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TOTALLY COMPLEX SUBMANIFOLDS OF THE CAYLEY
PROJECTIVE PLANE

By

Liu XIMIN

Abstract. Let K be the sectional curvature of a compact sub-
manifold M of the Cayley projective plane CaP?. In this paper, we
prove that the compact totally complex submanifold M of complex
dimension 2 in CaP? satisfying K > (1/8) is totally geodesic and
M = CP2. |

1. Introduction

Let M be an n-dimensional compact Kaehler submanifold of complex
projective space CP™(1). Denote by K the sectional curvature of M. In [6], Ros
and Verstraelen showed that if K > (1/8), then M is totally geodesic. The
analogous result in the case of totally complex submanifolds of quaternion
projective space HP™(1) was obtained by Xia [7]. In the present paper, we prove
the following same type result for totally complex submanifolds of the Cayley
projective plane CaP?.

THEOREM. Let M be a compact totally complex submanifold of complex
dimension 2, immersed in the Cayley projective plane CaP?. If the sectional
curvature K of M satisfying K > (1/8), then M is totally geodesic in CaP* and
M? = CP%.

2. Cayley projective plane

In this section, we review simply the fundamental results about the Cayley
projective plane, for details see [4].
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Let us denote by Ca the Cayley number, it possesses a multiplicative identity
1 and a positive definite bilinear form {-,-> with norm ||a|| = {a,a), satisfying
lab|| = ||a|| ||5], for a,b € Ca. Every element a € Ca can be expressed in the form
a =apl + a; for ap € R and {a;,1) = 0. The conjugation map a — a* = apl — a;
is an anti-automorphism (ab)* = b*a*.

A canonical basis for Ca is any basis of the form {1,ep,ei1,...,es} satis-
fying: (i) <e;, 1> =0; (ii) <e;, ;> = {0 fori # j,and 1 otherwise}; (iii) €} = —1;
eiei+ee; =0 (i #Jj); (iv) ejeir1 = eiq3 for i€ Z7.

Let V be a vector space of real dimension 16 with automorphism group
Spin(9). the splitting

V=Ca® Ca

together with the above canonical basis on each summand, endows ¥ with what
we may refer to as a Cayley structure. We know that the Cayley projective plane
CaP? is the 16-dimensional Riemannian symmetric space whose tangent space
admits the Cayley structure pointwise. In the following, let {ly,...,Is} be the
Cayley structure on CaP?.

The curvature tensor R of CaP? is given in [2] as follows

(2.1)  R((a,b),(c,d))(e, f) = }1((4(0, e)a—4<a,e)c + (ed)b* — (eb)d*

+ (ad — cb) f*), (4Ld, b — 4(b, fHd + a*(cf)
— c*(af) — e*(ad — cb))).

On Ca @® Ca we have the positive definite bilinear form (, ) given by

(22) (a,b),(¢c,d)> = <a,c) +<b,d>.

3. Totally complex submanifolds

Let V = T,CaP? be a real vector subspace, we say that V is a totally
complex subspace if there exists an 7 such that there exists a basis with I = I, and
(1) IV < V, and (ii) IV is perpendicular to V for 1 < k < 6. Clearly, if V is a
maximal subspace of this kind then dimzV = 4.

Let M be a compact Riemannian manifold isometrically immersed in CaP?
by j: M — CaP?. Denote by h and A the second fundamental form of j and the
Weingarten endomorphism respectively. Then we have

(3.1) Ch(X,Y),N>=<(X,An(Y)) X,YeTM,NeTM"*



Totally complex submanifolds of the Cayley 115

We take V, V and V* to be the Riemannian connections on CaP?, M and the
normal connection on M respectively. The corresponding curvature tensors are
denoted by R, R, and R' respectively. The first and second covariant derivatives
of h are given by

(3.2) (Vh)(X,Y;Z) =V (h(X,Y)) —h(V,X,Y) — h(X,V.Y)
(33)  (VH(X,Y;Z W) = Vi(Vh)(X, ¥;Z) - (Vh) (VW X, Y; 2)
— (Vh)(X,V,Y;Z) — (VR)(X, Y;V,Z)

X, Y, Z WeTM.
The Codazzi equation takes the following form

(3.4) (Vh) (Xoq1), Xo2); Xo3) = (VR)(X1, X2; X3),

where (i) € S5 the permutation group and the arguments are in the tangent space
of M. Recalling that £ and (Vh) are symmetric, we have the Ricci identity

(3.5 (VX Y;ZW)— (Vh)(X,Y; W; Z)
=—RYZ,Wh(X,Y)+h(R(Z,W)X,Y)+h(X,R(Z, W)Y).

We say that j: M — CaP? is a totally complex immersion if W = j.(TM) is
a totally complex subspace for each point of M. Observe that every totally
complex submanifold of CaP? has a Kaehler structure. We set I =1y, and
consequently we have

(3.6) (@) VxI=0
(b) h(IX,Y)=Ih(X,Y)
(©) A =IAy = —ANI
(d) IR(X,IX)X = R(X,IX)IX

where X, Ye T,M and N € T, M~
Define f(u) = |h(u,u)|*, where ue UM, the unit tangent bundle over M.
Assume f attains its maximum at some vector v e UM, p € M, then ([5]:

(37) Ah(v,v)v = |h(v: U)|20‘

LEMMA 3.1. Let M" be a compact totally complex submanifold in CaP?.
Assume f attains its maximum at ve UM), then
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(3.8)  3lh(v,0)*(1 - 4h(v,v)]") + 26: Ch(v,0), Liv)” + 4|(Vh) (v, 55 0)* < 0.

i=1

PrROOF. Fix v in UM,. For any ue UM, let r,(t) be the geodesic in M
satisfying the initial conditions r,(0) = p, 7, (0) = u. Parallel translating along r,(¢)
gives rise to a vector field V,(¢). Put f,(¢t) = f(V.(?)), then

d2
ar

Using (3.4), (3.5) and (3.6), we have

(3.9) £u(0) = 2{(V°h) (v, v; 45 ), h(v, v) > + 2|(VA) (u, v; v) .

