EINSTEIN-WEYL STRUCTURES ON ALMOST CONTACT METRIC MANIFOLDS

Dedicated to Professor Shûkichi Tanno on his sixtieth birthday

By

Fumio Narita

1. Introduction

Pedersen and Swann [7] and Higa [2] studied the existence of an Einstein-Weyl structure on principal circle bundles over Einstein Kaehler manifolds of positive scalar curvature and obtained many examples of Einstein-Weyl spaces. In a Riemannian submersion $\pi: M \to N$ with totally geodesic fibers of dimension one over an Einstein manifold N, we studied the relation between an Einstein-Weyl structure and a Sasakian structure of M (cf. [5]).

On the other hand, in [4], we investigated some geometric structures of a Riemannian submersion $\pi: M \to N$, where M is a CR-submanifold of a locally conformal Kaehler manifold L. Let M be a leaf of the canonical foliation $\mathcal M$ given by the Lee form $\omega=0$ of a locally conformal Kaehler manifold L. Then M admits an almost contact metric structure. We obtained a necessary and sufficient condition for the manifold M to admits a Sasakian structure.

In this paper, we shall study the existence of an Einstein-Weyl structure on an almost contact metric manifold. Let M be a complete and simply connected Sasakian manifold with constant ϕ -sectional curvature k. We show that if $k \ge 1$, then M admits an Einstein-Weyl structure.

Next, we assume that all local Kaehler metrics $g' = e^{-r}g$ of a locally conformal Kaehler manifold L have the same constant nonnegative holomorphic sectional curvature ρ . We show that if the induced almost contact metric structure of a leaf M of the canonical foliation \mathcal{M} of L is Sasakian, then M admits an Einstein-Weyl structure. Finally, we discuss the existence of an Einstein-Weyl structure on a leaf of the canonical foliation of a complete and simply connected generalized Hopf manifold.

2. Preliminaries

Firstly, we give the definition of an Einstein-Weyl space. Let (M,g) be a Riemannian manifold. Let D be a torsion-free affine connection on M. A manifold M is said to have an Einstein-Weyl structure if there exist a 1-form μ and a function Λ on M such that

(1)
$$Dg = \mu \otimes g$$
 and ${}^{D}Ric(X, Y) + {}^{D}Ric(Y, X) = \Lambda g(X, Y)$,

where ${}^D\!Ric$ is the Ricci tensor of D. Since D is not a metric connection, the Ricci tensor is not necessarily symmetric. The Einstein-Weyl equation is conformally invariant. Let ∇ be the Levi-Civita connection of g. We define a vector field E by $g(X,E)=\mu(X)$. Then, since $Dg=\mu\otimes g$, we have

(2)
$$D_X Y = \nabla_X Y - \frac{1}{2}\mu(X)Y - \frac{1}{2}\mu(Y)X + \frac{1}{2}g(X,Y)E.$$

Let DR and R be the curvature tensor of D and ∇ respectively. Then, we have

(3)
$${}^{D}R(X,Y)Z = R(X,Y)Z - \frac{1}{2} \left\{ \left[(\nabla_{X}\mu)Z + \frac{1}{2}\mu(X)\mu(Z) \right] Y - \left[(\nabla_{Y}\mu)Z + \frac{1}{2}\mu(Y)\mu(Z) \right] X + ((\nabla_{X}\mu)Y)Z - ((\nabla_{Y}\mu)X)Z - g(Y,Z) \left(\nabla_{X}E + \frac{1}{2}\mu(X)E \right) + g(X,Z) \left(\nabla_{Y}E + \frac{1}{2}\mu(Y)E \right) \right\} - \frac{1}{4} |\mu|^{2} (g(Y,Z)X - g(X,Z)Y),$$

where X, Y and Z are any vector fields on M.

Next, we give the definition of an almost contact metric manifold. A Riemannian manifold (M,g) is said to be an almost contact metric manifold if there exist a tensor field ϕ of type (1,1), a unit vector field V and a 1-form η such that

(4)
$$\eta(V) = 1, \quad \phi^2 X = -X + \eta(X)V, \\ g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

for any vector fields X, Y on M (cf. [1]).

For an almost contact metric structure (ϕ, V, η, g) on M we put $\Phi(X, Y) = g(X, \phi Y)$. An almost contact metric structure is said to be: Contact metric if $d\eta = \Phi$.

