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NOTE ON MACAULAY SEMIGROUPS

By

Ry\^uki MATSUDA

Almost all of ideal theory of a commutative ring $R$ concems properties of
ideals of $R$ with respect to the multiplication “

$x$
’ on $R$ . Abandoning the addition

$+$ on $R$ we extract the multiplication on $R$ . Then we have the idea of the
algebraic system $S$ of a semigroup. We denote the operation on $S$ by addition. $S$

is called a grading monoid. Concretely, a submonoid $S$ of a torsion-free abelian
(additive) group is called a grading monoid (or a g-monoid). Many terms in
commutative ring theory are defined analogously for $S$ . For example, a non-
empty subset $I$ of $S$ is called an ideal of $S$ if $S+I\subset I$ . Let $I$ be an ideal of $S$

with $I\subsetneqq S$ . If $s_{1}+s_{2}\in I$ (for $s_{1},$ $s_{2}\in S$) implies $s_{1}\in I$ or $s_{2}\in I$ , then $I$ is called a
prime ideal of $S$ . If there exists an element $s\in S$ such that $I=S+s$ , then $I$ is
called a principal ideal of $S$ . The group $q(S)=\{s_{1}-s_{2}|s_{1}, s_{2}\in S\}$ is called the
quotient group of $S$ . A subsemigroup of $q(S)$ containing $S$ is called an over-
semigroup of $S$ . Let $\Gamma$ be a totally ordered abelian (additive) group. A mapping $v$

of a torsion-free abelian group $G$ onto $\Gamma$ is called a valuation on $G$ if $v(x+y)=$
$v(x)+v(y)$ for all $x,$ $y\in G$ . Then $v$ is called a F-valued valuation on $G$ . The
subsemigroup $\{x\in G|v(x)\geq 0\}$ of $G$ is called the valuation semigroup of $G$

associated with $v$ . A Z-valued valuation is called a discrete valuation of rank 1.
The valuation semigroup associated with a discrete valuation of rank 1 is called a
discrete valuation semigroup of rank 1. An element $x$ of an extension semigroup
$T$ of $S$ is called integral over $S$ if $nx\in S$ for some $n\in N$ . Let $\overline{S}$ be the set of all
integral elements of $q(S)$ over $S$ . Then $\overline{S}$ is an oversemigroup of $S$, and is called
the integral closure of S. If $\overline{S}=S$ , then $S$ is called an integrally closed semigroup
(or a normal semigroup). An ideal $I$ of $S$ is called a cancellation ideal of $S$ if
$I+J_{1}=I+J_{2}$ (for ideals $J_{1},$ $J_{2}$ of $S$ ) implies $J_{1}=J_{2}$ . The maximum number $n$

so that there exists a chain $P_{1}\subsetneqq P_{2}\subsetneqq\cdots\subsetneqq P_{n}(\subsetneqq S)$ of prime ideals of $S$ is
called the dimension of $S$. Many propositions for commutative rings are known
to hold for $S$ . The author conjectures that almost all propositions of multi-
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plicative ideal theory of $R$ hold for $S$ . It is usually expected that ideal theory of $S$

is simpler than that of $R$ . Therefore investigating the ideal theory of $S$ may be an
auxiliary means for investigating that of $R$ . Of course we may say that the ideal
theory of $S$ has its proper significance (cf. [M2])). For an example, Anderson-
Anderson [AA] posed a question: Is every cancellation ideal of a quasi-local
domain principal? The answer to this question is open. However, every can-
cellation ideal of $S$ is principal ([M1]). For another example, let $\sum^{\prime}(D)$ (resp.
$\sum^{\prime}(S))$ be the set of all semistar-operations on $D$ (resp. $S$ ). Assume that $S$ is
integrally closed and of dimension $n$ . Then $S$ is a valuation semigroup if and only
if $n+1\leq|\sum^{\prime}(S)|\leq 2n+1$ ([OMS]). If a similar property holds for $D$ is open.
The aim of this paper is to show that almost all the propositions in Chapter 3 of
Kaplansky’s Commutative Rings [K] hold for g-monoids.

