I,n,
% %

we have (E7)g 1,00 = (E7) & E1,1) ~ (E7)0,0,1,00 = E6. Therefore the orbit
through (1,1,1;1) is E;/Fs.

(3) The isotropy subgroup (E7); 1,0y is Fs. In fact, for « € E7 and Pe B,
we have a(zA((P x P)P)) = ti(a((P x P)P)) = tA(a(P x P)a~laP) = tA((aP x
aP)aP). Now, let P=(1,1,1;0). Since tA((P x P)P) =3/2(0,0,0;1), if o € E;
satisfies aP = P, then a also satisfies «(0,0,0;1) = (0,0,0;1). Hence o € Eg, so
together with «F = E, we have o € F4. Therefore the orbit through (1,1,1;0) is
E;/F;.

(3') The isotropy subgroup (E7); 1.1,y is Fa. In fact, let P = (1,1,1;r). Since
TA((P x P)P) = 3/2(r,r,r;1), if o € E; satisfies aP = P--- (i), then a also satisfies
a(r,r,r;1) = (r,r,r;1)--- (ii). Take (i)-(ii), then we have a(l —r,1 —r,1 —r;r — 1)
=(1-r,1=r,1—=r;r—1). Since 1 —r # 0, we have a(1,1,1;-1) = (1,1,1; -1).
Together with aP =P, we have «(0,0,0;1)=(0,0,0;1) and «(1,1,1;0) =
(1,1,1;0). Hence a € Es and hence o € F4. Therefore the orbit through (1,1, 1;r)
is E7/F4.

(4) The isotropy subgroup (E7)q ¢,y is Spin(11). Therefore the orbit
through (1,0,0;1) is E;/Spin(11).

(4") The isotropy subgroup (E7) , ,.1) is Spin(11). In fact, let P = (1,r,r;1).
Since TA((P x P)P) =3/2(r%,r,r;r?), if a € E; satisfies aP = P--- (i), then « also
satisfies a(r?,r,r;r?) = (r2,r,r;r?) - - - (ii). Take (i)-(ii), then we have a(l —r?,0,0;
1—-r%)=(1-r%0,0;1—r?). Since 1 —r> # 0, we have «(1,0,0;1) = (1,0,0;1).
Hence « € Spin(11). Therefore the orbit through (1,r,7;1) is E7/Spin(11).

(5) The isotropy subgroup (E7) 0., is Spin(10). In fact, for oeE;
and Pe P, we have a((P x P)tAP) = (a(P x P)a a(tAP) = (aP x aP)tA(aP).
Now, let P = (1,0,0;r). Since (P x P)tiP = —1/2(r?,0,0;r), if a € E; satisfies
aP = P---(i), then « also satisfies a(r?,0,0;7) = (r2,0,0;r)---(ii). Take (i)~(ii),
then we have a(1 —r2,0,0;0) = (1 —r2,0,0;0). Since 1 — r? # 0, we have a(1,0,
0;0) = (1,0,0;0) - - - (iii). Take (i)-(iii), then «(0,0,0;r) = (0,0, 0;r), that is, «(0,0,
0;1) = (0,0,0;1). Hence o € Es and aE; = E;. Thus a € Spin(10). Therefore the
orbit through (1,0,0;r) is E;/Spin(10).
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(6) The isotropy subgroup (E7) i, is Spin(9). In fact, let P=(1,1,r;0).
Since 7A((P x P)P) = 3/2(0,0,0;r), if o« € E; satisfies aP = P, then o also satisfies
«(0,0,0;1) = (0,0,0;1). Hence a € E¢, so together with aP = P, we have a €
Spin(9) (Theorem 4.(4)). Therefore the orbit through (1,1,r;0) is E;/Spin(9).

(6') The isotropy subgroup (E7)(; 1 .5 is Spin(9). In fact, let P =(1,1,r;s).
Since TA((P x P)P) = 3/2(rs,rs,s;r), if a € E7 satisfies aP = P--- (i), then a also
satisfies a(rs,rs,s;r) = (rs,rs,s;r)---(i1). Take (i) xr— (il)xs, then we have
a(r(l — s2),r(1 — s2),r2 — s2;0) = (r(1 — s2),r(1 — s?),r2 — 5% 0). Since r(1 —s?),
r? —s? are non-zero and r(1 —s?) #r?> —s?, from (6) we have e Spin(9).
Therefore the orbit through (1,1,r;s) is E;/Spin(9).

(7) The isotropy subgroup (E7); , ¢ is Spin(8). In fact, let P = (1,r,s;0).
Since TA((P x P)P) = 3/2(0,0,0;rs), if o € E7 satisfies aP = P, then o also sat-
isfies «(0,0,0;1) = (0,0,0;1). Hence a € Es, so together with aP = P, we have
o € Spin(8) (Theorem 4.(5)). Therefore the orbit through (1,r,s;0) is E7/Spin(8).

(7') The isotropy subgroup (E7),,, . is Spin(8). In fact, let P = (1,r,s;¢).
Since 7A((P x P)P) = 3/2(rst,st,rt;rs), if o€ E; satisfies aP = P---(i), then a
also satisfies a(rst,st,rt;rs) = (rst,st,rt;rs)---(ii). Take (i) x rs — (i1) x ¢, then
we have a(rs(1 — 12),s(r* — t2),r(s? — t2);0) = (rs(1 — £2),s(r*> — t2),r(s*> — t2);0).
Since rs(1 — 2),s(r?> — ?) and r(s> — ¢*) are non-zero and distinct, from (7) we
have a € Spin(8). Therefore the orbit through (1,r,s;¢) is E;/Spin(8).
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