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1. Introduction

For a space X, let C(X) be the linear space of all real-valued continuous
functions on X, and let Co(X) (resp. C,(X)) denote the linear topological space
C(X) with the compact-open (resp. pointwise convergence) topology. We say that
spaces X and Y are lyo-equivalent (resp. l,-equivalent) if Co(X) and Co(Y) (resp.
C,(X) and C,(Y)) are linearly homeomorphic. For an ordinal number a, let X®
be the a-th derived set of a space X, where X(O = X. Recall from [3] that an
ordinal « is prime if it satisfies the following condition: If « = f+ y, then y =0 or
y = a. Note that 0 and 1 are only finite prime ordinals. For « > w, a is prime if
and only if there is an ordinal x# > 1 such that o = w# (cf. [3, Theorem 2.1.21]}).
Thus, w,w?,®>,... and the first uncountable ordinal w; are prime. The purpose
of this paper is to improve some theorems in Baars and de Groot by proving

the following theorem:

THEOREM 1. Let X and Y be ly-equivalent metric spaces. For each prime
ordinal o < wy, we have:

(a) X@ = g if and only if YW = ¢,

(b) X@ is compact if and only if Y® is compact,

(€) X is locally compact if and only if Y@ is locally compact.

Baars and de Groot proved (a), (b) and (c) in for « = 0,1 under
the additional assumption that X and Y are O-dimensional and separable ([3,
Theorems 4.5.2 and 4.5.3]). For /,-equivalent metric spaces X and Y, they proved
(a) for each prime a < w; ([3, Theorems 4.1.15 and 4.1.17]), and proved (b) and
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(c) for each prime o < w; assuming that X and Y are 0-dimensional and sep-
arable in addition ([3, Corollary 4.1.14]). Arhangel’skii proved in [1, Corollary 5]
that /,-equivalent paracompact spaces are lp-equivalent (cf. also [3, Corollary
1.2.21]). Thus, we have the following corollary from [Theorem 1.

CorROLLARY 1. Let X and Y be ly-equivalent metric spaces. Then the
statements (a), (b) and (c) in hold for each prime ordinal a < w;.

A space X is called scattered if there is an ordinal « such that X = g,
Baars and de Groot proved in [3, Corollary 4.1.16] that for /,-equivalent sep-
arable metric spaces X and Y, if X is scattered, then so is Y. It is well known that
X (@) = ¥ for every scattered, locally separable, metric space X. Thus, we have:

COROLLARY 2. Let X and Y be ly- or l,-equivalent, locally separable, metric
spaces. If X is scattered, then so is Y.

In Section 2, we consider a support of a linear map ¢ : Co(X) — Co(Y) and
give some lemmas. In Section 3, we prove and, answering [3, Question
3, p. 37], we give an example of /,- and /yp-equivalent, first countable spaces X and
Y such that X is locally compact, but Y is not.

The terminology and notation will be used as in [3] In particular, for
feC(X), S X and £¢>0, we write {f,S,e) ={ge C(X):|f(x)—g(x)| <e
for each x € S}. The family {{f,K,&): f € C(X),K € #(X) and & > 0} is a base
for Co(X), where o (X) is the family of all compact sets of X. The constant
function on X taking value 0 is denoted simply by the same symbol 0. As usual,
we identify an ordinal number and the space of all smaller ordinal numbers with
the order topology. By a space we mean a completely regular 7 -space.

2. Supports of a linear map

Throughout this section, let ¢ : C(X) — C(Y) be a linear map and let ye Y
be fixed. Arhangel’skii [1] defined the support of y with respect to ¢ to be the set,
denoted by supp(y), of all x € X such that for every neighborhood U of x, there
is feC(X) such that f|y\, =0 and o(f)(y) #0. The supports played an
important rule in [1] and [3]. However, some authors use the term support of y to
call a set S < X such that

(1) (¥ € C(X))(fls =0 = o(f)(») = 0),
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and some other authors also use it for a set S < X such that
(2) (Vf e C(X))(S cinty Z(f) = o(f)(¥) =0),

where Z(f) = {x:f(x) =0}. We first clarify the relation between supp(y) and
sets satisfying the conditions (1) and (2), and then prove some lemmas which will
be used in the proof of [Theorem 1. Let &(y) be the family of all closed sets in X
satisfying (1). Since X € £(y), ¥(y) # . By the definition of supp(y), we have:

LemMA 1. supp(y) = ({S:Se L)}

ReMARK 1. The set &(y) need not be a closed filter on X. For example,
consider a space X which has disjoint closed sets F; and F, such that cl,xy F1 N
clyy F, # &, where vX is the Hewitt real compactification of X (e.g., the
Tychonoff Plank 7 and its top edge and right edge [4, 8.20]). Pick a point y from
the intersection and let ¢ : C(X) — C(vX) be the linear map which carries f to
the continuous extension. Then, since Fy, F; € ¥(y), & (y) fails to have the finite
intersection property.