Since this paper is a semigroup version of commutative ring theory, a g-
monoid is denoted by $R$ . Let $A$ be a non-empty set. Assume that, for every $r\in R$

and $a\in A$ , there is defined $r+a\in A$ such that, for every $r_{1},$ $r_{2}\in R$ and $a\in A$ , we
have $(r_{1}+r_{2})+a=r_{1}+(r_{2}+a)$ and $O+a=a$ . Then $A$ is called an R-module.
Let $A$ be an R-module and $r\in R$ . If $r+a_{1}=r+a_{2}$ (for $a_{1},$ $a_{2}\in A$ ) implies $a_{1}=$

$a_{2}$ , then $r$ is called a non-zerodivisor on $A$ . If $r$ is not a non-zerodivisor, then $r$ is
called a zerodivisor on $A$ . The set of zerodivisors on $A$ is denoted by $Z(A)$ . Let $B$

be a submodule of an R-module $A$ , and $r\in R$ . If $r+a\in B$ (for $a\in A$ ) implies $ a\in$

$B$ , then $r$ is called a non-zerodivisor on $A$ modulo $B$ . A non-zerodivisor on $A$

modulo $B$ is also called a non-zerodivisor on $A/B$ . If $r$ is not a non-zerodivisor
on $A/B$ , then $r$ is called a zerodivisor. The set of zerodivisors on $A/B$ is denoted
by $Z(A/B)$ . If $\{x_{1}, \ldots, x_{n}\}$ is a finite subset of $R$ , then the ideal $\bigcup_{i=1}^{n}(R+x_{j})$ of
$R$ is denoted by $(x_{1}, \ldots, x_{n})$ . The ordered sequence of elements $x_{1},$

$\ldots,$
$x_{n}$ of $R$ is

called a regular sequence on $A$ , if $(x_{1}, \ldots, x_{n})+A\subsetneqq A$ and if $x_{1}\not\in Z(A),$ $ x_{2}\not\in$

$Z(A/((x_{1})+A)),$ $\ldots,$
$x_{n}\not\in Z(A/((x_{1}, \ldots, x_{n-1})+A))$ .

THEOREM 1. Let $A$ be an R-module, and let $x,$ $y$ be a regular sequence on $A$ .
Then $x\not\in Z(A/(y+A))$ .

PROOF. Assume that $x+a=y+a_{1}$ (for $a,$ $a_{1}\in A$ ). Since $y\not\in Z(A/(x+A))$ ,

we have $a_{1}\in x+A$ . Since $x\not\in Z(A)$ , we have $a\in y+A$ , and hence $ x\not\in$

$Z(A/(y+A))$ .

Let $A$ be an R-module. If $Z(A)=\emptyset$ , then $A$ is called torsion-free. Theorem
1 implies the following,
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THEOREM 2. Let $A$ be a torsion-free R-module, and $x_{1},$
$\ldots,$

$x_{n}$ a regular
sequence on A. Then the sequence obtained by interchanging $x_{i}$ and $x_{i+1}$ is a
regular sequence on $A$ if and only if $x_{i+1}\not\in Z(A/((x_{1}, \ldots, x_{i-1})+A))$ .

Let $A$ be an R-module. If $r_{1}+a=r_{2}+a$ (for $r_{1},$ $r_{2}\in R$ and $a\in A$ ) implies
$r_{1}=r_{2}$ , then $A$ is called cancellative. If every ideal of a g-monoid $R$ is finitely
generated, then $R$ is called a Noetherian semigroup.

LEMMA 3 ([M3, Proposition 1]). Let $R$ be a Noetherian semigroup, and $A$

a finitely generated R-module. Then $A$ satisfies the ascending chain condition on
submodules.

THEOREM 4. Let $R$ be a Noetherian semigroup, and $A$ a finitely generated

torsion-free cancellative R-module. Let $x_{1},$
$\ldots,$

$x_{n}$ be a regular sequence on A. Then
any permutation of the $x\prime s$ is a regular sequence on $A$ .

PROOF. Set $S=$ $((x_{1}, \ldots , x_{n-2})+A:x_{n})_{A}$ . By Theorem 2, it suffices to show
that $S\subset(x_{1}, \ldots, x_{n-2})+A$ . Suppose the contrary. Take $s$ in $S$ with $s\not\in(x_{1},$

$\ldots$ ,
$x_{n-2})+A$ . Since $x_{n}\not\in Z(A/((x_{1}, \ldots, x_{n-1})+A))$ , we have $s\in(x_{1}, \ldots, x_{n-1})+A$ ,
and hence $s=x_{n-1}+a$ for some $a\in A$ . It follows that $x_{n}+a\in(x_{1}, \ldots, x_{n-2})+A$ ,
and hence $a\in S$ . Then we have $S=x_{n-1}+S$ ; a contradiction to Lemma 3.

THEOREM 5. Let $A$ be an R-module, and $x_{1},$
$\ldots,$

$x_{n}$ a regular sequence on $A$ .
Then $(x_{1}),$ $(x_{1}, x_{2}),$

$\ldots,$
$(x_{1}, \ldots, x_{n})$ form a properly ascending chain.