K-contact if $d\eta = \Phi$ and V is a Killing vector field with respect to g.

Sasakian if $d\eta = \Phi$ and $N_{\phi} + 2 d\eta \otimes V = 0$, where $N_{\phi}(X, Y) = [\phi X, \phi Y] - \phi[\phi X, Y] - \phi[X, \phi Y] + \phi^{2}[X, Y]$.

If the Ricci tensor Ric of a contact metric manifold M is of the form

(5)
$$Ric(X, Y) = \beta g(X, Y) + \gamma \eta(X) \eta(Y),$$

 β and γ being constant, then M is called η -Einstein manifold.

Next, let L be an almost Hermitian manifold with metric g, complex structure J and the fundamental 2-form Ω . The manifold L is said to be a locally conformal Kaehler manifold if every $x \in L$ has an open neighborhood U with a differentiable function $r: U \to R$ such that $g'_U = e^{-r}g|_U$ is a Kaehler metric on U. If we can take U = L, the manifold is globally conformal Kaehler. The locally conformal Kaehler manifold L is characterized by

(6)
$$N_J = 0, \quad d\Omega = \omega \wedge \Omega, \quad d\omega = 0,$$

where N_J is the Nijenhuis tensor of J and ω is a globally defined 1-form on L. We call ω the *Lee form*. Since for dim L=2 we have $d\Omega=0$, we may suppose dim $L \ge 4$. Next we define a *Lee vector field B* by

$$(7) g(X,B) = \omega(X).$$

The Weyl connection ${}^{W}\nabla$ is the linear connection defined by

(8)
$${}^{W}\nabla_{X}Y := \nabla_{X}Y - \frac{1}{2}\omega(X)Y - \frac{1}{2}\omega(Y)X + \frac{1}{2}g(X,Y)B,$$

where ∇ is the Levi-Civita connection of g. $^{W}\nabla$ is the Levi-Civita connection of a local Kaehler metric g'. It is shown in [9] that an almost Hermitian manifold L is a locally conformal Kaehler if and only if there is a closed 1-form ω on L such that

$${}^{W}\nabla_{X}J=0.$$

Let L be a locally conformal Kaehler manifold. Let R^L be the curvature tensor field of the connection ∇ and WR the curvature tensor field of the Weyl connection $^W\nabla$. Since $d\omega = 0$, we obtain $(\nabla_X \omega) Y - (\nabla_Y \omega) X = 0$. Thus, we have

$$(10)^{W}R(X,Y)Z = R^{L}(X,Y)Z - \frac{1}{2}\left\{\left[(\nabla_{X}\omega)Z + \frac{1}{2}\omega(X)\omega(Z)\right]Y - \left[(\nabla_{Y}\omega)Z + \frac{1}{2}\omega(Y)\omega(Z)\right]X - g(Y,Z)\left(\nabla_{X}B + \frac{1}{2}\omega(X)B\right) + g(X,Z)\left(\nabla_{Y}B + \frac{1}{2}\omega(Y)B\right)\right\} - \frac{1}{4}|\omega|^{2}(g(Y,Z)X - g(X,Z)Y),$$

where X, Y and Z are any vector fields on L (cf. [11]).

Let \mathcal{M} be the foliation given by $\omega = 0$ of a locally conformal Kaehler manifold (L, J, g). \mathcal{M} is called the *canonical foliation*.

A locally conformal Kaehler manifold (L, J, g) is said to be a generalized Hopf manifold if the Lee form is parallel, that is $\nabla \omega = 0$ ($\omega \neq 0$).

Let M be a submanifold of a Riemannian manifold L. We denote by the same g the Riemannian metric tensor field induced on M from that of L. Let ∇^M denote covariant differentiation of M. Then the Gauss formula for M is written as

(11)
$$\nabla_X Y = \nabla_X^M Y + \sigma(X, Y)$$

for any tangent vector fields X, Y on M where σ denotes the second fundamental form of M in L.

Let R^M be the Riemannian curvature tensor field of M. Then we have the equation of Gauss

(12)
$$R^{L}(W, Z, X, Y) = R^{M}(W, Z, X, Y) + g(\sigma(X, Z), \sigma(Y, W)) - g(\sigma(Y, Z), \sigma(X, W)).$$

3. Einstein-Weyl structures

Let (M, ϕ, V, η, g) be an almost contact metric manifold of dimension 2n + 1. Let ∇^M be the Levi-Civita connection of g and Ric^M be the Ricci tensor of ∇^M . Then we obtain the following result.

