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1. Introduction

Pedersen and Swann [7] and Higa studied the existence of an Einstein-
Weyl structure on principal circle bundles over Einstein Kaehler manifolds of
positive scalar curvature and obtained many examples of Einstein-Weyl spaces. In
a Riemannian submersion n: M — N with totally geodesic fibers of dimension
one over an Einstein manifold N, we studied the relation between an Einstein-
Weyl structure and a Sasakian structure of M (cf. [3).

On the other hand, in [4], we investigated some geometric structures of a
Riemannian submersion n: M — N, where M is a CR-submanifold of a locally
conformal Kaehler manifold L. Let M be a leaf of the canonical foliation .#
given by the Lee form w = 0 of a locally conformal Kaehler manifold L. Then M
admits an almost contact metric structure. We obtained a necessary and sufficient
condition for the manifold M to admits a Sasakian structure.

In this paper, we shall study the existence of an Einstein-Weyl structure on
an almost contact metric manifold. Let M be a complete and simply connected
Sasakian manifold with constant ¢-sectional curvature k. We show that if £ > 1,
then M admits an Einstein-Weyl structure.

Next, we assume that all local Kaehler metrics ¢’ =e™"g of a locally
conformal Kaehler manifold L have the same constant nonnegative holomorphic
sectional curvature p. We show that if the induced almost contact metric structure
of a leaf M of the canonical foliation .# of L is Sasakian, then M admits an
Einstein-Weyl structure. Finally, we discuss the existence of an Einstein-Weyl
structure on a leaf of the canonical foliation of a complete and simply connected
generalized Hopf manifold.
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2. Preliminaries

Firstly, we give the definition of an Einstein-Weyl space. Let (M,g) be a
Riemannian manifold. Let D be a torsion-free affine connection on M. A
manifold M is said to have an Einstein-Weyl structure if there exist a 1-form u
and a function A on M such that

(1) Dg=u®g and PRic(X,Y)+PRic(Y,X)=Ag(X,7Y),

where PRic is the Ricci tensor of D. Since D is not a metric connection, the Ricci
tensor is not necessarily symmetric. The Einstein-Weyl equation is conformally
invariant. Let V be the Levi-Civita connection of g. We define a vector field E by
g(X,E) = u(X). Then, since Dg = u® g, we have

1 1 1
(2) DxY=ny—zﬂ(X)Y—iﬂ(Y)X'i‘zg(X, Y)E.
Let R and R be the curvature tensor of D and V respectively. Then, we have

(3) PR(X,V)Z=R(X,V)Z-% { [(vxu)z ; %u(X)u(Z)J ¥
- |[(Vr0Z + 3uNW@) | X + (O DZ - (Trx)Z
_g(Y,2) (VXE + % /t(X)E) +9(X,2Z) (VyE + % u( Y)E) }

- % u*(9(Y,2)X - g(X,2Z)Y),

where X, Y and Z are any vector fields on M.

Next, we give the definition of an almost contact metric manifold. A
Riemannian manifold (M,g) is said to be an almost contact metric manifold if
there exist a tensor field ¢ of type (1, 1), a unit vector field ¥ and a 1-form » such
that

n(V)=1, #£X=-X+nX)V,
9(¢X,9Y) = g(X, Y) —n(X)n(Y),
for any vector fields X, Y on M (cf. [I]).
For an almost contact metric structure (¢, V,7n,g9) on M we put ®(X,Y) =
g(X,¢Y). An almost contact metric structure is said to be:

Contact metric if dn = .
K-contact if dn=® and V is a Killing vector field with respect to g.

(4)
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Sasakian if dn=® and Ny+2dn@® V =0, where Nyg(X,Y)=[pX,9Y] —
If the Ricci tensor Ric of a contact metric manifold M is of the form

(5) Ric(X,Y) = Bg(X, Y) + m(X)n(Y),

B and y being constant, then M is called #-Einstein manifold.