Let $A$ be an R-module, and $I$ an ideal of $R$ . Let $x_{1},$
$\ldots,$

$x_{n}$ be a regular
sequence in $I$ on $A$ . If $x_{1},$

$\ldots,$
$x_{n},$ $x$ is not a regular sequence on $A$ for each $x\in I$ ,

then $x_{1},$
$\ldots,$

$x_{n}$ is called a maximal regular sequence in $I$ on $A$ .

REMARK. Let $R$ be a Noetherian semigroup. Then two maximal regular
sequences on $R$ need not have the same length.

For example, let $Z_{0}$ be the monoid of non-negative integers and let $R=$

$Z_{0}\oplus Z_{0}$ . Set $p=(1,0),$ $q=(0,1)$ and $x=(1,1)$ . Then $p,$ $q$ is a maximal regular
sequence on $R$ . Also, $x$ is a maximal regular sequence on $R$ .

Let $A$ be an R-module, and $I$ an ideal of $R$ . Then the maximum of lengths of
all regular sequences in $I$ on $A$ is called the grade of $I$ on $A$ , and is denoted by
$G(I, A)$ .
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THEOREM 6. Let $A$ be an R-module, and I an ideal of $R$ with $I+A\subsetneqq A$ . Let
$x_{1},$

$\ldots,$
$x_{n}$ be a maximal regular sequence in I on A. Then there exists a prime ideal

$P$ such that $x_{1},$
$\ldots,$

$x_{n}$ is a maximal regular sequence in $P$ on $A$ .

PROOF. Set $P=Z(A/((x_{1}, \ldots, x_{n})+A))$ . Then $P$ is a prime ideal containing
$I$, and $x_{1},$

$\ldots,$
$x_{n}$ is a maximal regular sequence in $P$ on $A$ .

LEMMA 7. Let $R$ be a Noetherian semigroup. Then there exists only a finite
number of prime ideals of $R$ .

PROOF. Let $x_{1},$
$\ldots,$

$x_{n}$ be the set of all irreducible elements of $R$ any two of
which are not associated. Let $P$ be a prime ideal of $R$ . Then $P$ is generated by a
subset of $\{x_{1}, \ldots, x_{n}\}$ .

THEOREM 8. Let $R$ be a Noetherian semigroup, $A$ a finitely generated torsion-

free cancellative R-module, and $J$ a k-generated ideal of $R$ with $J+A\subsetneqq A$ . Then
$G(J, A)\leq k$ .

PROOF. Let $J=(x_{1}, \ldots, x_{k})$ . Suppose that there exists a regular sequence
$y_{1},$

$\ldots,$ $y_{k+1}$ in $J$ on $A$ . By Theorem 4, we may assume that $y\mathfrak{l}=x_{1}+r_{1},$ $y_{2}=$

$x_{1}+r_{2}$ for $r_{1},$ $r_{2}\in R$ . Choose $a\in A-(J+A)$ . Then we have $r_{1}+a\not\in y_{1}+A$ and
$y_{2}+(r_{1}+a)\in y_{1}+A$ . Hence $y_{2}\in Z(A/(y_{1}+A))$ ; a contradiction.

Let $A$ be an R-module. If any two maximal regular sequences in $I$ on $A$ have
the same length for every ideal $I$ with $I+A\subsetneqq A$ , then $A$ is said to satisfy
property $(^{*})$ . If $A$ satisfies property $(^{*})$ , we say also that $(R, A)$ satisfies property
$(^{*})$ .

THEOREM 9. In Theorem 8, let $J=(x_{1}, \ldots, x_{k})$ , and assume that $G(J, A)=k$

and $(R, A)$ satisfies property $(^{*})$ . Then $x_{1},$
$\ldots,$

$x_{k}$ is a maximal regular sequence in
$J$ on $A$ .

PROOF. Assume that $x_{i_{1}}\not\in Z(A),$ $x_{i_{2}}\not\in Z(A/((x_{j_{1}})+A)),$
$\ldots,$

$x_{i_{h}}\not\in Z(A/$

$((x_{i_{1}}, \ldots, x_{i_{h- 1}})+A))$ for $1<h<k$ . Then we have $J\not\subset Z(A/((x_{i_{1}}, \ldots, x_{i_{h}})+A))$ .
Hence there exists $i_{h+1}$ such that $x_{i_{h+1}}\not\in Z(A/((x_{j_{1}}, \ldots, x_{i_{h}})+A))$ . Thus $x_{j_{1}},$

$\ldots,$
$x_{i_{k}}$

is a regular sequence on $A$ . Then Theorem 4 completes the proof.
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THEOREM 10. Let $R$ be a Noetherian semigroup, and $A$ a finitely generated
torsion-free cancellative R-module which satisfies property $(^{*})$ . Let I be an ideal of
$R$ , and $x\in R$ with $J=(I, x)\subsetneqq R$ . Then $G(J, A)\leq 1+G(I, A)$ .