THEOREM 1. Let (M, ϕ, V, η, g) be an almost contact metric manifold satisfying $\nabla_X^M V = -\phi(X)$. If $Ric^M(X, Y) = \beta g(X, Y) + \gamma \eta(X) \eta(Y)$, where β and γ are constant, and $\gamma \leq 0$, then M admits an Einstein-Weyl structure.

PROOF. We define 1-form μ by $\mu = f\eta$, where f is a function on M. Let E be the dual vector field of μ . We define the connection D by

(13)
$$D_X Y = \nabla_X^M Y - \frac{1}{2}\mu(X)Y - \frac{1}{2}\mu(Y)X + \frac{1}{2}g(X,Y)E.$$

Then D is a torsion-free connection and $Dg = \mu \otimes g$. Let DRic be the Ricci tensor of D. From (3), we obtain

$${}^{D}Ric(X, Y) = Ric^{M}(X, Y) + n(\nabla_{X}^{M}\mu)Y - \frac{1}{2}(\nabla_{Y}^{M}\mu)X + \frac{1}{4}(2n-1)\mu(X)\mu(Y) + g(X, Y)\left(\frac{1}{2}\operatorname{div}E - \frac{1}{4}(2n-1)|\mu|^{2}\right)(\text{cf. [7]}).$$

Let $V, X_1, \phi X_1, \ldots, X_n, \phi X_n$ be an orthonormal basis of $T_p M$. Since $\nabla_X^M V = -\phi(X)$, for $j=1,\ldots,n$, we get $\nabla_V^M V = 0$ and $g(\nabla_{X_j}^M X_j, V) = -g(\nabla_{X_j}^M V, X_j) = 0$. Thus we have $(\nabla_{X_j}^M \mu) V = X_j(f)$, $(\nabla_V^M \mu)(X_j) = 0$, $(\nabla_V^M \mu) V = V(f)$, $(\nabla_{X_i}^M \mu) X_j = 0$ for all i, j, $(\nabla_{X_i}^M \mu)(\phi X_j) = 0$ for $i \neq j$ and $(\nabla_{X_j}^M \mu)(\phi X_j) + (\nabla_{\phi X_j}^M \mu) X_j = 0$. From these, we have

(15)
$${}^{D}Ric(X_{j}, V) + {}^{D}Ric(V, X_{j}) = \frac{1}{2}(2n-1)X_{j}(f),$$

(16)
$${}^{D}Ric(\phi X_{j}, V) + {}^{D}Ric(V, \phi X_{j}) = \frac{1}{2}(2n-1)\phi X_{j}(f),$$

(17)
$$2 \cdot {}^{D}Ric(V, V) = 2(\beta + \gamma) + \frac{1}{2}(2n - 1)(2V(f) + f^{2}) + \operatorname{div} E - \frac{1}{2}(2n - 1)f^{2},$$

(18)
$$2 \cdot {}^{D}Ric(X_{j}, X_{j}) = 2\beta + \operatorname{div} E - \frac{1}{2}(2n - 1)f^{2},$$

and

(19)
$$2 \cdot {}^{D}Ric(\phi X_{j}, \phi X_{j}) = 2\beta + \operatorname{div} E - \frac{1}{2}(2n-1)f^{2}.$$

We set $f^2 = -(4/(2n-1))\gamma$. Then V(f) = 0, $X_j(f) = \phi X_j(f) = 0$ for j = 1, ..., n and div $E = V \cdot \mu(V) = V(f) = 0$. Thus, by using equations (15)–(19), we obtain

(20)
$${}^{D}Ric(X,Y) + {}^{D}Ric(Y,X) = \Lambda g(X,Y),$$

where X, Y are tangent vectors of M and $\Lambda = 2(\beta + \gamma)$. Therefore M admits an Einstein-Weyl structure.

