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TOTALLY COMPLEX SUBMANIFOLDS OF THE CAYLEY
PROJECTIVE PLANE

By

Liu XIMIN

Abstract. Let $K$ be the sectional curvature of a compact sub-
manifold $M$ of the Cayley projective plane $CaP^{2}$ . In this paper, we
prove that the compact totally complex submanifold $M$ of complex
dimension 2 in $CaP^{2}$ satisfying $K>(1/8)$ is totally geodesic and
$M=CP^{2}$ .

1. Introduction

Let $M$ be an n-dimensional compact Kaehler submanifold of complex
projective space $CP^{n}(1)$ . Denote by $K$ the sectional curvature of $M$. In [6], Ros
and Verstraelen showed that if $K>(1/8)$ , then $M$ is totally geodesic. The
analogous result in the case of totally complex submanifolds of quatemion
projective space $HP^{m}(1)$ was obtained by Xia [7]. In the present paper, we prove
the following same type result for totally complex submanifolds of the Cayley
projective plane $CaP^{2}$ .

THEOREM. Let $M$ be a compact totally complex submanifold of complex
dimension 2, immersed in the Cayley projective plane $CaP^{2}$ . If the sectional
curvature $K$ of $M$ satisfying $K>(1/8)$ , then $M$ is totally geodesic in $CaP^{2}$ and
$M^{2}=CP^{2}$ .

2. Cayley projective plane

In this section, we review simply the fundamental results about the Cayley
projective plane, for details see [4].
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Let us denote by Ca the Cayley number, it possesses a multiplicative identity
1 and a positive definite bilinear form $\langle\cdot, \cdot\rangle$ with norm $\Vert a\Vert=\langle a,a\rangle$ , satisfying
$\Vert$ ab $\Vert=\Vert a\Vert\Vert b\Vert$ , for $a,$ $b\in Ca$ . Every element $a\in Ca$ can be expressed in the form
$a=a_{0}1+a_{1}$ for $a_{0}\in R$ and $\langle a_{1},1\rangle=0$ . The conjugation map $a\rightarrow a^{*}=a_{0}1-a_{1}$

is an anti-automorphism (ab)* $=b^{*}a^{*}$ .
A canonical basis for $Ca$ is any basis of the form $\{1, e_{0}, e_{1}, \ldots, e_{6}\}$ satis-

fying: (i) $\langle e_{i}, 1\rangle=0$ ; (ii) $\langle e_{j}, e_{j}\rangle=$ { $0$ for $i\neq j$ , and 1 otherwise}; (iii) $e_{i}^{2}=-1$ ;
$e_{i}e_{j}+e_{j}e_{i}=0(i\neq j)$ ; (iv) $e_{i}e_{i+1}=e_{i+3}$ for $j\in Z_{7}$ .

Let $V$ be a vector space of real dimension 16 with automorphism group
Spin(9). the splitting

$V=Ca\oplus Ca$

together with the above canonical basis on each summand, endows $V$ with what
we may refer to as a Cayley stmcture. We know that the Cayley projective plane
$CaP^{2}$ is the 16-dimensional Riemannian symmetric space whose tangent space
admits the Cayley stmcture pointwise. In the following, let $\{I_{0}, \ldots, I_{6}\}$ be the
Cayley structure on $CaP^{2}$ .

The curvature tensor $\overline{R}$ of $CaP^{2}$ is given in [2] as follows

(2.1) $\overline{R}((a, b),$ $(c, d))(e, f)=\frac{1}{4}((4\langle c, e\rangle a-4\langle a, e\rangle c+(ed)b^{*}-(eb)d^{*}$

$+(ad-cb)f^{*}),$ $(4\langle d,f\rangle b-4\langle b,f\rangle d+a^{*}(cf)$

$-c^{*}(af)-e^{*}(ad-cb)))$ .

On $Ca\oplus Ca$ we have the positive definite bilinear form $\langle, \rangle$ given by

(2.2) $\langle(a, b), (c, d)\rangle=\langle a, c\rangle+\langle b, d\rangle$ .

