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0. Introduction

Let $(M, g)$ be a 2-dimensional non-orientable closed Riemannian manifold.
We study the spectrum of the Laplacian for functions on $(M, g)$ . We express it by

$Spec(M, g)=\{0=\lambda_{0}<\lambda_{1}\leq\lambda_{2}\leq\lambda_{3}\leq . \}$ .

Let $(\tilde{M},\tilde{g})$ be the orientable Riemannian double cover of $(M, g)$ . Our interest
is what properties are preserved between $(M, g)$ and $(\tilde{M},\tilde{g})$ . The positive first
eigenvalue $\lambda_{1}(M, g)$ has many geometric informations. We have interests in the
influences for the positive first eigenvalue by taking the Riemannian double cover.
Generally we have $\lambda_{1}(M, g)\geq\lambda_{1}(\tilde{M},\tilde{g})$ . So we study the difference between
$\lambda_{1}(M, g)$ and $\lambda_{1}(\tilde{M},\tilde{g})$ . Especially we find the cases that $\lambda_{1}(M, g)=\lambda_{1}(\tilde{M},\tilde{g})$

holds good.
It is well-known (cf. [9]) that 2-dimensional closed manifolds are classified as

follows.

The Classification Theorem of Closed Surfaces. A closed surface is homeo-
morphic to one of the following spaces.

$S^{2},$ $T^{2},$ $\#^{n}T^{2}(n\geq 2)$ : orientable

$RP^{2},$ $\#^{n}RP^{2}(n\geq 2)$ : non-orientable

where $\#^{n}M$ means the connected sum of n-copies of a manifold M. Moreover the
double cover of $\#^{n}RP^{2}(n\geq 2)$ is homeomorphic to $\#^{n-1}T^{2}$ .

In this paper we show the following results.

THEOREM A. If $M$ is homeomorphic to $RP^{2}$ , then

Received November 4, 1997.
Revised March 25, 1998.



742 Katsuhiro YOSHIJI

$\lambda_{1}(M, g)>\lambda_{1}(\tilde{M},\tilde{g})$

for every metric $g$ on $M$ .

THEOREM B. If $M$ is homeomorphic to $\#^{n}RP^{2}(n\geq 2)$ , there exists a metric
$g$ on $M$ such that

$\lambda_{1}(M, g)=\lambda_{1}(\tilde{M},\tilde{g})$ .

The author would like to thank J. Takahashi and the referee for useful
comments.

1. Preliminaries

Let us consider the Riemannian double covering $(\tilde{M},\tilde{g})$ of $(M, g)$ . We define
the isometry $J:(\tilde{M},\tilde{g})\rightarrow(\tilde{M},\tilde{g})$ as follows. For each point $p$ of $(M, g)$ , let two
points $\tilde{p}_{1},\tilde{p}_{2}$ of $(\tilde{M},\tilde{g})$ be the fiber of a point $p$ in $(M, g)$ . Then we define $J$ by
exchanging two points $\tilde{p}_{1},\tilde{p}_{2}$ . Let $E(\lambda),$ $E^{+}(\lambda)$ and $E^{-}(\lambda)$ be the spaces of $C^{\infty}$

functions on $\tilde{M}$ such that

$E(\lambda)=the$ eigenspace associated with the eigenvalue $\lambda$ ,

$E^{+}(\lambda)=\{f\in E(\lambda)|f\circ J=f\}$ ,

$E^{-}(\lambda)=\{f\in E(\lambda)|f\circ J=-f\}$ .

PROPOSITION (P. Buser [3], p. 306). $E(\lambda)$ is decomposed orthogonally as
$E^{+}(\lambda)\oplus E^{-}(\lambda)$ .

Since all eigenfunctions on $(M, g)$ are lifted to ones on $(\tilde{M},\tilde{g})$ canonically,
the eigenvalues on $(M, g)$ are in $Spec(\tilde{M},\tilde{g})$ . The eigenfunctions on $(\tilde{M},\tilde{g})$ which
come from ones on $(M, g)$ are invariant by $J$. Conversely every $f\in E^{+}(\lambda)$ is
reduced to the eigenfunction on $(M, g)$ . The eigenvalues on $(M, g)$ coincide with
the ones on $(\tilde{M},\tilde{g})$ satisfying $E^{+}(\lambda)\neq\{0\}$ .

The eigenfunctions on $(\tilde{M},\tilde{g})$ which do not come from ones on $(M, g)$ have
non-zero components of $E^{-}(\lambda)$ under the above decomposition. Thus we con-
centrate our attension on the non-zero smallest $\lambda$ such as $E^{-}(\lambda)\neq\{0\}$ . We
denote it by $v$ . Our purpose is to compare $\lambda_{1}(M, g)$ with $v$ .

2. Proof of Theorem A

In this section the main tool is the nodal domain theorem (cf. [6] and [7]).
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PROPOSITION (S. Y. Cheng [6], p. 186). Let $g$ be any Riemannian metric on
$S^{2}$ . Then the nodal line of a first eigenfunction is a smooth simple closed curve.

We assume that $(M, g)$ is homeomorphic to $RP^{2}$ . Then its Riemannian
double cover $(\tilde{M},\tilde{g})$ is homeomorphic to $S^{2}$ . If the first eigenfunction $\varphi$ on $(M, g)$

lifts to the first eigenfunction $\tilde{\varphi}$ on $(\tilde{M},\tilde{g})$ , the nodal set of $\tilde{\varphi}$ is a simple closed
curve and the number of the nodal domains is two. We denote one of them by $D$ .
Since $\pi_{1}(\tilde{M})\cong\{e\}$ , the nodal set $\partial D$ is contractible. Then $D$ is homeomorphic to
an open 2-disk. Its boundary $\partial D$ is regularly embedded. Then its closure $\overline{D}$ is
homeomorphic to a closed 2-disk. Without loss of generality we take $D$ the
positive nodal domain. Since $\tilde{\varphi}$ is invariant by the isometry $J$, we have $J(\overline{D})=\overline{D}$ .

We apply the Brouwer’s fixed poin theorem (cf. [8] p. 19) to $J:\overline{D}\rightarrow\overline{D}$ . Then
$J$ has a fixed point. But by the definition of $J$, it does not have any fixed points.
It is a contradiction.

3. Proof of Theorem $B$

The first eigenvalue $\lambda_{1}$ is characterized by the Rayleigh quotient, that is,

$\lambda_{1}(M, g)=\inf\frac{\int_{M}|\nabla f|^{2}dv}{\int_{M}f^{2}dv}$

where $f$ runs over all non-vanishing functions orthogonal to constant functions in
$L^{2}(M, g)$ .

Our method to prove Proposition $B$ is an analogue of Cheeger’s construction
in [5] of the deformation of Riemannian metrics $g_{\epsilon}$ on $S^{2}$ such that $\lambda_{1}(S^{2}, g_{\epsilon})$

converges to $0$ as $\epsilon\rightarrow 0$ .
Let us recall the construction.

Step 1. Connect two canonical spheres, $(S^{2}, g)\#(S^{2}, g)$ , by the tube whose
radius is $\epsilon$ and length is 1. We express it by $(S, g_{\epsilon})$ .

Step 2. We consider the test functions $f_{\epsilon}$ which is equal to $c$ on the right-
hand bulb, $-c$ on the left-hand bulb and change linearly from $c$ to $-c$ across
tube. We choose $c$ so $\int_{S}f_{\epsilon}^{2}dv=1$ .

Step 3. By the Rayleigh quotient, $\lambda_{1}(S, g_{\epsilon})$ converges to $0$ as $\epsilon\rightarrow 0$ .

Now we proceed this method to $\#^{n}RP^{2}$ for $n\geq 2$ . We consider $\#^{n}RP^{2}$ as
$(\#^{n-1}RP^{2})\neq RP^{2}$ . We take a suitable metric on $\#^{n}RP^{2}$ in such a way that

$\frac{Vo1(\#^{n-1}RP^{2})}{Vo1(RP^{2})}=n-1$ .
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$(M,g_{e})=(\#^{\mathfrak{n}-1}RP^{z})\# RP^{2}$ $(\tilde{M},\tilde{g}_{\epsilon})$

We connect $\#^{n-1}RP^{2}$ and $RP^{2}$ by the tube whose radius is $\epsilon$ and length is $l$.
We denote it by $(M, g_{\epsilon})$ . We consider the test functions $f_{\epsilon}$ which are equal to 1
on $\#^{n-1}RP^{2}$ and $-(n-1)$ on $RP^{2}$ , and decrease from 1 to $-(n-1)$ across the
tube. We may take $f_{\epsilon}$ such that they are orthogonal to constant functions in
$L^{2}(M, g_{\epsilon})$ and $|\nabla f_{\epsilon}|\leq d$ where $d$ is a constant depending only on 1 and $n$ . It
follows from the Rayleigh quotient that

$\lim_{\epsilon\rightarrow 0}\lambda_{1}(M, g_{\epsilon})=0$ .

Let $(\tilde{M},\tilde{g}_{\epsilon})$ be the double cover of $(M, g_{\epsilon})$ . Then $\lambda_{1}(M, g_{\epsilon})$ belongs to in
$Spec(\tilde{M},\tilde{g}_{\epsilon})$ . We denote it by $\lambda(\epsilon)$ in brief. In Sect.1, we treat $E^{-}(\lambda)$ . We denote
by $v(\epsilon)$ the non-zero first $E^{-}(\lambda)$ -type eigenvalue on $(\tilde{M},\tilde{g}_{\epsilon})$ . We only have to
compare $\lambda(\epsilon)$ with $v(\epsilon)$ .