REMARK 1. K-contact manifold and Sasakian manifold satisfy the condition $\nabla_X^M V = -\phi(X)$ (cf. [1]). Let $\pi: M^{2n+1} \to N^{2n}$ be a Riemannian submersion with totally geodesic fibers of dimension one over an Einstein manifold N^{2n} such that $Ric^N(\tilde{X}, \tilde{Y}) = c\tilde{g}(\tilde{X}, \tilde{Y})$. Moreover, we assume that $(M^{2n+1}, \phi, V, \eta, g)$ is a standard Sasakian manifold. Let $V, X_1, \phi X_1, \ldots, X_n, \phi X_n$ be an orthonormal basis of $T_p M$. Then we get $Ric^M(X_j, X_j) = Ric^M(\phi X_j, \phi X_j) = c - 2$, $Ric^M(V, V) = 2n$, $Ric^M(X_j, V) = Ric^M(\phi X_j, V) = 0$, $Ric^M(X_i, \phi X_j) = 0$ for all i, j and $Ric^M(X_i, X_j) = Ric^M(\phi X_i, \phi X_j) = 0$ for $i \neq j$. (cf. [5]). Therefore M is an η -Einstein manifold such that $Ric^M(X, Y) = (c - 2)g(X, Y) + (2n - c + 2)\eta(X)\eta(Y)$. If the scalar curvature \tilde{s} of N is $\tilde{s} \geq 4n(n+1)$, then $2n - c + 2 = (1/(2n))(4n^2 + 4n - \tilde{s}) \leq 0$. Thus, as a corollary of Theorem 1, we obtain Theorem 2 in [5].

Next, let (M, ϕ, V, η, g) be a Sasakian manifold of constant ϕ -sectional curvature k and dim M = 2n + 1. The curvature of M is

(21)
$$R^{M}(X, Y, Z, W) = \frac{k+3}{4} \{ g(X, Z)g(Y, W) - g(X, W)g(Y, Z) \}$$
$$-\frac{k-1}{4} \{ \eta(X)\eta(Z)g(Y, W) - \eta(Y)\eta(Z)g(X, W)$$
$$+ g(X, Z)\eta(Y)g(V, W) - g(Y, Z)\eta(X)g(V, W)$$
$$+ g(\phi Y, Z)g(\phi X, W) - g(\phi X, Z)g(\phi Y, W)$$
$$+ 2g(X, \phi Y)g(\phi Z, W) \} \quad (cf. [12]).$$

From this equation, we get

(22)
$$Ric^{M}(X, Y) = \beta g(X, Y) + \gamma \eta(X) \eta(Y),$$

where
$$\beta = ((n+1)/2)k + ((3n-1)/2)$$
 and $\gamma = -((n+1)/2)(k-1)$.

Let S^{2n+1} be the unit sphere in C^{n+1} and τ be real number such that $\tau > 0$. Let (J,h) be the flat Kaehler structure on C^{n+1} and U be the unit normal vector field of S^{2n+1} in C^{n+1} . We define tensor field ϕ and 1-form $\bar{\eta}$ on S^{2n+1} by $J(X) = \phi(X) - \bar{\eta}(X)U$. And we put $V = (1/\tau)JU$, $\eta = \tau\bar{\eta}$ and $g = \tau h' + \tau(\tau - 1)\bar{\eta} \otimes \bar{\eta}$, where h' is the induced metric on S^{2n+1} by h. Then (ϕ, V, η, g) is a Sasakian structure with constant ϕ -sectional curvature $k = (4/\tau) - 3$ and we denote S^{2n+1} with this structure by $S^{2n+1}(k)$ (cf. [8]). Thus we have (22) and $\nabla_X^S V = -\phi(X)$, where ∇^S is the Levi-Civita connection of g. From a Theorem of Tanno [8] and Theorem 1, we obtain the following result.

THEOREM 2. Let M be a complete and simply connected Sasakian manifold with constant ϕ -sectional curvature k. If $k \ge 1$, then M admits an Einstein-Weyl structure.

REMARK 2. Let (ϕ, V, η, g) be a Sasakian structure of the sphere $(S^{2n+1}(k), g)$. In the Hopf fibration $\pi: (S^{2n+1}(k), g) \to (P_n(C)(k+3), \tilde{g})$, for constant $a \neq 0$, we define a Riemannian metric g_a by $g_a = \pi^* \tilde{g} + a^2 \eta \otimes \eta$ (cf. [2]). We set $\tilde{V} = (1/a)V$ and $\tilde{\eta} = a\eta$. Then $d\tilde{\eta} = a\tilde{\Phi}$, where $\tilde{\Phi}(X, Y) = g_a(X, \phi Y)$. Let A be the integrability tensor of the Riemannian submersion $\pi_a: (S^{2n+1}(k), g_a) \to (P_n(C)(k+3), \tilde{g})$ with totally geodesic fibers. Let R^S and R^P denote the curvature tensors of $(S^{2n+1}(k), g_a)$ and $(P_n(C)(k+3), \tilde{g})$ respectively. We recall the following curvature identity.