Let Z(X) be the family of all zero-sets in X and put Z(y) = £(y) N Z(X).
A z-filter on X is the intersection of a filter on X and Z(X) (cf. [4).

LEMMA 2. Assume that there is foe€ C(X) such that ¢(fo)(y) # 0. Then,
Z(y) is a z-filter on X.

ProoF. Since fo|, =0 and ¢(fo)(y) #0, J ¢ Z(y). Clearly, if Z, € Z(y)
and Z, = Z, e Z(X), then Z; € Z(y). Suppose that Z;NZ, ¢ Z(y) for some
Z\,Z; € Z(y). Then, there is g e C(X) such that g|;, =0 and ¢(g)(y) # 0.
Since Z;,Z, € Z(X), we can write Z; = Z(f;) and Z; = Z(f>). Define a function
h by h(x) = g(X)| i)/ (/A x)| + | /2(x)]) for x e X\(Z1NZ;) and A(x) =0 for
x € Z1 N Z,. Since |h| < |g| and h|z 1, =0, h € C(X). Since k| =0, p(h)(y) = 0.
On the other hand, since k|, = g|,,, ¢(h)(y) = ¢(g)(») # 0. This contradiction
completes the proof. O

By Lemma 2, (\{clsgxZ:Z e Z(»)} # &, where X is the Cech-Stone
compactification of X. Since Z(fX) is a base for the closed sets in X,
(3) N{cx S:Se L)} =N {dx Z : Z e Z(y)}.

Thus, we have the following lemma:
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LEMMA 3. Assume that there is fye C(X) such that ¢(fo)(y) #0. Then,
N{clsxS:Se F(»)} + .

REMARK 2. In view of Remark 1, the reader might ask if () {clxS:
Se%(y)} # & or not. We show that the intersection can be empty. Let N be
the discrete space of positive integers. For each m,ne N, define e,(m) =1 if
m = n, e,(m) =0 otherwise, and let ep € C(N) be the constant function taking
value 1. Since 4 = {e,: ne NU{0}} is linearly independent, there is a Hamel
base B for C(N) with 4 = B. For each f e C(N), there is a unique function
ar: B— R such that f =3, par(b)b. Define ¢(f)=ar(eq) for f e C(N).
Then, ¢ : C(N) — R (=C({y})) is a linear map and ¢(eo) = 1. If fl|y\(, =0 for
some ne N, then ¢(f) =0, because f is expressed as a scalar multiple of e,.
Hence, N\{n} e %(y) for each neN. Since vN = N, this implies that

N{cnS:Se L)} =a.

LEMMA 4. Assume that there is fo € C(X) such that ¢(fo)(y) #0 and that
& (y) contains a compact set K. Then, supp(y) is nonempty compact and satisfies
the condition (2).

Proor. By and (3),

supp(y) = (V1 {SNK:Se L (y)}
(4) = {clex S: Se L(»)}
() = N{clpx Z: Ze 2(»)}.

By (4) and [Lemma 3, supp(y) is nonempty compact. Next, suppose that
supp(y) < inty Z(f). Then, there is an open set U in BX with UNX =
inty Z(f). By (5) and Lemma 2, there is Z € 2 (y) such that clgxy Z = U, and
hence, Z < Z(f). Since Z satisfies (1), ¢(f)(y) = 0. Thus, supp(y) satisfies (2).

O

Let n,: C(Y) > R be the y-th projection, ie., 7, (f)=/f(y) for each
feC(Y).