(3.10)  (V'h)(v,v; Iv; Io), h(v,v)> = V') (v, Iv; v; Iv), h(v, 0) >
= —(V*h)(v,v;0; ), (v, v)
+ (R*(Iv, v)h(Iv, v), h(v,v))
— 2{R(1v, v)Iv, A,,(,,,,,)u>.
From the Ricci equation, (2.1), and (3.6), we obtain
(3.11) (R*(Iv, v)h(Iv, v), h(v, v))

= <R(Iva U)h(lva v)a h(U, U)> + <[Ah(lv,v), Ah(v,v)]IU, U)

1 2 2 1 2
= =2 1M OF = 2dhoel” +3 > <h(o,0), Ty

Now, by the Gauss equation and using (2.1), [2.2) and (3.6) we have
(3.12) (R(Iv, 0) I, Ap(o, 00> = —|h(v, 0)* + 2| dpo, )l
Since f attains its maximum at v, we have

2 2
(3.13) %ﬁ(O) + ‘%ﬁv(O) <o.

Combining (3.9)-(3.13) and noticing [(3.7), we get (3.8).

4. Proof of the

We will prove the by showing that under its assumptions the
hypothesis that M is not totally geodesic leads to a contradiction.
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From Lemma it follows that, by the hypothesis 4 # 0.

(4.1) |h(v, v)[* > %

For any ue UM,, let r,(¢) be the geodesic in M determined by the initial
conditions r,(0) = p and 7| (0) = u. Parallel translation of v along r,(¢) yields a
vector field V, (7). Then we know that the function f, defined by f,(¢) = f(V.(?))
attains a maximum at ¢ = 0. This implies that

d? d?
(4.2) 22 J4(0) + -5 fu(0) < 0.

for all u e UM,.
By direct computations we have

@) L) = (@ s, b, 0)> + 2A(TR) )
Using [3.4), (3.5) and (3.6), we have
(4.4) ((VPh) (v, v; Tu; Tu), h(v, v)> = (V) (v, Iv; u; Tu), h(v, v))
= —(V*h) (v, Iv; Iu; u), h(v, v))>
+ (R (Bu, u) Ih(v, v), h(v, v))
— 2(R(Ju, u) I, Ap(y 50
From the Ricci equation, (2.1), [2.2), and (3.6), we obtain
(4.5) (R (Tu,u)Ih(v, v), h(v, v))
= (R(Iu, u)Th(v, ), h(0,0)> + <[An(to,v)> An(o,o)| Tt u)

1 2. 2 18 2
= "§|h(v, )" — 2| 4ng, vyl +§z§=:1<h(v’ v), L)

By the Gauss equation, we get
(4'6) <R(Iu7 u)Iv, Ah(v,v)v> = _|h(va v)|2<R(u’ Iu)Iva v).
From (4.2)-(4.6), we obtain

6
(47) 2|h(va v)|2<R(u, Iu)Iv, U> - % |h(U, U)|2 - 2|Ah(v,v)u|2 + Z <h(v, U), Iiu>2 <0.

i=1
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Since n = 2, we can always choose a unit eigenvector u of Ap,p) such that
u,v) = {u,Iv) =0, using the equation of Gauss which implies that

1
(4.8) R(u, U)U = Zu + Ah(v,,,)u — Ah(u,u)v
1
(4.9) R(u,Iv)Iv = 24~ Ao, o)t — Ap(uu)v
we have

1
(4.10) App,p)ut = %(R(u, v)v — R(u, Iv)Iv) = 3 (K(u,v) — K(u,Iv))u
where K(r,s) is the sectional curvature of M at p for the plane spanned by r,
s€ TyM. The Bianchi identity shows that
(4.11) (R(u, Iu)Iv,v) = K(u,v) + K(u, Iv)
From (4.7), (4.10) and (4.11) we obtain

(4.12) 2|h(v, )P (K (u,v) + K(u, Iv)) — % |h(v, v)|* — % (K(u,v)* + K(u, Iv)?

6
— 2K (u,v)K (u, Iv)) + > _ <h(v,v), Tu)* < 0.

i=1

or equivalently,

(4.13) aK(u,v) + bK(u, Iv) — % |h(v, v))* + g <h(v,v), Tud? < 0.
where

(4.14) a = 2|h(v,v)|* — %K(u, v) + %K(u, Iv)

(4.15) b = 2/h(v,v) — %K(u, W)+ %K(u, v)

Now, we prove that a,b > 0. From the equation of Gauss it follows that

N —

(4.16) K(u,v) + K(u, Iv) = % —2|h(v,v)|* <

By and [4.14), we have
(4.17) 1 — K(u,v) + K(u,Iv) < 2a
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From and (4.17), we know
1
(4.18) ~ 1 + 2K (u, v) s2a+§

Which by the assumption K > (1/8) implies that a > 0. In the same way it
follows that also b > 0. Since a and b are strictly positive and K > (1/8), by
we get the strictly inequality

(4.19) %(a +b) - % k(o o) + 3 <h(v, ), Tuy? < 0

6
i=1

But from (4.14) and (4.15) it follows that
(4.20) a+b=4lh(v,v)

Which combines with [(4.19) yields the desired contradiction. So M is totally
geodesic, by the Theorem 2.2 in [4], we known that M = CP2.
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