(23)
$$R^{S}(W,Z,X,Y) = R^{P}(\tilde{W},\tilde{Z},\tilde{X},\tilde{Y}) - g_{a}(A_{Y}Z,A_{X}W) + g_{a}(A_{X}Z,A_{Y}W) + 2g_{a}(A_{X}Y,A_{Z}W),$$

where \tilde{X} , \tilde{Y} , \tilde{Z} and \tilde{W} are tangent vector fields on $P_n(C)(k+3)$ and X, Y, Z and W are the horizontal lifts of \tilde{X} , \tilde{Y} , \tilde{Z} and \tilde{W} respectively (cf. [6]). For a function f on $S^{2n+1}(k)$, we put $\mu = f\eta$. We define the connection \bar{D} , by

$$\bar{D}_X Y = \nabla_X^a Y - \frac{1}{2}\mu(X)Y - \frac{1}{2}\mu(Y)X + \frac{1}{2}g_a(X,Y)E,$$

where ∇^a is the Levi-Civita connection of g_a and E is the dual vector field of μ . Let $\bar{D}Ric^a$ be the Ricci tensor of \bar{D} . Since $A_XY=(1/2)\mathscr{V}[X,Y]$ (cf. [6]) and \tilde{V} is a unit vertical vector field, we get $A_XY=-d\tilde{\eta}(X,Y)\tilde{V}=-ag_a(X,\phi Y)\tilde{V}$, where X, Y are horizontal vector fields. Using $|\mu|^2=(f^2/a^2)$, for an orthonormal basis $\tilde{V},X_1,\phi X_1,\ldots,X_n,\phi X_n$ of $T_pS^{2n+1}(k)$, we get following.

$$2 \cdot \bar{P}Ric^{a}(\tilde{V}, \tilde{V}) = 4na^{2} + \frac{1}{2}(2n-1)\left(\frac{2}{a}\tilde{V}(f) + \frac{f^{2}}{a^{2}}\right) + \operatorname{div}E - \frac{1}{2}(2n-1)\frac{f^{2}}{a^{2}},$$
$$2 \cdot \bar{P}Ric^{a}(X_{j}, X_{j}) = (n+1)(k+3) - 4a^{2} + \operatorname{div}E - \frac{1}{2}(2n-1)\frac{f^{2}}{a^{2}}$$

and

$$^{\bar{D}}Ric^a(X_j,\tilde{V}) + ^{\bar{D}}Ric^a(\tilde{V},X_j) = \frac{1}{2}(2n-1)X_j\left(\frac{f}{a}\right).$$

For ϕX_i , we also have same equations.

Let constant a be $(k+3)/4 \ge a^2$ and set $f^2 = (2(n+1)a^2/(2n-1)) \times (k+3-4a^2)$. Then we have

$${}^{\bar{D}}Ric^a(X,Y) + {}^{\bar{D}}Ric^a(Y,X) = \Lambda g_a(X,Y),$$

where $\Lambda = 4na^2$. Therefore, for k > -3, $(S^{2n+1}(k), g_a, \mu)$ admits an Einstein-Weyl structure but not Sasakian for $a \neq 1$.

4. Foliations of locally conformal Kaehler manifolds

As an application of Theorem 1 and Theorem 2, we consider the canonical foliation of a locally conformal Kaehler manifold. Let (L,J,g) be a locally conformal Kaehler manifold of dimension 2n+2 and ω the Lee form and $\mathcal M$ the canonical foliation given by $\omega=0$. Let M be a leaf of the canonical foliation $\mathcal M$, that is M is an orientable real hypersurface of L. Let B be the Lee vector field. We set $C=(B/|\omega|),\ V=JC,\ \eta(X)=g(X,V)$ and $JX=\phi X-\eta(X)C$. It is known that every orientable real hypersurface of an almost Hermitian manifold has an almost contact metric structure (ϕ,V,η,g) (cf. [1], [10]).