Next, let L be an almost Hermitian manifold with metric g, complex
structure J and the fundamental 2-form Q. The manifold L is said to be a locally
conformal Kaehler manifold if every x € L has an open neighborhood U with a
differentiable function r : U — R such that g7, = e7"g| is a Kaehler metric on U.
If we can take U = L, the manifold is globally conformal Kaehler. The locally
conformal Kaehler manifold L is characterized by

(6) N;=0, dQ=0wAQ, dw=0,

where N; is the Nijenhuis tensor of J and w is a globally defined 1-form on L.
We call w the Lee form. Since for dim L = 2 we have dQ2 = 0, we may suppose
dim L > 4. Next we define a Lee vector field B by

(7) 9(X, B) = w(X).
The Weyl connection "'V is the linear connection defined by
1
(8) VY :=VyxY —%w(X)Y ~%w(¥)x+ig(,¥, Y)B,

where V is the Levi-Civita connection of g. 7V is the Levi-Civita connection of a
local Kaehler metric ¢'. It is shown in [9] that an almost Hermitian manifold L is a
locally conformal Kaehler if and only if there is a closed 1-form w on L such that

) WVxJ = 0.

Let L be a locally conformal Kaehler manifold. Let RL be the curvature
tensor field of the connection V and "R the curvature tensor field of the Weyl
connection "'V. Since dw = 0, we obtain (Vxw)Y — (Vyw)X = 0. Thus, we have

(10)"R(X,Y)Z = RE(X,Y)Z - % { [(wa)z + %w(X)co(Z)] Y

- [(Vya))Z + %w( Y)a)(Z)] X —g(¥,2) (VXB + —;—co(X)B)

+9(x,2)(VyB+ 30()B) | - 7l0l6(Y, 2)X - o(X,2)),

where X, Y and Z are any vector fields on L (cf. [11]).
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Let .# be the foliation given by w =0 of a locally conformal Kaehler
manifold (L,J,g). .# is called the canonical foliation.
A locally conformal Kaehler manifold (L,J,g) is said to be a generalized

Hopf manifold if the Lee form is parallel, that is Vo =0 (w # 0).

Let M be a submanifold of a Riemannian manifold L. We denote by the
same g the Riemannian metric tensor field induced on M from that of L. Let VM
denote covariant differentiation of M. Then the Gauss formula for M is written as
(11) VxY =V¥Y +0(X,Y)

for any tangent vector fields X, Y on M where ¢ denotes the second fundamental

form of M in L.
Let RM be the Riemannian curvature tensor field of M. Then we have the

equation of Gauss

(12)

REW,Z,X,Y)=RM(W,Z,X,Y)+g(o(X,Z),0(Y, W)) — g(c(Y,Z),a(X, W)).
3. Einstein-Weyl structures

Let (M,¢,V,n,g) be an almost contact metric manifold of dimension 2n + 1.
Let VM be the Levi-Civita connection of g and Ric™ be the Ricci tensor of VM.
Then we obtain the following result.

THEOREM 1. Let (M,¢,V,n,g9) be an almost contact metric manifold sat-
isfying V¥V = —¢(X). If Ric™(X,Y) = Bg(X,Y)+y(X)n(Y), where B and y
are constant, and y <0, then M admits an Einstein-Weyl structure.

Proor. We define 1-form u by u = fn, where fis a function on M. Let E be
the dual vector field of u. We define the connection D by

1 1
(13) DXY:V}’Y—%F(X)Y—Eﬂ(Y)XJrEg(X, Y)E.