PROOF. Let $x_{1},$
$\ldots,$

$x_{m}$ be a maximal regular sequence in $I$ on $A$ . If $ J\subset$

$Z(A/((x_{1}, \ldots, x_{m})+A))$ , we have $G(J, A)\leq 1+G(I, A)$ . Assume that $ J\not\subset$

$Z(A/((x_{1}, \ldots, x_{m})+A))$ . Then $x_{1},$
$\ldots,$

$x_{m},$ $x$ is a regular sequence in $J$ on $A$ .
Suppose that $J\not\subset Z(A/((x_{1}, \ldots, x_{m}, x)+A))$ . Then there exists $y\in I$ such that
$x_{1},$

$\ldots,$
$x_{m},$ $x,$ $y$ is a regular sequence in $J$ on $A$ . Then $x_{1},$

$\ldots,$
$x_{m},$ $y$ is a regular

sequence in $I$ on $A$ by Theorem 4; a contradiction.

THEOREM 11. Let $R$ be a Noetherian semigroup, and $A$ a finitely generated

torsion-free cancellative R-module which satisfies property $(^{*})$ . Let I be an ideal of
$R$ contained in a maximal ideal M. Assume that $G(I, A)<G(M, A)$ . Then there
exists a prime ideal $P$ of $R$ such that $G(P, A)=1+G(I, A)$ .

PROOF. Let $x_{1},$
$\ldots,$

$x_{k}$ be a maximal regular sequence in $I$ on $A$ , and set
$I_{0}=(x_{1}, \ldots, x_{k})$ . We may take $x\in M-Z(A/(I_{0}+A))$ . By Theorem 10, we have
$G((I, x),$ $A$ ) $=k+1$ . Then $P=Z(A/((I, x)+A))$ is a desired prime ideal.

THEOREM 12. Let $R$ be a Noetherian semigroup, and $A$ a finitely generated
torsion-free cancellative R-module with property $(^{*})$ . Let $I=(x_{1}, \ldots, x_{n})$ be a
proper ideal of R. Then $G(I, A)=mf$ and on$lylfx_{1},$

$\ldots,$
$x_{n}$ is a regular sequence

on $A$ .

PROOF. The necessity: Let $J=(x_{1}, \ldots, x_{n-1})$ , and assume that the assertion
holds for $x_{1},$

$\ldots,$
$x_{n-1}$ . We have $G(J, A)=n-1$ by Theorem 10, and hence

$x_{1},$
$\ldots,$

$x_{n-1}$ is a regular sequence on $A$ . Since $G(I, A)=n$ , we have $ I\not\subset$

$Z(A/((x_{1}, \ldots, x_{n-1})+A))$ . It follows that $x_{1},$
$\ldots,$

$x_{n}$ is a regular sequence on $A$ .

Let $P$ be a prime ideal of $R$ . Then the maximum number $n$ so that there
exists a chain $P_{1}\subsetneqq P_{2}\subsetneqq\cdot\cdot 0\subsetneqq P_{n}=P$ of prime ideals of $R$ is called the height of
$P$ , and is denoted by $ht(P)$ . For an ideal $I$ of $R$ , the minimum of $ht(P),$ $P$ ranging
over the prime ideals containing $I$ is called the height of $I$, and is denoted by
ht(I).

THEOREM 13. Let I be an ideal of $R$ , and $x_{1},$
$\ldots,$

$x_{n}$ a regular sequence in I on
R. Then $n\leq ht(I)$ .
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PROOF. Assume that the assertion holds for $n-1$ . We may assume that $P=$

$I$ is a prime ideal. Set $T=\{kx_{n}+s|k\geq 0, s\in R-P\}$ . Suppose that $T\cap(x_{1},$
$\ldots$ ,

$ x_{n-1})\neq\emptyset$ , say $kx_{n}+s\in(x_{1}, \ldots, x_{n-1})$ . By the choice of $s$ and $k_{n}$ , we have $k\geq 1$

and $(k-1)x_{n}+s\in(x_{1}, \ldots, x_{n-1})$ . Thus $x_{n}+s\in(x_{1}, \ldots, x_{n-1})$ ; a contradiction.
Hence $ T\cap(x_{1}, \ldots, x_{n-1})=\emptyset$ . Then there exists a prime ideal $Q$ such that $ Q\supset$

$(x_{1}, \ldots, x_{n-1})$ and $ Q\cap T=\emptyset$ . By the assumption, we have $ht(Q)\geq n-1$ , and
hence $ht(P)\geq n$ .