We show the following theorem.

THEOREM 3. Let (L,g) be a locally conformal Kaehler manifold and assume that all its local Kaehler metrics $g'=e^{-r}g$ have the same constant nonnegative holomorphic sectional curvature ρ . Let M be a leaf of the canonical foliation \mathcal{M} . If the induced almost contact metric structure of M is Sasakian, then M admits an Einstein-Weyl structure.

PROOF. It is known that M admits a Sasakian structure if and only if

(24)
$$\sigma(X,Y) = -\left(\left(\frac{1}{2}|\omega|-1\right)g(X,Y) + \alpha\eta(X)\eta(Y)\right)C,$$

where α is a function on M (cf. [4]). Let $C, V, X_1, JX_1, \ldots, X_n, JX_n$ be an orthonormal basis of T_pL such that $V, X_1, \phi X_1, \ldots, X_n, \phi X_n$ ($\phi X_i = JX_i$) form an orthonormal basis of T_pM . We denote the Ricci tensor of ∇ of L by Ric^L . Using (12), for $X, Y \in T_pM$, the Ricci tensor Ric^M of ∇^M of M is

$$(25) \quad Ric^{M}(X,Y) = Ric^{L}(X,Y) - R^{L}(C,Y,C,X) - \{g(\sigma(V,Y),\sigma(X,V)) - g(\sigma(X,Y),\sigma(V,V)) + \sum_{i=1}^{n} [g(\sigma(X_{i},Y),\sigma(X,X_{i})) - g(\sigma(X,Y),\sigma(X_{i},X_{i})) + g(\sigma(\phi X_{i},Y),\sigma(X,\phi X_{i})) - g(\sigma(X,Y),\sigma(\phi X_{i},\phi X_{i}))]\}.$$

Since the local Kaehler metrics g' have the same constant nonnegative holomorphic sectional curvature ρ , the curvature tensor of g' is given by

(26)
$$R'(X, Y, Z, W) = \frac{\rho}{4} \{ g'(X, Z)g'(Y, W) - g'(X, W)g'(Y, Z) + g'(X, JZ)g'(Y, JW) - g'(X, JW)g'(Y, JZ) + 2g'(X, JY)g'(Z, JW) \} \quad (cf. [12]).$$

We put ${}^WR(X, Y, Z, W) = g({}^WR(Z, W)Y, X)$. Since $R'(X, Y, Z, W) = e^{-rW}R(X, Y, Z, W)$, we get

(27)
$${}^{W}R(X, Y, Z, W) = \frac{\rho}{4}e^{-r}\{g(X, Z)g(Y, W) - g(X, W)g(Y, Z) + g(X, JZ)g(Y, JW) - g(X, JW)g(Y, JZ) + 2g(X, JY)g(Z, JW)\}.$$

From this equation, we get

(28)
$${}^{W}Ric(X, Y) = \frac{\rho}{4}e^{-r}(2n+4)g(X, Y).$$

From (10), for any vector fields X, Y tangent to M, we have

(29)
$$R^{L}(C, Y, C, X) = \frac{\rho}{4} e^{-r} (g(X, Y) + 3\eta(X)\eta(Y)) - \frac{1}{2} g(((\nabla_{X}\omega)Y)C, C) - \frac{1}{2} g(X, Y)g(\nabla_{C}B, C)$$

and

(30)

$$Ric^{L}(X, Y) = \frac{\rho}{4} e^{-r}(2n+4)g(X, Y) - n(\nabla_{X}\omega)Y - \left(\frac{1}{2}\operatorname{div}B - \frac{1}{2}n|\omega|^{2}\right)g(X, Y).$$

From (11) and (24), we have

(31)
$$(\nabla_X \omega) Y = -\omega(\nabla_X Y) = \left(\left(\frac{1}{2} |\omega| - 1 \right) g(X, Y) + \alpha \eta(X) \eta(Y) \right) |\omega|$$

and

(32)
$$\operatorname{div} B = g(\nabla_C B, C) + g(\nabla_V B, V) + \sum_{i=1}^n g(\nabla_{X_i} B, X_i) + \sum_{i=1}^n g(\nabla_{JX_i} B, JX_i)$$
$$= g(\nabla_C B, C) + (2n+1)|\omega| \left(\frac{1}{2}|\omega| - 1\right) + \alpha|\omega|.$$