Then D is a torsion-free connection and Dg = u ® g. Let PRic be the Ricci tensor
of D. From (3), we obtain
(14)
1 .
DRic(X,Y) = Ric™ (X, Y) + n(V¥u) Y — 3 (V¥ux

+ 301 = DU +9(X, 1) (3div E =3 @n = DIul ) cf. [T,
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Let V,Xi1,¢X1,..., Xy, ¢X, be an orthonormal basis of T,M. Since V¥V =
—¢(X), for j=1,...,n, we get V¥V =0 and ¢(V¥ X}, V)= —g(Vg V,X;) = 0.
Thus we have (V¥u)V = X;(f), (V¥u)(X;) =0, (Vm)V = V(f), (ViwX; =0
for all i, j, (V¥u)(pX;) =0 for i+j and (V¥u)(4X;)+ (V45 u)X; = 0. From
these, we have

(15) PRic(X;, V) +PRie(V, X;) = 3 (2n ~ DX, (1),
(16) PRic(¢X;, V) + PRic(V,$X)) = 5 (2~ DX (1),

(17) 2-PRic(V,V)=2(B+7) +%(2n —~D)QV(f) +f*) + divE - %(2;1 - 1)f?,

(18) 2 - PRic(X;, X;) =2/3+divE—%(2n— 1) f2,
and
(19) 2 - PRic(¢ X;, pX;) =2ﬂ+divE—%(2n— 1) f2.

We set f2=—(4/(2n—1))y. Then V(f) =0, X;(f) = ¢X;(f) =0for j=1,...,n
and divE =V - u(V) = V(f) = 0. Thus, by using equations [15)—(19), we obtain

(20) DRic(Xx,Y) + PRic(Y,X) = Ag(X, Y),

where X, Y are tangent vectors of M and A = 2(f + y). Therefore M admits an
Einstein-Weyl structure. n

REMARK 1. K-contact manifold and Sasakian manifold satisfy the condition
VMV = —¢(X) (cf. [1]). Let = : M?>**! — N?" be a Riemannian submersion with
totally geodesic fibers of dimension one over an Einstein manifold N** such
that Ric¥(X,Y) = cg(X,Y). Moreover, we assume that (M>**!,¢,V,n,g) is a
standard Sasakian manifold. Let V, X1, ¢X1,..., X, #X, be an orthonormal basis
of T,M. Then we get Ric¥(X;, X;) = RicM(¢X;,$X;) = c—2, Ric™(V,V) = 2n,
Ric™(X;, V) = RicM(¢X;, V) = 0, Ric™(X;, $X;) = 0 for all i, j and Ric™ (X, X;) =
RicM ($X;,¢X;) = 0 for i # j. (cf. [5]). Therefore M is an 5-Einstein manifold such
that RicM (X, Y) = (c —2)g(X, Y) + (2n — ¢ + 2)n(X)n(Y). If the scalar curvature
5of Nis §>4n(n+1), then 2n— c+2 = (1/(2n))(4n*> + 4n — §) < 0. Thus, as a
corollary of Theorem 1, we obtain Theorem 2 in [5].

Next, let (M,¢,V,n,g9) be a Sasakian manifold of constant ¢-sectional
curvature k and dim M = 2n+ 1. The curvature of M is
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) RM(X,¥,Z,W) = "2 {g(X, 2)g(Y, W) ~ o(X, W)g(¥, 2))

_ %p,(x»,(z)g(y, W) —n(Y)n(Z)g(X, W)

+9(X, Zn(Y)g(V, W) —g(Y,Z)n(X)g(V, W)
+9(8Y,Z)g(¢X, W) — g(¢X,Z)g(¢Y, W)
+2g9(X,9Y)g(¢Z, W)} (cf. [12]).

From this equation, we get

(22) Ric™(X,Y) = Bg(X,Y) +m(X)n(Y),

where f=((n+1)/2)k+(3n—1)/2) and y=—((n+1)/2)(k - 1).

Let S2+1 be the unit sphere in C**! and 7 be real number such that 7 > 0.
Let (J,h) be the flat Kachler structure on C**! and U be the unit normal vector
field of $2**! in C™*!. We define tensor field ¢ and 1-form # on $¥**! by J(X) =
#(X) —7(X)U. And we put V = (1/7)JU, n=17 and g=1h + (- )7 @ 7,
where 4’ is the induced metric on S?**! by A. Then (¢, V,n,g) is a Sasakian
structure with constant ¢-sectional curvature k = (4/7) — 3 and we denote S?"+!
with this structure by $2**!(k) (cf. [8]). Thus we have and V3V = —¢(X),
where V5 is the Levi-Civita connection of g. From a Theorem of Tanno [8] and
Theorem 1, we obtain the following result.