3. Totally complex submanifolds

Let $V\subset T_{X}CaP^{2}$ be a real vector subspace, we say that $V$ is a totally
complex subspace if there exists an $I$ such that there exists a basis with $I=I_{0}$ and
(i) $I_{0}V\subset V$, and (ii) $I_{k}V$ is perpendicular to $V$ for $1\leq k\leq 6$ . Clearly, if $V$ is a
maximal subspace of this kind then $\dim_{R}V=4$ .

Let $M$ be a compact Riemannian manifold isometrically immersed in $CaP^{2}$

by $j:M\rightarrow CaP^{2}$ . Denote by $h$ and $A$ the second fundamental form of $j$ and the
Weingarten endomorphism respectively. Then we have

(3.1) $\langle h(X, Y), N\rangle=\langle X, A_{N}(Y)\rangle$ $X,$ $Y\in TM,$ $N\in TM^{\perp}$
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We take $\overline{\nabla},$ $\nabla$ and $\nabla^{\perp}$ to be the Riemannian connections on $CaP^{2},$ $M$ and the
normal connection on $M$ respectively. The corresponding curvature tensors are
denoted by $\overline{R},$ $R$ , and $R^{\perp}$ respectively. The first and second covariant derivatives
of $h$ are given by

(3.2) $(\overline{\nabla}h)(X, Y;Z)=\nabla_{Z}^{\perp}(h(X, Y))-h(V_{z}X, Y)-h(X, \nabla_{z}Y)$

(3.3) $(\overline{\nabla}^{2}h)(X, Y;Z;W)=\nabla_{w}^{\perp}(\overline{\nabla}h)(X, Y;Z)-(\overline{\nabla}h)(\nabla_{w}X, Y;Z)$

$-(\overline{\nabla}h)(X, \nabla_{w}Y;Z)-(\overline{\nabla}h)(X, Y;\nabla_{w}Z)$

$X,$ $Y,$ $Z,$ $W\in TM$ .
The Codazzi equation takes the following form

(3.4) $(\overline{\nabla}h)(X_{\tau(1)},$ $X_{\tau(2)}$ ; $X_{\tau(3)}=(\overline{\nabla}h)(X_{1}, X_{2};X_{3})$ ,

where $\tau(i)\in S_{3}$ the permutation group and the arguments are in the tangent space
of $M$. Recalling that $h$ and $(\overline{\nabla}h)$ are symmetric, we have the Ricci identity

(3.5) $(\overline{\nabla}^{2}h)(X, Y;Z;W)-(\overline{\nabla}^{2}h)(X, Y;W;Z)$

$=-R^{\perp}(Z, W)h(X, Y)+h(R(Z, W)X,$ $Y$) $+h(X, R(Z, W)Y)$ .

We say that $j:M\rightarrow CaP^{2}$ is a totally complex immersion if $W=j_{*}(TM)$ is
a totally complex subspace for each point of $M$. Observe that every totally
complex submanifold of $CaP^{2}$ has a Kaehler structure. We set $I=I_{0}$ , and
consequently we have

(3.6) (a) $\overline{\nabla}_{X}I=0$

(b) $h(IX, Y)=Ih(X, Y)$

(c) $A_{IN}=IA_{N}=-A_{N}I$

(d) $IR(X,IX)X=R(X, IX)IX$

where $X,$ $Y\in T_{x}M$ and $N\in T_{x}M^{\perp}$ .
Define $f(u)=|h(u, u)|^{2}$ , where $u\in UM$ , the unit tangent bundle over $M$.

Assume $f$ attains its maximum at some vector $v\in UM_{p},$ $p\in M$ , then ([5]):

(3.7) $A_{h(v,v)}v=|h(v, v)|^{2}v$ .

LEMMA 3.1. Let $M^{n}$ be a compact totally complex submamfold in $CaP^{2}$ .
Assume $f$ attains its maximum at $v\in UM_{p}$ , then
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(3.8) $3|h(v, v)|^{2}(1-4|h(v, v)|^{2})+\sum_{i=1}^{6}\langle h(v, v), I_{i}v\rangle^{2}+4|(\overline{\nabla}h)(v, v;v)|^{2}\leq 0$ .