By using (29), (30), (31) and (32), we have

(33)
$$Ric^{L}(X, Y) - R^{L}(C, Y, C, X)$$

$$= \frac{\rho}{4}e^{-r}\{(2n+3)g(X, Y) - 3\eta(X)\eta(Y)\}$$

$$+ \left(-\frac{n}{2}|\omega|^{2} + 2n|\omega| - \frac{1}{2}\alpha|\omega|\right)g(X, Y) - \left(n|\omega| - \frac{1}{2}|\omega|\right)\alpha\eta(X)\eta(Y).$$

From (24), we obtain

$$(34) g(\sigma(V,Y),\sigma(X,V)) + \sum_{i=1}^{n} [g(\sigma(X_i,X),\sigma(X_i,Y)) + g(\sigma(\phi X_i,X),\sigma(\phi X_i,Y))]$$

$$= \left(\frac{1}{2}|\omega| - 1\right)^2 g(X,Y) + (\alpha^2 + \alpha|\omega| - 2\alpha)\eta(X)\eta(Y).$$

Thus, since $\sigma(V, V) = -((1/2)|\omega| - 1 + \alpha)C$ and $\sigma(X_i, X_i) = -((1/2)|\omega| - 1)C$, we have

$$(35) -\{g(\sigma(V,Y),\sigma(X,V)) - g(\sigma(X,Y),\sigma(V,V)) + \sum_{i=1}^{n} [g(\sigma(X_{i},Y),\sigma(X,X_{i})) - g(\sigma(X,Y),\sigma(X_{i},X_{i})) + g(\sigma(\phi X_{i},Y),\sigma(X,\phi X_{i})) - g(\sigma(X,Y),\sigma(\phi X_{i},\phi X_{i}))]\}$$

$$= -\left(\frac{1}{2}|\omega| - 1\right)^{2}g(X,Y) - (\alpha^{2} + \alpha|\omega| - 2\alpha)\eta(X)\eta(Y)$$

$$+ (2n+1)\left\{\left(\frac{1}{2}|\omega| - 1\right)^{2}g(X,Y) + \left(\frac{1}{2}|\omega| - 1\right)\alpha\eta(X)\eta(Y)\right\}$$

$$+ \alpha^{2}\eta(X)\eta(Y) + \left(\frac{1}{2}|\omega| - 1\right)\alpha g(X,Y)$$

$$= \left(\frac{n}{2}|\omega|^{2} - 2n|\omega| + \frac{1}{2}\alpha|\omega| + 2n - \alpha\right)g(X,Y)$$

$$+ \left(n|\omega| - \frac{1}{2}|\omega| - 2n + 1\right)\alpha\eta(X)\eta(Y).$$

Using (33) and (35), from (25), we have

(36)
$$Ric^{M}(X, Y) = \beta g(X, Y) + \gamma \eta(X) \eta(Y),$$

where $\beta = 2n - \alpha + (\rho/4)e^{-r}(2n+3)$ and $\gamma = \alpha(1-2n) - (3/4)\rho e^{-r}$. It is known that if all local Kaehler metrics $g' = e^{-r}g$ of L have the same constant holomorphic sectional curvature ρ , then $\rho = 0$ or L is a globally conformal Kaehler manifold (cf. [11]). Since $B \in TM^{\perp}$, for tangent vector field X on $M, X(r) = dr(X) = \omega(X) = 0$. Hence r is constant on M. Since M is a Sasakian manifold, β and γ are constant on M and $\beta + \gamma = 2n$ (cf. [12]). Thus, $\alpha = (\rho/4)e^{-r} = \text{constant}$ on M and $\beta = 2n + (\rho/2)e^{-r}(n+1)$, $\gamma = -(\rho/2)e^{-r}(n+1) \le 0$. Therefore, from Theorem 1, M admits an Einstein-Weyl structure.

EXAMPLE. Let H_{λ}^{n+1} be a Hopf manifold. H_{λ}^{n+1} is isometric to $S^1 \times S^{2n+1}$, where S^{2n+1} is the unit sphere in C^{n+1} with constant curvature 1. Let ω be the Lee form of H_{λ}^{n+1} . The sphere S^{2n+1} is a leaf of the canonical foliation given by the Lee form $\omega = 0$. Since the local Kaehler metric of H_{λ}^{n+1} is flat and S^{2n+1} admits a Sasakian structure, S^{2n+1} admits an Einstein-Weyl structure.

Next, we shall consider generalized Hopf manifolds.

Let (M, ϕ, V, η, g) be a Sasakian manifold and $L = M \times R$. We set

(37)
$$J\left(X, x \frac{\partial}{\partial s}\right) = \left(\phi X + xV, -\eta(X) \frac{\partial}{\partial s}\right),$$
$$h\left(\left(X, x \frac{\partial}{\partial s}\right), \left(Y, y \frac{\partial}{\partial s}\right)\right) = g(X, Y) + xy,$$

where X, Y are vector fields on M and x, y functions on L. Then (L, J, h) is a generalized Hopf manifold with Lee form $\omega = 2 ds$ and Lee vector field $B = 2(\partial/(\partial s))$ (cf. [10]). Therefore $S^{2n+1}(k) \times R$ is a generalized Hopf manifold.

Let (L, J, h) be a generalized Hopf manifold. Then $|\omega|$ is constant. We set

(38)
$$c = \frac{|\omega|}{2}, \quad u = \frac{\omega}{|\omega|}, \quad v = -u \circ J, \quad C = \frac{B}{|\omega|}, \quad \tilde{V} = JC.$$

Then we have $dv = c(\Omega + 2u \wedge v)$.

Let \mathcal{M} be the canonical foliation of a generalized Hopf manifold (L, J, h) and M be a leaf of \mathcal{M} . Then M is a totally geodesic submanifold of L. We set

(39)
$$V = \frac{1}{c} \tilde{V}_{|M}, \qquad \eta = cv, \qquad g = c^2 h_{|M}, \qquad \phi = J + \eta \otimes C_{|M}.$$

Then (M, ϕ, V, η, g) admits a Sasakian structure (cf. [10]).

From a Theorem of Vaisman [10] and Theorem 2, we have following.

THEOREM 4. Let L be a complete and simply connected generalized Hopf manifold and every leaf M of the canonical foliation M be of constant ϕ -sectional curvature k. If $k \ge 1$, then M admits an Einstein-Weyl structure.

REMARK 3. In a generalized Hopf manifold (L, h), if all the local Kaehler metrics $g' = e^{-r}h$ have the same constant holomorphic sectional curvature ρ , then every leaf M of the canonical foliation is of constant ϕ -sectional curvature $k = (1/c^2)\rho e^{-r} + 1$, where $c = (|\omega|/2)$. But converse is not true.

ACKNOWLEDGEMENT. The author would like to thank the referee for his kind advice and useful comments.

References

- [1] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer, Berlin, (1976).
- [2] T. Higa, Weyl manifolds and Einstein-Weyl manifolds, Comm. Math. Univ. Saint Pauli, 42 (1993) 143-160.

- [3] J. C. Marrero and J. Rocha, Locally conformal Kaehler submersion, Geom. Dedicata, 52 (1994), 271-286.
- [4] F. Narita, CR-submanifolds of locally conformal Kaehler manifolds and Riemannian submersions, Colloq. Math., 70 (1996), 165-179.
- [5] F. Narita, Riemannian submersions and Riemannian manifolds with Einstein-Weyl structures, Geom. Dedicata, 65 (1997), 103-116.
- [6] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J., 13 (1966), 1-20.
- [7] H. Pedersen and A. Swann, Riemannian submersions, four-manifolds and Einstein-Weyl geometry, Proc. London Math., 66 (1993), 381-399.
- [8] S. Tanno, Sasakian manifolds with constant φ-holomorphic sectional curvature Tōhoku Math. J., 21 (1969), 501-507.
- [9] I. Vaisman, On locally conformal almost Kähler manifolds, Israel J. Math., 24 (1976), 338-351.
- [10] I. Vaisman, Locally conformal Kähler manifolds with parallel Lee form, Rend. Mat. Roma, 12 (1979), 263-284.
- [11] I. Vaisman, Some curvature properties of locally conformal Kaehler manifolds, Trans. Amer. Math. Soc., (2) 259 (1980), 439-447.
- [12] K. Yano and M. Kon, Structures on manifolds, World Sci. Singapore, (1984).

Department of Mathematics
Akita National College of Technology
Akita 011-8511 Japan

Empile positions alite not as in

E-mail: narifumi@ipc.akita-nct.ac.jp