THEOREM 2. Let M be a complete and simply connected Sasakian manifold
with constant ¢-sectional curvature k. If k > 1, then M admits an Einstein-Weyl

Structure.

REMARK 2. Let (4, V,7,g) be a Sasakian structure of the sphere (S***!(k), g).
In the Hopf fibration = : (§%"*1(k),g) — (P.(C)(k + 3),3), for constant a # 0,
we define a Riemannian metric g, by go =n*'d+a’y ®@n (cf. [2]). We set
V =(1/a)V and 7 =an. Then dij = a®, where ®(X,Y) =g,(X,4Y). Let 4
be the integrability tensor of the Riemannian submersion 7, : (S>**!(k),g,) —
(P.(C)(k + 3), §) with totally geodesic fibers. Let RS and R’ denote the curvature
tensors of (S***!(k),g,) and (P,(C)(k + 3),3) respectively. We recall the fol-
lowing curvature identity.

(23) RS(W,Z,X,Y)=RV(W,Z,X,Y) — gu(AvZ,Ax W)
+ ga(AXZ, Ay W) + 2g,,(AX Y Az W),



Einstein-Weyl structures on almost contact 93

where X, ¥, Z and W are tangent vector fields on P,(C)(k + 3) and X, Y, Z and
W are the horizontal lifts of X, ¥, Z and W respectively (cf. [6]). For a function
f on S?*1(k), we put u=fn We define the connection D, by

DxY =V4Y —-%,u(X)Y ——%,u( Y)X+%ga(X, Y)E,
where V“ is the Levi-Civita connection of g, and FE is the dual vector field of u.
Let DRic* be the Ricci tensor of D. Since Ay Y = (1/2)¥7[X, Y] (cf. [6]) and V is
a unit vertical vector field, we get Ay Y = —dij(X,Y)V = —ag,(X,¢Y)V, where
X, Y are horizontal vector fields. Using |u|> = (f2/a?), for an orthonormal basis
V,X1,6X1,..., Xn ¢X, of T,S**1(k), we get following.

2

2-5Ric"(l7 I7)=4na2+l(2n—1) —17(f)+f—2 +divE—l(2n—1)£
’ 2 a a? 2 a?’

2

2-PRic*(X;, X;) = (n+ 1) (k + 3) — 4a® +divE—%(2n -1

and
Dp:.a 7 Dp:.a(p 1 f
Ric*(Xj, V) + "Ric*(V, Xj) = 7 (2n = 1) X; =)

For ¢X;, we also have same equations.
Let constant a be (k+3)/4>a%> and set f?2= (2(n+ 1)a®/(2n—1)) x
(k + 3 — 4a?). Then we have

DRic"(X, Y) + PRic*(Y, X) = Aga(X, Y),

where A = 4na?. Therefore, for k > —3, (S*"+!(k), ga, #) admits an Einstein-Weyl
structure but not Sasakian for a # 1.

4. Foliations of locally conformal Kaehler manifolds

As an application of Theorem 1 and Theorem 2, we consider the canonical
foliation of a locally conformal Kaehler manifold. Let (L,J,g) be a locally
conformal Kaehler manifold of dimension 2n + 2 and w the Lee form and .# the
canonical foliation given by w = 0. Let M be a leaf of the canonical foliation .#,
that is M is an orientable real hypersurface of L. Let B be the Lee vector field.
We set C= (B/|o|), V=JC, n(X)=g(X,V) and JX =¢X —n(X)C. It is
known that every orientable real hypersurface of an almost Hermitian manifold
has an almost contact metric structure (¢, V,n,g) (cf. [1], [10).
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We show the following theorem.

THEOREM 3. Let (L,g) be a locally conformal Kaehler manifold and assume
that all its local Kaehler metrics g = e "g have the same constant nonnegative
holomorphic sectional curvature p. Let M be a leaf of the canonical foliation #. If
the induced almost contact metric structure of M is Sasakian, then M admits an
FEinstein-Weyl structure.

PrOOF. It is known that M admits a Sasakian structure if and only if

(24) o, ¥) = = ( (31l - 1)atx, 1) + an(00(D) )

where o is a function on M (cf. [4]). Let C,V, X,,JX,,...,X,,JX, be an
orthonormal basis of T,L such that V, X1,4X1,..., Xy, ¢X, (¢X; = JX;) form an
orthonormal basis of 7, M. We denote the Ricci tensor of V of L by Rict. Using
(12), for X,Y € T,M, the Ricci tensor RicM of VM of M is

(25) RicM(X,Y) = Ric*(X,Y) - RX(C,Y,C, X) — {g(c(V, Y),a(X, V))
— 46X, V)0V, V) + 3 lg(o(Xi, V), 0(X, X0))
i=1
—9(a(X, Y),0(X;, X)) + g(a(¢Xi, Y),0(X, 6 X))
—9(o(X, Y),0(4Xi, 6X;))]}.

Since the local Kaehler metrics g’ have the same constant nonnegative holo-
morphic sectional curvature p, the curvature tensor of g’ is given by

(26)  R(X,Y,Z,W)=5{d(X,2)d (Y, W) - g (X, W)d(Y,2)
+4'(X,JZ2)g (Y, JW) — 4 (X,IW)g' (Y,JZ)
+24'(X,JY)g(Z,IJW)} (cf. [12]).

We put "R(X,Y,Z,W)=g("R(Z,W)Y,X). Since R(X,Y,Z W)=
eVR(X,Y,Z, W), we get

@7)  YR(X,Y,Z,W) = e {o(X, Z)g(Y, W) - g(X, W)g(Y, Z)

+g(X,JZ2)g(Y,JW) —g(X,IW)g(Y,JZ)
+29(X,JY)g(Z,JW)}.
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From this equation, we get
(28) WRic(X,Y) = ge"(Zn +4)g(X, Y).
From (10), for any vector fields X, Y tangent to M, we have

(29) RH(C,Y,C,X) = Lo (g(x, ¥) + 3(X)n(¥)) ~ 3((Vx@) Y)C, ©)

~ 390X, V)g(VcB, ©)
and
(30)

1 .. 1
Rick(X,Y) = 2—) e’'2n+4)g(X,Y) —n(Vxw)Y — (EdlvB - —2-n|w|2)g(X, Y).
From and [24), we have

Bl)  (Vxw)Y = —w(Vy¥) = ( (§|w| - 1)g<X, ¥)+ om(X)n(Y)> ol

and

(32) divB=g(VcB,C)+g(VvB, V) + > g(VxB X;) + > _ 9(Vix.B,JX))

i=1 i=1
1
— 9(VeB, C) + (2n+ o] (5 o] - 1) + o).

By using (29), (30), (31) and (32), we have
(33) Rick(x,Y)-RY(C,Y,C,X)

— ';—)e_’{(Zn +3)g(X, Y) = 3n(X)n(Y)}

+ (= lof + 2010 - 33l )a(x, 1) - (ol - 5ol an(XOn(2).