LEMMA 5. Assume that myo¢: C(X) — R is continuous with respect to the
uniform convergence topology on C(X). Then, every subset of X satisfying the
condition (2) satisfies (1).
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ProOOF. Let S be a subset of X satisfying (2). Suppose that f € C(X) and
fls = 0. For each n e N, define f,(x) = max{f(x) —n~!,0} + min{f(x) +n"!,0}
for xe X. Then, f, € C(X) and S = {x:|f(x)| < 1/n} = Z(f,). Since S satisfies
(2), (myo@)(fu) =@(fu)(¥) =0 for each ne N. Since {f,} converges to f with
respect to the uniform convergence topology, it follows from our assumption that
o(f)(¥) = (my 0 9)(¥) = limy— (7, 0 @)(fn) = 0. Hence, S satisfies (1). O

LEMMA 6. Assume that m,o¢: Co(X) — R is continuous. Then, supp(y) is
compact and satisfies (1), and moreover, if there is foe C(X) such that
¢(fo)(y) # 0, then supp(y) # &.

Proor. If ¢(f)(y) =0 for each fe C(X), then supp(y) = and it
obviously satisfies (1). Now, assume that ¢(f)(y) # 0 for some f € C(X). By our
assumption, 7w, o ¢ is continuous with respect to the uniform convergence top-
ology. By Lemmas 4 and 5, it suffices to show that &(y) contains a compact set.
Since ¢ is continuous, there is K € (X ) such that ¢[<0,K, )] =<0, {y},1>. If
g € C(X) and g|x = 0, then by the linearity of ¢, n|e(g)(y)| = lp(ng)(y)| <1 for
each n e N, which implies that ¢(g)(y) = 0. Hence, K € ¥(y). O

In the preceding corollary, that supp(y) is compact and satisfies (2) was
proved in [3], but it was not stated that supp(y) satisfies (1). Lemma 6 and the
following lemmas are used in the next section. For B < Y, the support of B with
respect to ¢ is the set suppB = | ) {supp(y) : y € B}. When ¢ is a bijection, the
support of 4 = X with respect to ¢! is also denoted by the same symbol supp 4.
The next lemma was proved in [3].

LemmA 7 ([3, Lemma 1.5.6]). If ¢ : Co(X) — Co(Y) is continuous and B is a
compact set in Y, then cly(supp B) is compact.

LeMMA 8. Ifg: Co(X) — Co(Y) is a homeomorphism, then x € clx(suppsupp(x))
for each xe X.

PrOOF. Suppose that x ¢ cly(suppsupp(x)) for some x e X. Then, there
is feC(X) such that f(x)=1 and f[suppsupp(x)] ={0}. By Lemma 6,
@(f)|supp(xy = 0 and hence f(x) =0, which is a contradiction. O

3. Proof of Theorem 1

We need some more lemmas to prove Theorem 1. The following one was
proved by Baars and de Groot [3].
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LeEMMA 9 ([3, Lemma 1.2.10]). Let X and Y be normal spaces, K a non-empty
compact set in Y, {U,:ne N} a decreasing neighborhood base of K in Y, and
{A4s: s € S} a locally finite family of subsets of X. Suppose that there is a linear
continuous map ¢ : Co(X) — Co(Y). Then, there are me N and s),...,Sym € S such

that (supp Up,) N Us¢{s.,...,s,,.} A= .

The following Lemmas and [2 sharpen Baars and de Groot’s idea
frequently used in [3]. Lemma 11 is well known.

LEMMA 10. Let X and Y be metric spaces and ¢ : Co(X) — Co(Y) a linear
homeomorphism. Let A be a closed set in Y and B = cly(supp A). Let U be an
open set in X such that ANcly(supp U) = &. Then, Co(A) is linearly homeo-
morphic to a subspace of Co(B\U).

ProoF. Let S=BUclyU and T ={fe Co(S): flygy =0}. Then, the
subspace T of Cy(S) is linearly homeomorphic to the subspace {f € Co(B\U) :
flan@u\vy =0} of Co(B\U). Thus, it suffices to show that there is a linear
embedding A:Co(4) — T. Define rs(f)=f|¢ for each feCo(X) and
ra(f) =f|, for each f e Co(Y). By the Dugundji extension theorem (cf. [3,
Theorem 2.3.1]), there is a linear continuous map es : Co(S) — Co(X) such that
rsoes =id¢(s). Since ANcly(supp U) = J, using the Dugundji theorem again,
we can define a linear continuous map e4 : Co(A) — Co(Y) such that ryoey =
idc4) and eq(f)|syppv =0 for each f e Co(4) (cf. [3, Lemma 4.1.11]). Define
A=rsoploeq and u=rgqopoes. Then, 1: Co(A4A) — Co(S) and u: Co(S) —
Co(A) are linear continuous maps. For each f € Co(4), since e4(f)|syppr = 0, it
follows from that ¢~ 1(e4(f))|y =0, which implies that A(f)e T.
Hence, A[Co(A4)] = T. It remains to show that zo A = id¢(4). Let g € Co(4). Since
rsoes =1idc(s) and A=rso o loey,