Let $R$ be a Noetherian semigroup with maximal ideal $M$. If $G(M, R)=$

$dim(R)$ , then $R$ is called a Macaulay semigroup. Let $A$ be an R-module, and $S$

an additive system in $R$ . If, for $a_{1},$ $a_{2}\in A$ and $s_{1},$ $s_{2}\in S$ , we have $a_{1}+s_{2}+s=$

$a_{2}+s_{1}+s$ for some $s\in S$ , we define $a_{1}-s_{1}=a_{2}-s_{2}$ . Thus $A_{S}=\{a-s|a\in A$ ,
$s\in S\}$ is an $R_{S}$-module. If $P$ is a prime ideal of $R$ , then $A_{R-P}$ is denoted by $A_{P}$ .

THEOREM 14. Let $A$ be an R-module, and $x_{1},$
$\ldots,$

$x_{n}$ a regular sequence on
A. Let $S$ be an additive system in $R$ such that $(x_{1}, \ldots, x_{n})+A_{S}\subsetneqq A_{S}$ . Then
$x_{1},$

$\ldots,$
$x_{n}$ is a regular sequence in $R_{S}$ on $A_{S}$ .

Theorem 14 implies the following,

THEOREM 15. Let $P$ be a prime ideal of $R$ , and I an ideal contained in $P$ .
Then $G(I, P)\leq G(I_{P}, R_{P})$ .

THEOREM 16. Let $R$ be a Macaulay semigroup such that $(R, R)$ satisfies
property $(^{*})$ . Then we have $G(I, R)=ht(I)$ for every ideal I of $R$ .

PROOF. Suppose the contrary. Let $P$ be a maximal member in the set of all
ideals $I$ with $G(I, R)<ht(I)$ . Then $P$ is a prime ideal by Theorem 6. By Theorem
11, there exists a prime ideal $Q$ containing $P$ such that $G(Q, R)=1+G(P, R)$ .

Then $G(Q, R)<ht(P)+1<ht(Q)+1$ , and hence $G(Q, R)<ht(Q)$ ; a contradiction.

Let $P$ be a prime ideal of $R$ . Then the minimum of $n+1$ such that there
exists a saturated chain of prime ideals $P\supsetneqq P_{1}\supsetneqq\cdots\supsetneqq P_{n}$ of $R$ is called the little
height of $P$ , and is denoted by $lh(P)$ . If $R$ satisfies the following conditions (1)
and (2), we say that $R$ satisfies the saturated chain condition:

(1) $lh(P)=ht(P)$ for every prime ideal $P$ of $R$ .
(2) For all prime ideals $P,$ $Q$ with $P\supsetneqq Q$ , any two saturated chains from $P$

to $Q$ have the same length.
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THEOREM 17. Let $R$ be a Noetherian semigroup such that $(R_{P}, R_{P})$ satisfies
property $(^{*})$ for every prime ideal P. Then we have $G(P, R)\leq lh(P)$ for every prime
ideal $P$ .

PROOF. We may assume that $M=P$ is a maximal ideal of $R$ . Let $lh(M)=$

$m$ , and assume that the assertion holds for $m-1$ . There exists a prime ideal $Q$

with $lh(Q)=m-1$ . Then $G(Q+R_{Q}, R_{Q})\leq m-1$ by the assumption, and hence
$G(Q, R)\leq m-1$ . Then $G(M, R)=1+G(Q, R)$ by Theorem 11, and hence
$G(M, R)\leq m$ .

THEOREM 18. Let $R$ be a Macaulay semigroup such that $(R, R)$ satisfies
property $(^{*})$ . Then $R_{S}$ is a Macaulay semigroup for every additive system $S$ of $R$ .

PROOF. There exists a prime ideal $P$ of $R$ such that $N=P+R_{S}$ is a
maximal ideal of $R_{S}$ . Then we have $G(P, R)=ht(P)$ by Theorem 16. It follows
that $ht(N)\leq G(N, R_{S})$ by Theorem 15, and $G(N, R_{S})\leq ht(N)$ by Theorem 13.

LEMMA 19 ([M3, Theorem 1]). Let $R$ be a Noetherian semigroup, and $x$ a
nonunit of R. If $P$ is a minimal prime ideal over $(x)$ , then $ht(P)=1$ .

Let $S$ be a g-monoid and $R$ a submonoid of $S$ . If $x$ is an element of $S$, then
the submonoid $R+Z_{0}s$ of $S$ is denoted by $R[s]$ . Let $X$ be an indeterminate over
$R$ . Then the g-monoid $R+Z_{0}X$ is denoted by $R[X]$ , and is called the polynomial
semigroup of $X$ over $R$ .

LEMMA 20 ([TM]). (1) Assume that $R$ satisfies the ascending chain condition
on radical ideals, and let I be an ideal. Then there exists only a finite number of
prime ideals minimal over $I$.

(2) Assume that $R$ satisfies the ascending chain condition on radical ideals. If $R$

has an infinite number ofprime ideals of height 1, then their intersection is empty.
(3) Let $R$ be a g-monoid with $G=q(R)$ , and let $u\in R$ . Then every prime ideal

of $R$ contains $u\iota f$ and only if $G=R[-u]$ .

If $q(R)$ is generated by one element over $R$ as a monoid, that is, if $q(R)$ is of
the form $R[x]$ for some $x\in q(R)$ , then $R$ is called a G-semigroup. Lemmas 7 and
20 imply the following,

THEOREM 21. Any Noetherian semigroup is a G-semigroup.
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LEMMA 22 ([TM]). (1) Let $P$ be a prime ideal of $R$ of height 1. Then $P+$

$R[X]$ is a prime ideal of $R[X]$ of height 1.
(2) Let $P$ be a prime ideal of $R$ with $n=ht(P)$ . Let $Q$ be a prime ideal of

$R[X]$ properly containing $P+R[X]$ and with $P=Q\cap R$ . Then $ht(P+R[X])=n$

and $ht(Q)=n+1$ .

QUESTION. If $R$ is Noetherian, what are conditions for $(R[X], R[X])$ to
satisfy property $(^{*})$?

THEOREM 23. Let $R$ be a Noetherian semigroup such that $(R[X], R[X])$

satisfies property $(^{*})$ . Then $R$ is a Macaulay semigroup if and only If $R[X]$ is a
Macaulay semigroup.

PROOF. Let $M$ be a maximal ideal of $R$ with $n=ht(M)$ . The necessity: Let
$x_{1},$

$\ldots,$
$x_{n}$ be a regular sequence in $M$ on $R$ , Then $x_{1},$

$\ldots,$
$x_{n},$ $X$ is a regular

sequence in $R[X]$ on $R[X]$ . Hence $R[X]$ is a Macaulay semigroup by Theorem 13
and Lemma 22. The sufficiency: Let $X,$ $f_{1},$

$\ldots,$
$f_{n}$ be a regular sequence in $R[X]$

on $R[X]$ . Set $f_{i}=a_{j}+k_{i}X$ for each $i$ (for $a_{i}\in R$ and $k_{j}\geq 0$). Then we have $k_{j}=0$

for each $i$ . It follows that $a_{1},$
$\ldots,$

$a_{n}$ is a regular sequence on $R$ .

LEMMA 24 ([M3, Theorem 1]). Let $R$ be a Noetherian semigroup, and I an n-
generated proper ideal. Let $P$ be a prime ideal minimal over I. Then $ht(P)\leq n$ .

Let $P$ be a prime ideal, and $I$ an ideal contained in $P$ . The maximum of $n$ so
that there exists a chain of prime ideals $P\supsetneqq P_{1}\supsetneqq\cdots\supsetneqq P_{n}\supset I$ is called the
height of $P/I$ , and is denoted by $h\iota(P/I)$ .

THEOREM 25. Let $R$ be a Noetherian semigroup, $P$ a prime ideal, and I an n-
generated ideal contained in P. Then $ht(P)\leq n+h\iota(P/I)$ .

$PR\infty F$ . Let $I=(a_{1}, \ldots, a_{n})$ with $a_{j}\neq a_{j}$ (for $i\neq j$), and set $ht(P/I)=k$ . For
any prime ideal $Q$ , the cardinality of $Q\cap\{a_{1}, \ldots, a_{n}\}$ is called the capacity of $Q$ ,
and is denoted by $c(Q)$ . Let $h\iota(P)=l+1$ , and let $P\supsetneqq P_{1}\supsetneqq--$ $\supsetneqq P_{l}$ be a chain
of prime ideals. Then $\sum_{1}^{l}c(P_{i})$ is called the capacity of the chain. We will show
$l+1\leq k+n$ by the induction on the number $\sum_{1}^{l}c(P_{i})$ . Thus, if $\sum_{1}^{l}c(P_{i})=nl$ ,
then $l\leq k$ . Hence $l+1\leq k+n$ . Assume that $0=c(P_{l})=\cdots=c(P_{\alpha})<c(P_{\alpha-1})$ .
The case that $ht(P_{\alpha})=1$ : Since $ht(P_{\alpha-1})=2,$ $P_{\alpha-1}$ is not a prime ideal minimal
over $(a_{1})$ . Hence there exists a prime ideal $Q$ with $a_{1}\in Q$ such that $P_{l-1}\supsetneqq Q$ .
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Then the capacity of the chain $P\supsetneqq P_{1}\supsetneqq\cdots\supsetneqq P_{l-1}\supsetneqq Q$ is larger than that of the
chain $P\supsetneqq P_{1}\supsetneqq\cdots\supsetneqq P/-1\supsetneqq P_{l}$ . By the induction hypothesis, we have $ l+1\leq$