PROPOSITION (C. Ann\’e and B. Colbois [2]). Let $(M_{1}, g\mathfrak{l})$ and $(M_{2}, g2)$ be two
connected orientable Riemannian manifolds of the same dimension. We connected
them by two tubes whose radii are both $\epsilon$ and lengths $l_{1}$ and $l_{2}$ , respectively. $We$

denote it by $(M, g_{\epsilon})$ with a little smoothing at the connected parts. We express
$Spec(M, g_{\epsilon})$ as

$Spec(M, g_{\epsilon})=\{\lambda_{0}(\epsilon)<\lambda_{1}(\epsilon)\leq\lambda_{2}(\epsilon)\leq\cdots\}$ .

Let
$\{\mu_{0}\leq\mu_{1}\leq\mu_{2}\leq\mu_{3}\leq\cdots\}$

be the union of $Spec(M_{1}, g\iota),$ $Spec(M_{2}, g2),$ $Spec_{D}$ ( $[0,$ $l_{1}]$ , can) and $Spec_{D}([0, l_{2}]$ ,
can) (the $D$ of the $Spec_{D}$ means the Dirichlet condition) counting with multiplicity.

Then for any $n$ we have

$\lim_{\epsilon\rightarrow 0}\lambda_{n}(\epsilon)=\mu_{n}$ .

Especially $\lambda_{0}(\epsilon)=0,$ $\mu_{0}=\mu 1=0$ and $\mu_{2}>0$ .
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REMARK. In [2] they treat p-forms on $(M, g)$ . It is necessary for them to
assume that $\dim M\geq 3$ . But for functions the arguments there hold good in
$\dim M=2$ . As for it see also [1].

We apply the above proposition to $(\tilde{M},\tilde{g}_{\epsilon})$ . Since $\lim_{\epsilon\rightarrow 0}\lambda(\epsilon)=0,$ $v(\epsilon)$

converges to some positive value which is bigger than or equal to $\mu_{2}$ . The positive
value depends on the equipped metrics on $\#^{n-1}RP^{2},$ $RP^{2}$ and the lengths of the
tubes $l_{1},$ $l_{2}$ . By the continuity of the eigenv\‘alue in the parameter $\epsilon$ , there exists
$\epsilon_{0}>0$ such that

$\lambda(\epsilon)<v(\epsilon)$

for $0<\epsilon<\epsilon_{0}$ .
Hence for all the metrics $g_{\epsilon}$ on $M$ such that $0<\epsilon<\epsilon_{0}$ , we have

$\lambda_{1}(M, g_{\epsilon})=\lambda(\epsilon)=\lambda_{1}(\tilde{M},\tilde{g}_{\epsilon})$ .

4. Example

Here we give an example which clarifies Theorem B. Let $K(a, b)$ be the flat
Klein bottle as the quotient space of ( $R^{2}$ , can) identifying by $(x, y)\mapsto(x, y+b)$

and $(x, y)\leftrightarrow(x+a/2, -y)$ . The double cover of $K(a, b)$ is the flat torus $T(a, b)$

as the quotient space of ( $R^{2}$ , can) identifying by $(x, y)\leftrightarrow(x+a, y)$ and $(x, y)\mapsto$

$(x, y+b)$ .
The spectra of $K(a, b)$ and $T(a, b)$ are given in [4] as follows:

$Spec(K(a, b))=\{4\pi^{2}(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}})$ : $m,$ $n\in Z$ and $n\neq 0$ for $m:odd\}$ ,

$Spec(T(a, b))=\{4\pi^{2}(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}})$ : $m,$ $n\in Z\}$ .

Then we have

$\lambda_{1}(K(a, b))=\left\{\begin{array}{l}4\frac{\pi^{2}}{b^{2}}\\16\frac{\pi^{2}}{a^{2}}\end{array}\right.$
$forb\leq\frac{a}{2\prime}for\frac{a}{2}\leq b$

,

$\lambda_{1}(T(a, b))=\left\{\begin{array}{l}4\frac{\pi^{2}}{b^{2}}\\4\frac{\pi^{2}}{a^{2}}\end{array}\right.$ $forb\leq afora\leq b$

,
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By comparing $\lambda_{1}(K(a, b))$ with $\lambda_{1}(T(a, b))$ , we have

$\lambda_{1}(K(a, b))=\lambda_{1}(T(a, b))$

for $a\leq b$ .
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