ON THE FIRST EIGENVALUE OF NON-ORIENTABLE CLOSED SURFACES

By

Katsuhiro Yosнил

0. Introduction

Let (M,g) be a 2-dimensional non-orientable closed Riemannian manifold. We study the spectrum of the Laplacian for functions on (M,g). We express it by

Spec $(M, g) = \{0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \lambda_3 \le \cdots\}.$

Let (\tilde{M}, \tilde{g}) be the orientable Riemannian double cover of (M, g). Our interest is what properties are preserved between (M, g) and (\tilde{M}, \tilde{g}) . The positive first eigenvalue $\lambda_1(M, g)$ has many geometric informations. We have interests in the influences for the positive first eigenvalue by taking the Riemannian double cover. Generally we have $\lambda_1(M, g) \ge \lambda_1(\tilde{M}, \tilde{g})$. So we study the difference between $\lambda_1(M, g)$ and $\lambda_1(\tilde{M}, \tilde{g})$. Especially we find the cases that $\lambda_1(M, g) = \lambda_1(\tilde{M}, \tilde{g})$ holds good.

It is well-known (cf. [9]) that 2-dimensional closed manifolds are classified as follows.

The Classification Theorem of Closed Surfaces. A closed surface is homeomorphic to one of the following spaces.

$$S^2, T^2, \#^n T^2 \ (n \ge 2)$$
: orientable

 RP^2 , $\#^n RP^2$ $(n \ge 2)$: non-orientable

where $\#^n M$ means the connected sum of n-copies of a manifold M. Moreover the double cover of $\#^n \mathbb{RP}^2$ $(n \ge 2)$ is homeomorphic to $\#^{n-1}T^2$.

In this paper we show the following results.

THEOREM A. If M is homeomorphic to \mathbf{RP}^2 , then

Received November 4, 1997. Revised March 25, 1998. Katsuhiro Yoshiji

$$\lambda_1(M,g) > \lambda_1(M,\tilde{g})$$

for every metric g on M.

THEOREM B. If M is homeomorphic to $\#^n \mathbb{RP}^2$ $(n \ge 2)$, there exists a metric g on M such that

$$\lambda_1(M,g) = \lambda_1(\tilde{M},\tilde{g}).$$

The author would like to thank J. Takahashi and the referee for useful comments.

1. Preliminaries

Let us consider the Riemannian double covering (\tilde{M}, \tilde{g}) of (M, g). We define the isometry $J : (\tilde{M}, \tilde{g}) \to (\tilde{M}, \tilde{g})$ as follows. For each point p of (M, g), let two points \tilde{p}_1, \tilde{p}_2 of (\tilde{M}, \tilde{g}) be the fiber of a point p in (M, g). Then we define J by exchanging two points \tilde{p}_1, \tilde{p}_2 . Let $E(\lambda), E^+(\lambda)$ and $E^-(\lambda)$ be the spaces of C^{∞} functions on \tilde{M} such that

 $E(\lambda)$ = the eigenspace associated with the eigenvalue λ ,

$$E^{+}(\lambda) = \{ f \in E(\lambda) \mid f \circ J = f \},$$
$$E^{-}(\lambda) = \{ f \in E(\lambda) \mid f \circ J = -f \}.$$

PROPOSITION (P. Buser [3], p. 306). $E(\lambda)$ is decomposed orthogonally as $E^+(\lambda) \oplus E^-(\lambda)$.

Since all eigenfunctions on (M,g) are lifted to ones on (\tilde{M},\tilde{g}) canonically, the eigenvalues on (M,g) are in Spec (\tilde{M},\tilde{g}) . The eigenfunctions on (\tilde{M},\tilde{g}) which come from ones on (M,g) are invariant by J. Conversely every $f \in E^+(\lambda)$ is reduced to the eigenfunction on (M,g). The eigenvalues on (M,g) coincide with the ones on (\tilde{M},\tilde{g}) satisfying $E^+(\lambda) \neq \{0\}$.

The eigenfunctions on (M, \tilde{g}) which do not come from ones on (M, g) have non-zero components of $E^{-}(\lambda)$ under the above decomposition. Thus we concentrate our attension on the non-zero smallest λ such as $E^{-}(\lambda) \neq \{0\}$. We denote it by ν . Our purpose is to compare $\lambda_1(M, g)$ with ν .

2. Proof of Theorem A

In this section the main tool is the nodal domain theorem (cf. [6] and [7]).

742

PROPOSITION (S. Y. Cheng [6], p. 186). Let g be any Riemannian metric on S^2 . Then the nodal line of a first eigenfunction is a smooth simple closed curve.

We assume that (M,g) is homeomorphic to \mathbb{RP}^2 . Then its Riemannian double cover (\tilde{M}, \tilde{g}) is homeomorphic to S^2 . If the first eigenfunction φ on (M,g)lifts to the first eigenfunction $\tilde{\varphi}$ on (\tilde{M}, \tilde{g}) , the nodal set of $\tilde{\varphi}$ is a simple closed curve and the number of the nodal domains is two. We denote one of them by D. Since $\pi_1(\tilde{M}) \cong \{e\}$, the nodal set ∂D is contractible. Then D is homeomorphic to an open 2-disk. Its boundary ∂D is regularly embedded. Then its closure \overline{D} is homeomorphic to a closed 2-disk. Without loss of generality we take D the positive nodal domain. Since $\tilde{\varphi}$ is invariant by the isometry J, we have $J(\overline{D}) = \overline{D}$.

We apply the Brouwer's fixed poin theorem (cf. [8] p. 19) to $J : \overline{D} \to \overline{D}$. Then J has a fixed point. But by the definition of J, it does not have any fixed points. It is a contradiction.

3. Proof of Theorem B

The first eigenvalue λ_1 is characterized by the Rayleigh quotient, that is,

$$\lambda_1(M,g) = \inf rac{\int_M |
abla f|^2 dv}{\int_M f^2 dv}$$

where f runs over all non-vanishing functions orthogonal to constant functions in $L^2(M,g)$.

Our method to prove Proposition B is an analogue of Cheeger's construction in [5] of the deformation of Riemannian metrics g_{ε} on S^2 such that $\lambda_1(S^2, g_{\varepsilon})$ converges to 0 as $\varepsilon \to 0$.

Let us recall the construction.

Step 1. Connect two canonical spheres, $(S^2, g) \# (S^2, g)$, by the tube whose radius is ε and length is *l*. We express it by (S, g_{ε}) .

Step 2. We consider the test functions f_{ε} which is equal to c on the righthand bulb, -c on the left-hand bulb and change linearly from c to -c across tube. We choose c so $\int_{S} f_{\varepsilon}^{2} dv = 1$.

Step 3. By the Rayleigh quotient, $\lambda_1(S, g_{\varepsilon})$ converges to 0 as $\varepsilon \to 0$.

Now we proceed this method to $\#^n \mathbf{RP}^2$ for $n \ge 2$. We consider $\#^n \mathbf{RP}^2$ as $(\#^{n-1}\mathbf{RP}^2) \# \mathbf{RP}^2$. We take a suitable metric on $\#^n \mathbf{RP}^2$ in such a way that

$$\frac{\operatorname{Vol}(\#^{n-1}\boldsymbol{R}\boldsymbol{P}^2)}{\operatorname{Vol}(\boldsymbol{R}\boldsymbol{P}^2)} = n-1.$$

We connect $\#^{n-1} \mathbb{RP}^2$ and \mathbb{RP}^2 by the tube whose radius is ε and length is *l*. We denote it by (M, g_{ε}) . We consider the test functions f_{ε} which are equal to 1 on $\#^{n-1}\mathbb{RP}^2$ and -(n-1) on \mathbb{RP}^2 , and decrease from 1 to -(n-1) across the tube. We may take f_{ε} such that they are orthogonal to constant functions in $L^2(M, g_{\varepsilon})$ and $|\nabla f_{\varepsilon}| \leq d$ where *d* is a constant depending only on *l* and *n*. It follows from the Rayleigh quotient that

$$\lim_{\varepsilon\to 0}\,\lambda_1(M,g_\varepsilon)=0.$$

Let $(\tilde{M}, \tilde{g}_{\varepsilon})$ be the double cover of (M, g_{ε}) . Then $\lambda_1(M, g_{\varepsilon})$ belongs to in Spec $(\tilde{M}, \tilde{g}_{\varepsilon})$. We denote it by $\lambda(\varepsilon)$ in brief. In Sect.1, we treat $E^-(\lambda)$. We denote by $\nu(\varepsilon)$ the non-zero first $E^-(\lambda)$ -type eigenvalue on $(\tilde{M}, \tilde{g}_{\varepsilon})$. We only have to compare $\lambda(\varepsilon)$ with $\nu(\varepsilon)$.

PROPOSITION (C. Anné and B. Colbois [2]). Let (M_1, g_1) and (M_2, g_2) be two connected orientable Riemannian manifolds of the same dimension. We connected them by two tubes whose radii are both ε and lengths l_1 and l_2 , respectively. We denote it by (M, g_{ε}) with a little smoothing at the connected parts. We express Spec (M, g_{ε}) as

$$\operatorname{Spec}(M, g_{\varepsilon}) = \{\lambda_0(\varepsilon) < \lambda_1(\varepsilon) \leq \lambda_2(\varepsilon) \leq \cdots\}.$$

Let

$$\{\mu_0 \le \mu_1 \le \mu_2 \le \mu_3 \le \cdots\}$$

be the union of $\operatorname{Spec}(M_1, g_1)$, $\operatorname{Spec}(M_2, g_2)$, $\operatorname{Spec}_D([0, l_1], \operatorname{can})$ and $\operatorname{Spec}_D([0, l_2], \operatorname{can})$ (the D of the Spec_D means the Dirichlet condition) counting with multiplicity.

Then for any n we have

$$\lim_{\varepsilon\to 0}\,\lambda_n(\varepsilon)=\mu_n.$$

Especially $\lambda_0(\varepsilon) = 0$, $\mu_0 = \mu_1 = 0$ and $\mu_2 > 0$.

REMARK. In [2] they treat *p*-forms on (M,g). It is necessary for them to assume that dim $M \ge 3$. But for functions the arguments there hold good in dim M = 2. As for it see also [1].

We apply the above proposition to $(\tilde{M}, \tilde{g}_{\varepsilon})$. Since $\lim_{\varepsilon \to 0} \lambda(\varepsilon) = 0$, $\nu(\varepsilon)$ converges to some positive value which is bigger than or equal to μ_2 . The positive value depends on the equipped metrics on $\#^{n-1}RP^2$, RP^2 and the lengths of the tubes l_1 , l_2 . By the continuity of the eigenvalue in the parameter ε , there exists $\varepsilon_0 > 0$ such that

$$\lambda(\varepsilon) < v(\varepsilon)$$

for $0 < \varepsilon < \varepsilon_0$.

Hence for all the metrics g_{ε} on M such that $0 < \varepsilon < \varepsilon_0$, we have

$$\lambda_1(M, g_{\varepsilon}) = \lambda(\varepsilon) = \lambda_1(\tilde{M}, \tilde{g}_{\varepsilon}).$$

4. Example

Here we give an example which clarifies Theorem B. Let K(a, b) be the flat Klein bottle as the quotient space of $(\mathbb{R}^2, \operatorname{can})$ identifying by $(x, y) \mapsto (x, y+b)$ and $(x, y) \mapsto (x + a/2, -y)$. The double cover of K(a, b) is the flat torus T(a, b)as the quotient space of $(\mathbb{R}^2, \operatorname{can})$ identifying by $(x, y) \mapsto (x + a, y)$ and $(x, y) \mapsto (x, y+b)$.

The spectra of K(a,b) and T(a,b) are given in [4] as follows:

Spec
$$(K(a,b)) = \left\{ 4\pi^2 \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right) : m, n \in \mathbb{Z} \text{ and } n \neq 0 \text{ for } m : \text{odd} \right\},$$

Spec $(T(a,b)) = \left\{ 4\pi^2 \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right) : m, n \in \mathbb{Z} \right\}.$

Then we have

$$\lambda_1(K(a,b)) = \begin{cases} 4\frac{\pi^2}{b^2} & \text{for } \frac{a}{2} \le b, \\ 16\frac{\pi^2}{a^2} & \text{for } b \le \frac{a}{2}, \end{cases}$$
$$\lambda_1(T(a,b)) = \begin{cases} 4\frac{\pi^2}{b^2} & \text{for } a \le b, \\ 4\frac{\pi^2}{a^2} & \text{for } b \le a. \end{cases}$$

By comparing $\lambda_1(K(a,b))$ with $\lambda_1(T(a,b))$, we have

$$\lambda_1(K(a,b)) = \lambda_1(T(a,b))$$

for $a \leq b$.

References

- C. Anné, Spectre du Laplacien et écrasement d'anses, Ann. Sci. Éc. Norm. Sup. 20 (1987), 271– 280.
- [2] C. Anné et B. Colbois, Spectre du Laplacien agissant sur les *p*-formes différentielle et écrasement d'anses, Math. Ann. 303 (1995), 545-573.
- [3] P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Birkhauser, 1992.
- [4] M. Berger P. Gauduchon et E. Mazet, Le Spectre d'une Variété Riemannienne, Lec. Notes in Math. 194 (1974), Springer.
- [5] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Probrems in Analysis: A Symposium in Honor of Salomon Bochoner, Princeton, 1970, pp. 195–199.
- [6] S. Y. Cheng, Eigenfunctions and eigenvalues of Laplacian, Proc. Symp. in Pure Math. 27 (1975), 185-193.
- [7] —, Eigenfunctions and nodal sets, Comm. Math. Helv. 51 (1976), 43-55.
- [8] M. J. Greenberg and J. P. Harper, Algebraic Topology, A First Course, Benjamin, 1981.
- [9] H. Seifert and W. Threlfall, Lehrbuch der Topologie, Teubner, 1934.

Department of Mathematics,

Tokyo Institute of Technology

2-12-1 Oh-okayama, Meguro-ku,

Tokyo 152-8551, Japan

e-mail address: yoshiji@math.titech.ac.jp

746