$k+n$ . The case that $ht(P_{\alpha})>1$ : If $P_{\alpha+1}$ is a prime ideal minimal over $(P_{\alpha-1}, a_{1})$ ,
then $P_{\alpha}$ is a prime ideal minimal over $P_{\alpha-1}$ ; a contradiction. Hence $P_{a+1}$ is not a
prime ideal minimal over $(P_{\alpha-1}, a_{1})$ . Then there exists a prime ideal $Q$ such that
$P_{\alpha+1}\supsetneqq Q\supsetneqq P_{\alpha-1}$ . Then the capacity of the chain $ P\supsetneqq P_{1}\supsetneqq\cdots\supsetneqq P_{\alpha+1}\supsetneqq Q\supsetneqq$

$P_{\alpha-1}\supsetneqq--$ $\supsetneqq P_{l}$ is larger than that of the chain $ P\supsetneqq P_{1}\supsetneqq\cdots\supsetneqq P_{\alpha+1}\supsetneqq P_{\alpha}\supsetneqq$

$P_{\alpha-1}\supsetneqq\cdots\supsetneqq P_{l}$ . By the induction hypothesis, we have $1+1\geq k+n$ .

THEOREM 26. Let $R$ be a Noetherian semigroup, $P$ a prime ideal, and $x\in P$ .
Then $ht(P/(x))=ht(P)-1$ .

By Theorem 26, we have the following,

THEOREM 27. Let $R$ be a Noetherian semigroup, $M$ a maximal ideal of $R$ ,
and $x\in M$. Let $k=ht(M/(x))$ , and $x_{1},$

$\ldots,$
$x_{k}$ be elements of $M$ such that

$x_{1}\not\in Z(R/(x)),$ $x_{2}\not\in Z(R/(x, x_{1})),$
$\ldots,$

$x_{k-1}\not\in Z(R/(x, x_{1}, \ldots, x_{k-1}))$ . Then $R$ is a
Macaulay semigroup.

LEMMA 28 ([TM]). Let $R$ be a Noetherian semigroup with maximal ideal
$M$, and $A$ a finitely generated R-module. Assume that $A=(a_{1}, \ldots, a_{r}, M+A)$ .
Then $M=(a_{1}, \ldots, a_{r})$ .

Let $R$ be a Noetherian semigroup with maximal ideal $M$. If $M$ is generated
by a finite subset $\{a_{1}, \ldots, a_{n}\}$ of $R$ , and If $M$ is not generated by any proper
subset of $\{a_{1}, \ldots, a_{n}\}$ , then $\{a_{1}, \ldots, a_{n}\}$ is called a minimal generators of $M$. Let
$\{a_{1}, \ldots, a_{n}\}$ and $\{b_{1}, \ldots, b_{m}\}$ be two set of minimal generators of $M$. Then each
$a_{i}$ is contained in the ideal $(b_{m(i)})$ for some $m(i)$ , and each $b_{j}$ is contained in some
$(a_{n(i)})$ . Then it follows that $i=n(m(i))$ and $j=m(n(j))$ for all $i$ and $j$. Hence $n=$

$m$ . The cardinality of a minimal generators of $M$ is called the V-dimension of $R$ ,
and is denoted by $V(R)$ .

THEOREM 29. Let $R$ be a Noetherian semigroup with maximal ideal $M$, and
let $x\in M-2M$ . Let $r$ be the minimum number so that there exist $x_{1},$

$\ldots,$
$x_{r}$ with

$(x, x_{1}, \ldots, x_{r})=M$ . Then $r=V(R)-1$ .

For a Noetherian semigroup $R$ , we have $V(R)\geq dim(R)$ by Lemma 24. A
Noetherian semigroup $R$ is called a regular semigroup if $V(R)=dim(R)$ .
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THEOREM 30. Let $R$ be a Noetherian semigroup with maximal ideal $M$ .
Assume that $M$ is generated by a regular sequence $a_{1},$

$\ldots,$
$a_{k}$ on R. Then $k=$

$dim(R)=V(R)$ , and $R$ is a regular semigroup.

PROOF. We have $k\leq G(M, R)\leq ht(M)$ by Theorem 13. Also we have
$ht(M)\leq V(R)\leq k$ by Lemma 24.

THEOREM 31. Let $R$ be a regular semigroup with maximal ideal $M$, and
$x\in M-2M$ . Put $ht(M/(x))=k$ . Then there exist $x_{1},$ $\ldots,x_{k}$ such that $M=$

$(x, x_{1}, \ldots, x_{k})$ .

PROOF. We have $dim(R)=k+1$ by Theorem 26. By Theorem 29, there
exist $x_{1},$

$\ldots,$
$x_{k}$ such that $M=(x, x_{1}, \ldots, x_{k})$ .

THEOREM 32. Let $R$ be a Noetherian semigroup with maximal ideal $M$, and
let $x\in M-2M$ . Put $ht(M/(x))=k$ . Assume that there exist elements $x_{1},$

$\ldots,$
$x_{k}$

such that $M=(x, x_{1}, \ldots, x_{k})$ . Then $R$ is a regular semigroup.

PROOF. Because $ht(M)=k+1$ by Theorem 26.

THEOREM 33. Let $R$ be a regular semigroup of dimension $n$ with maximal
ideal M. Let $M=(x_{1}, \ldots, x_{n})$ . Then $x_{j}\not\in 2M$ for each $i$, and $x_{1},$

$\ldots,$
$x_{n}$ is a regular

sequence on $R$ .

$PR\infty F$ . By Lemma 28, we have $x_{j}\not\in 2M$ . It follows that $x_{1},$
$\ldots,$

$x_{n}$ is
a complete representatives of irreducible elements of $R$ . Suppose that $ x_{k}\in$

$Z(R/(x_{1}, \ldots, x_{k-1}))$ . There exists $y\in M-(x_{1}, \ldots, x_{k-1})$ such that $ x_{k}+y\in$

$(x_{1}, \ldots, x_{k-1})$ . Let $P$ be a prime ideal minimal over $(x_{1}, \ldots, x_{k-1})$ . Then there
exists $l\geq k$ such that $x_{l}\in P$ . There exist irreducible elements $a_{1},$

$\ldots,$ $a_{n-k}$ of $R$

such that $M=(P, a_{1}, \ldots, a_{n-k})$ . Then we have $ht(M)\leq ht(P)+n-k\leq k-1+$

$n-k=n-1$ , namely $h\iota(M)\leq n-1$ ; a contradiction.

Theorem 33 implies the following,

THEOREM 34. Any regular semigroup is a Macaulay semigroup.

THEOREM 35. Let $R$ be a Noetherian semigroup such that $R_{P}$ is regular for
every prime ideal $P$ of R. Then $R[X]_{Q}$ is regular for every prime ideal $Q$ of $R[X]$ .
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PROOF. Set $R[X]=T$ . We may assume that $R$ is a regular semigroup with
maximal ideal $M$, and $R\cap N=M$ for a prime ideal $N$ of $T$. Then $M$ is generated
by a regular sequence $a_{1},$

$\ldots,$
$a_{n}$ . If $M+R[X]=N$ , then our assertion holds. If

$N\supsetneqq M+R[X]$ , then $N=(a_{1}, \ldots, a_{n}, X)$ , and $a_{1},$
$\ldots,$

$a_{n},$ $X$ is a regular sequence
on $R[X]$ . Theorem 30 completes the proof.

THEOREM 36. Let $R$ be a Macaulay semigroup such that $(R, R)$ satisfies
property $(^{*})$ . Let I be a proper ideal of height $n$ , which can be generated by $n$

elements $x_{1},$
$\ldots,$

$x_{n}$ . Then $P=Z(R/I)$ is a prime ideal of $R$ , has height $n$ and a
minimal prime over $I$.

PROOF. We see that $P$ is a prime ideal of $R$ ([TM]). Theorem 16 implies that
$G(I, R)=n$ . Theorem 9 implies that $x_{1},$

$\ldots,$
$x_{n}$ is a maximal regular sequence in $I$

on $R$ . Theorem 6 implies that $x_{1},$
$\ldots,$

$x_{n}$ is a maximal regular sequence in $P$ on $R$ .
Then Theorem 16 implies that $ht(P)=n$ .
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