From [24), we obtain

n

(34)  g(a(V,Y),0(X, V) + > _[9(o(X;, X),0(Xi, Y)) + g(a(¢Xi, X), 6(¢X;, ¥))]

i=1

2
- G|w| - 1) 9(X, Y) + (& + alo| = 20)n(X)n(Y).
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Thus, since o(V,V) = —((1/2)|lw| — 1+ a)C and o(X;, X;) = —((1/2)|w| — 1)C,
we have

(35) —{g(a(V,¥),a(X,V)) - g(c(X, Y),a(V,V)) + Z [9(c(X;, ¥),0(X, X;))
i=1
—9(0(X, Y),0(X;, Xi)) + g(a(¢X, Y),0(X, $Xi)) — g(a(X, Y), 5(¢X;, 6X:))]}

1 2
—— 3kl = 1) 6, 1) — @ + o] — 29(00(Y)
2
tn+t 1){ (§|w| - 1) g(X,¥) + (§|w| - 1>w7(X)'7(Y)}

1
+an(n(¥) + (310 - 1 )ag(x, ¥)
n 2 1
= (§|co| — 2n|ow| +5<x|w| +2n — oz) g(X,Y)

+ (n|w| - % || — 2n + l)qu(X)r;( Y).
Using (33) and (35), from (25), we have
(36) Ric"(X,Y) = Bg(X, Y) + m(X)n(Y),

where f=2n—oa+ (p/4)e”"(2n+3) and y = a(l — 2n) — (3/4)pe™". It is known
that if all local Kaehler metrics ¢’ = ¢™"g of L have the same constant holo-
morphic sectional curvature p, then p =0 or L is a globally conformal Kaehler
manifold (cf. [IT]). Since Be TM*, for tangent vector field X on M,X(r) =
dr(X) = w(X) = 0. Hence r is constant on M. Since M is a Sasakian manifold, 8
and y are constant on M and S+ y = 2n (cf. [12]). Thus, «a = (p/4)e™" = constant
on M and f=2n+ (p/2)e"(n+ 1), y=—(p/2)e”"(n+ 1) <0. Therefore, from
Theorem 1, M admits an Einstein-Weyl structure. |

ExampLe. Let H7*' be a Hopf manifold. H}*! is isometric to S! x §2+1,
where $2"t! is the unit sphere in C™*! with constant curvature 1. Let w be the
Lee form of H7*'. The sphere $***! is a leaf of the canonical foliation given by
the Lee form w = 0. Since the local Kaehler metric of H7*! is flat and S2*+!
admits a Sasakian structure, S?>"*! admits an Einstein-Weyl structure.

Next, we shall consider generalized Hopf manifolds.
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Let (M,¢,V,n,g) be a Sasakian manifold and L = M x R. We set

J(X,x gs-) = (¢X +xV,—n(X) %)

h((X,x%), (Y,y%)) =g(X,Y)+ xy,

where X, Y are vector fields on M and x, y functions on L. Then (L,J,h) is a
generalized Hopf manifold with Lee form w =2ds and Lee vector field
B = 2(3/(0s)) (cf. [10]). Therefore S?"*!(k) x R is a generalized Hopf manifold.

Let (L,J,h) be a generalized Hopf manifold. Then |w| is constant. We set

(37)

B -
(38) c='—;)|, u=|%|, v=—uolJ, C=—, V =JC.
Then we have dv = c(Q + 2u A v).
Let .# be the canonical foliation of a generalized Hopf manifold (L,J, ) and

M be a leaf of #. Then M is a totally geodesic submanifold of L. We set

1 -
(39) V= = Vims n = cv, g = hu, $=J+nQ® Cy-
Then (M,¢,V,n,g) admits a Sasakian structure (cf. [10]).
From a Theorem of Vaisman and Theorem 2, we have following.

THEOREM 4. Let L be a complete and simply connected generalized Hopf
manifold and every leaf M of the canonical foliation # be of constant ¢-sectional
curvature k. If k > 1, then M admits an Einstein-Weyl structure.

REMARK 3. In a generalized Hopf manifold (L,#), if all the local Kaehler
metrics g’ = e¢~"h have the same constant holomorphic sectional curvature p, then
every leaf M of the canonical foliation is of constant ¢-sectional curvature
k= (1/c*)pe" +1, where ¢ = (Jw|/2). But converse is not true.
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