PROOF. Fix $v$ in $UM_{p}$ . For any $u\in UM_{p}$ , let $r_{u}(t)$ be the geodesic in $M$

satisfying the initial conditions $r_{u}(0)=p,$ $\sqrt u(0)=u$ . Parallel translating along $r_{u}(t)$

gives rise to a vector field $V_{u}(t)$ . Put $f_{u}(t)=f(V_{u}(t))$ , then

(3.9) $\frac{d^{2}}{dt^{2}}f_{u}(0)=2\langle(\overline{\nabla}^{2}h)(v, v;u;u),h(v, v)\rangle+2|(\overline{\nabla}h)(u, v;v)|^{2}$ .

Using (3.4), (3.5) and (3.6), we have

(3.10) $\langle(\overline{\nabla}^{2}h)(v, v;Iv;Iv),h(v, v)\rangle=\langle\overline{\nabla}^{2}h)(v, Iv;v;Iv), h(v, v)\rangle$

$=-\langle(\overline{\nabla}^{2}h)(v, v;v;v),h(v, v)\rangle$

$+\langle R^{\perp}(Iv, v)h(Iv, v),h(v, v)\rangle$

$-2\langle R(Iv, v)Iv, A_{h(v,v)}v\rangle$ .

From the Ricci equation, (2.1), (2.2) and (3.6), we obtain

(3. 11) $\langle R^{\perp}(Iv, v)h(Iv, v),h(v, v)\rangle$

$=\langle\overline{R}(Iv, v)h(Iv, v), h(v, v)\rangle+\langle[A_{h(Iv,v)}, A_{h(v,v)}]Iv, v\rangle$

$=-\frac{1}{2}|h(v, v)|^{2}-2|A_{h(v,v)}v|^{2}+\frac{1}{2}\sum_{i^{---1}}^{6}\langle h(v, v),I_{i}v\rangle^{2}$

Now, by the Gauss equation and using (2.1), (2.2) and (3.6) we have

(3.12) $\langle R(Iv, v)Iv,A_{h(v,v)}v\rangle=-|h(v, v)|^{2}+2|A_{h(v,v)}v|^{2}$ .

Since $f$ attains its maximum at $v$ , we have

(3.13) $\frac{d^{2}}{dt^{2}}f_{v}(0)+\frac{d^{2}}{dt^{2}}f_{Iv}(0)\leq 0$ .

Combining $(3.9)-(3.13)$ and noticing (3.7), we get (3.8).

4. Proof of the Theorem

We will prove the Theorem by showing that under its assumptions the
hypothesis that $M$ is not totally geodesic leads to a contradiction.



Totally complex submanifolds of the Cayley 117

From Lemma (3.1) it follows that, by the hypothesis $h\neq 0$ .

(4.1) $|h(v, v)|^{2}\geq\frac{1}{4}$

For any $u\in UM_{p}$ , let $r_{u}(t)$ be the geodesic in $M$ determined by the initial
conditions $r_{u}(0)=p$ and $\sqrt u(0)=u$ . Parallel translation of $v$ along $r_{u}(t)$ yields a
vector field $V_{u}(t)$ . Then we know that the function $f_{u}$ defined by $f_{u}(t)=f(V_{u}(t))$

attains a maximum at $t=0$ . This implies that

(4.2) $\frac{d^{2}}{dt^{2}}f_{u}(0)+\frac{d^{2}}{dt^{2}}f_{Iu}(0)\leq 0$ .

for all $u\in UM_{p}$ .
By direct computations we have

(4.3) $\frac{d^{2}}{dt^{2}}f_{u}(0)=2\langle(\overline{\nabla}^{2}h)(v, v;u;u), h(v, v)\rangle+2|(\overline{\nabla}h)(u, v;v)|^{2}$

Using (3.4), (3.5) and (3.6), we have

(4.4) $\langle(\overline{\nabla}^{2}h)(v, v;Iu;Iu),h(v, v)\rangle=\langle(\overline{\nabla}^{2}h)(v,Iv;u;Iu),h(v, v)\rangle$

$=-\langle(\overline{\nabla}^{2}h)(v, Iv;Iu;u), h(v, v)\rangle$

$+\langle R^{\perp}(Iu, u)Ih(v, v),h(v, v)\rangle$

$-2\langle R(Iu, u)Iv, A_{h(v,v)}v\rangle$ .

From the Ricci equation, (2.1), (2.2), and (3.6), we obtain

(4.5) $\langle R^{\perp}(Iu, u)Ih(v, v),h(v, v)\rangle$

$=\langle\overline{R}(Iu, u)Ih(v, v),h(v, v)\rangle+\langle[A_{h(Iv,v)},A_{h(v,v)}]Iu, u\rangle$

$=-\frac{1}{2}|h(v, v)|^{2}-2|A_{h(v,v)}u|^{2}+\frac{1}{2}\sum_{i=1}^{6}\langle h(v, v),I_{i}u\rangle^{2}$

By the Gauss equation, we get

(4.6) $\langle R(Iu, u)Iv,A_{h(v,v)}v\rangle=-|h(v, v)|^{2}\langle R(u,Iu)Iv, v\rangle$ .

From $(4.2)-(4.6)$ , we obtain

(4.7) $2|h(v, v)|^{2}\langle R(u, Iu)Iv, v\rangle-\frac{1}{2}|h(v, v)|^{2}-2|A_{h(v,v)}u|^{2}+\sum_{i=1}^{6}\langle h(v, v),I_{i}u\rangle^{2}\leq 0$ .
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Since $n=2$ , we can always choose a unit eigenvector $u$ of $A_{h(v,v)}$ such that
$\langle u, v\rangle=\langle u, Iv\rangle=0$ , using the equation of Gauss which implies that

(4.8) $R(u, v)v=\frac{1}{4}u+A_{h(v,v)}u-A_{h(u,u)}v$

(4.9) $R(u, Iv)Iv=\frac{1}{4}u-A_{h(v,v)}u-A_{h(u,u)}v$

we have

(4.10) $A_{h(v,v)}u=\frac{1}{2}(R(u, v)v-R(u, Iv)Iv)=\frac{1}{2}(K(u, v)-K(u,Iv))u$

where $K(r,s)$ is the sectional curvature of $M$ at $p$ for the plane spanned by $r$,
$s\in T_{p}M$ . The Bianchi identity shows that

(4. 11) $\langle R(u,Iu)Iv, v\rangle=K(u, v)+K(u, Iv)$

From (4.7), (4.10) and (4.11) we obtain

(4.12) $2|h(v, v)|^{2}(K(u, v)+K(u, Iv))-\frac{1}{2}|h(v, v)|^{2}-\frac{1}{2}(K(u, v)^{2}+K(u, Iv)^{2}$

$-2K(u, v)K(u, Iv))+\sum_{i=1}^{6}\langle h(v, v),I_{i}u\rangle^{2}\leq 0$ .

or equivalently,

(4.13) $aK(u, v)+bK(u, Iv)-\frac{1}{2}|h(v, v)|^{2}+\sum_{i=1}^{6}\langle h(v, v), I_{l}u\rangle^{2}\leq 0$ .

where

(4.14) $a=2|h(v, v)|^{2}-\frac{1}{2}K(u, v)+\frac{1}{2}K(u,Iv)$

(4.15) $b=2|h(v, v)|^{2}-\frac{1}{2}K(u,Iv)+\frac{1}{2}K(u, v)$

Now, we prove that $a,$ $b>0$ . From the equation of Gauss it follows that

(4.16) $K(u, v)+K(u, Iv)=\frac{1}{2}-2|h(v, v)|^{2}\leq\frac{1}{2}$

By (4.1) and (4.14), we have

(4.17) $1-K(u, v)+K(u, Iv)\leq 2a$
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From (4.16) and (4.17), we know

(4.18) $1+2K(u, Iv)\leq 2a+\frac{1}{2}$

Which by the assumption $K>(1/8)$ implies that $a>0$ . In the same way it
follows that also $b>0$ . Since $a$ and $b$ are strictly positive and $K>(1/8)$ , by
(4.13) we get the strictly inequality

(4.19) $\frac{1}{8}(a+b)-\frac{1}{2}|h(v, v)|^{2}+\sum_{i=1}^{6}\langle h(v, v),I_{i}u\rangle^{2}<0$

But from (4.14) and (4.15) it follows that

(4.20) $a+b=4|h(v, v)|^{2}$

Which combines with (4.19) yields the desired contradiction. So $M$ is totally
geodesic, by the Theorem 2.2 in [4], we known that $M=CP^{2}$ .
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