(6) es(A(9)ls = A(g) = 97 (ea(9))]s-

Since suppA4 < S, it follows from that ¢(es(4(g9))|4 = ea(g)|4. Since
u=eqopoes and rqoey =idc(y), (#o4)(g9) =g. Hence, uo i =idc. O

LeEMMA 11 (cf. [3, Proposition 2.2.4]). Let A be a subspace of a space X and
a an ordinal. Then, A < ANX®, and if A is an open set, then AW = ANX®,

For a scattered space X, let x(X) denote the smallest ordinal a such that
X@® = ¥, For a non-scattered space X, we write x(X) > a for each ordinal a.
For spaces X and Y, X ~ Y means that X is homeomorphic to Y.
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LEMMA 12. Under the same assumption as in Lemma 8, assume further that
k(A) > a for a prime ordinal a < wi. Then, kK(B\U) > a.

Proor. If B\U is not scattered, then there is nothing to prove. So, we
assume that B\U is scattered. We distinguish three cases:

Case 1. o = 0. Since x(4) >0, A # . Then, B\U # J by and
hence, k(B\U) > 0.

Case 2. 0 < o < ;. Since x(A4) > a, A® # . By [3, Lemma 4.1.8], there is
a compact set K = A4 such that K ~ o* + 1. Put L = cly(supp K); then L = B. By
Co(K) is linearly homeomorphic to a subspace of Co(L\U). Thus,
L\U # &, and it is compact by Lemma 7. Moreover, since B\U is scattered, so
is L\U. Hence, x(L\U)=p+1 for some f < w; and (L\U)® consists of
finitely many points, say xi,...,xx. By Sierpinski-Mazurkiewicz’s theorem [3,
Theorem 2.2.8)], L\U ~ («” - k) + 1. Hence, Co(w* + 1) is linearly embedded in
Co((wf -k)+1). If a=1, then B>1, because C(w+1) cannot be linearly
embedded in a finitely dimensional space. Hence, x(B\U) > x(L\U) =f+1> 1.
If « > 1, since « is prime, it follows from [3, Lemma 2.6.7 (a)(ii)] that a« < 4 1.
Since « is a limit, « < f+ 1 =x(L\U) < x(B\U).

Case 3. o« = w;. Suppose on the contrary that x(B\U) < w;. Then, since
(B\U)(“”) = (¥, there is a locally finite cover {C,:y < w1} of X by closed sets
such that C,N (B\ U)") = & for each y < w;. On the other hand, since x(4) >
w1, there is y € 4@, Let {V, : n € w} be a decreasing neighborhood base of y in
Y. By Lemma 9, there are m < w and a finite set F < co; such that supp Vi, <
U, cr Cy- Put 6 =max F. Then

(7) cly supp V. N (B\U)® = &.

Choose a prime ordinal p with § < p < w;. Since V,, is open, it follows from
that (V;yNA)? = ¥,,N AP 2 V,,N 4@ 3 . Hence, there is K’ <
VmNA with K’ ¥ w” +1 by [3, Lemma 4.1.8]. Put L' =cly(supp K’). Then,
L' < cly supp V,,. By (7) this combined with implies that (L'\U)® <
L'n(B\U)® = &. Hence, k(L'\U) < < p. Since x(K') > p, this contradicts
Case 2 we have proved above. O]

We are now in a position to prove Theorem 1.

PrOOF OF THEOREM 1. Since X and Y are lp-equivalent, there is a linear
homeomorphism ¢ : Co(X) — Co(Y).
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(a) Suppose that X = @f # Y@ for a prime ordinal « < w;. Then, x(Y) >
a. Since X = ¥, x(cly(supp Y)) < k(X) < a. This contradicts [Lemma 12.

(b) Suppose that there is a prime ordinal a < w; such that X is compact
but Y@ is not. Then, there is a decreasing neighborhood base {U, : n < w} of X(®
in X and a discrete family {V, : n < w} of open sets in ¥ such that ¥, N Y@ % ¥
for each n < w. By Lemma 9, there is m < w such that (supp Un,) N V,, = &. