TSUKUBA J. MATH.
Vol. 22 No. 3 (1998), 741-746

ON THE FIRST EIGENVALUE OF NON-ORIENTABLE
CLOSED SURFACES

By

Katsuhiro YosHDI

0. Introduction

Let (M,g) be a 2-dimensional non-orientable closed Riemannian manifold.
We study the spectrum of the Laplacian for functions on (M, g). We express it by

Spec(M,g) ={0=A<h <h <A<}

Let (M, §) be the orientable Riemannian double cover of (M, g). Our interest
is what properties are preserved between (M,g) and (M,§). The positive first
eigenvalue A;(M,g) has many geometric informations. We have interests in the
influences for the positive first eigenvalue by taking the Riemannian double cover.
Generally we have A;(M,g) > A;(M,§). So we study the difference between
1(M,g) and 1(M,§). Especially we find the cases that A;(M,g) = 1;(M,§)
holds good.

It is well-known (cf. [9]) that 2-dimensional closed manifolds are classified as
follows.

The Classification Theorem of Closed Surfaces. A closed surface is homeo-
morphic to one of the following spaces.

S2,T? #"T? (n > 2) : orientable
RP? #"RP? (n > 2) : non-orientable

where #"M means the connected sum of n-copies of a manifold M. Moreover the
double cover of #"RP* (n>2) is homeomorphic to #" T2

In this paper we show the following results.

THEOREM A. If M is homeomorphic to RP?, then
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A(M,g) > (M, §)

for every metric g on M.

THEOREM B. If M is homeomorphic to #"RP? (n > 2), there exists a metric
g on M such that

A(M,g) = 1 (M,§).

The author would like to thank J. Takahashi and the referee for useful
comments.

1. Preliminaries

Let us consider the Riemannian double covering (M, §) of (M,g). We define
the isometry J : (M, §) — (M, §) as follows. For each point p of (M,g), let two
points p,, p, of (M,§) be the fiber of a point p in (M,g). Then we define J by
exchanging two points p,, p,. Let E(4), E*(4) and E~(A) be the spaces of C®
functions on M such that

E(A) = the eigenspace associated with the eigenvalue 4,
ET(A)={feEQ)|foJ=/f},
E-A)={fe€eEQX)|foJ=~-f}.

ProrosiTioN (P. Buser [3], p. 306). E(A) is decomposed orthogonally as
Et(A) @ E~(4). ‘

Since all eigenfunctions on (M,g) are lifted to ones on (M,§) canonically,
the eigenvalues on (M, g) are in Spec(M, §). The eigenfunctions on (M, §) which
come from ones on (M, g) are invariant by J. Conversely every f € E*(1) is
reduced to the eigenfunction on (M,g). The eigenvalues on (M,g) coincide with
the ones on (M,§) satisfying E*(A) # {0}.

The eigenfunctions on (A, §) which do not come from ones on (M,g) have
non-zero components of E~(1) under the above decomposition. Thus we con-
centrate our attension on the non-zero smallest A such as E~(1) # {0}. We
denote it by v. Our purpose is to compare 1;(M,g) with v.

2. Proof of Theorem A

In this section the main tool is the nodal domain theorem (cf. [6] and [7]).
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ProrosITION (S. Y. Cheng [6], p. 186). Let g be any Riemannian metric on
S2. Then the nodal line of a first eigenfunction is a smooth simple closed curve.

We assume that (M,g) is homeomorphic to RP?. Then its Riemannian
double cover (M, §) is homeomorphic to S2. If the first eigenfunction ¢ on (M, g)
lifts to the first eigenfunction @ on (M, §), the nodal set of ¢ is a simple closed
curve and the number of the nodal domains is two. We denote one of them by D.
Since 71 (M) = {e}, the nodal set 4D is contractible. Then D is homeomorphic to
an open 2-disk. Its boundary oD is regularly embedded. Then its closure D is
homeomorphic to a closed 2-disk. Without loss of generality we take D the
positive nodal domain. Since ¢ is invariant by the isometry J, we have J(D) = D.

We apply the Brouwer’s fixed poin theorem (cf. [8] p. 19) to J : D — D. Then
J has a fixed point. But by the definition of J, it does not have any fixed points.
It is a contradiction.

3. Proof of Theorem B
The first eigenvalue A; is characterized by the Rayleigh quotient, that is,

Jog V)P do

o fr v
where f runs over all non-vanishing functions orthogonal to constant functions in
L*(M,g).

Our method to prove B is an analogue of Cheeger’s construction
in [5] of the deformation of Riemannian metrics g. on S? such that 1;(S2,g.)
converges to 0 as ¢ — 0.

Let us recall the construction.

(M, g) = inf

Step 1. Connect two canonical spheres, (S2,g) # (52, g), by the tube whose
radius is ¢ and length is /. We express it by (S, g.).

Step 2. We consider the test functions f, which is equal to ¢ on the right-
hand bulb, —c on the left-hand bulb and change linearly from ¢ to —c across
tube. We choose ¢ so [ f7dv = .

Step 3. By the Rayleigh quotient, 4,(S,g.) converges to 0 as ¢ — 0.

Now we proceed this method to #”RP? for n > 2. We consider #"RP? as
(#""'RP?)#RP?. We take a suitable metric on #”"RP? in such a way that
Vol(#" 'RP?) _
Vol(RP?)

n—1.
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(M,g,)=(#""*RP?#RP* (M.30

We connect #"'RP? and RP? by the tube whose radius is ¢ and length is /.
We denote it by (M,g.). We consider the test functions f, which are equal to 1
on #" 'RP? and —(n—1) on RP?, and decrease from 1 to —(n — 1) across the
tube. We may take f, such that they are orthogonal to constant functions in
L*(M,g,) and |Vf,| <d where d is a constant depending only on / and n. It
follows from the Rayleigh quotient that

lim 4,(M,g.) = 0.

e—0

Let (M,§,) be the double cover of (M,g.). Then A;(M,g.) belongs to in
Spec(M, §,). We denote it by A(e) in brief. In Sect.l, we treat E~(4). We denote
by v(e) the non-zero first E~(1)-type eigenvalue on (M,§,). We only have to
compare A(e) with v(e).

ProposITION (C. Anné and B. Colbois [2]). Let (M),g1) and (M,,g>) be two
connected orientable Riemannian manifolds of the same dimension. We connected
them by two tubes whose radii are both ¢ and lengths l; and I, respectively. We
denote it by (M,g.) with a little smoothing at the connected parts. We express
Spec(M, g.) as

Spec(M, ge) = {4o(e) < A1(e) < Aa(e) < - -}
Let
{0 St Shsis -}
be the union of Spec(M\,g1), Spec(Ma,g2), Specp([0,11],can) and Spec([0, ],

can) (the D of the Specp, means the Dirichlet condition) counting with multiplicity.
Then for any n we have

lim A,(¢) = u,.
e—0

Especially 29(¢) =0, puy =4y =0 and p, > 0.
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REMARK. In they treat p-forms on (M,g). It is necessary for them to
assume that dim M > 3. But for functions the arguments there hold good in

dim M = 2. As for it see also [I]

We apply the above proposition to (M,§,). Since lim, .oA(e) =0, v(e)
converges to some positive value which is bigger than or equal to u,. The positive
value depends on the equipped metrics on # " 'RP? RP? and the lengths of the
tubes /;, /. By the continuity of the eigenvalue in the parameter ¢, there exists
& > 0 such that

Ale) < v(e)

for 0 < e < ¢g.
Hence for all the metrics g, on M such that 0 < & < &, we have

AI(M, ge) = /1(8) = /11 (M, és)

4. Example

Here we give an example which clarifies Theorem Bl Let K(a,b) be the flat
Klein bottle as the quotient space of (R? can) identifying by (x, y) — (x, y + b)
and (x, y) — (x+a/2,—y). The double cover of K(a,b) is the flat torus T'(a,b)
as the quotient space of (R?, can) identifying by (x, y) — (x +a, y) and (x, y) —
(x,y+b).

The spectra of K(a,b) and T(a,b) are given in [4] as follows:

m?  n?

Spec(K(a, b)) = {4752 (2—2— +b_2) :m,ne Z and n # 0 for m : odd},

2 2
Spec(T'(a, b)) = {4n2 (%2_ n %) m,ne Z}.

Then we have

2
4% forg <b,
il(K(a,b)) = 7'52 p
16; for b < >

2
4%5 fora < b,

n(T@s) =4 2
4— for b < a.

a
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By comparing A;(K(a,b)) with 1;(T(a,b)), we have
A1(K(a,b)) = 41(T(a,b))

for a < b.
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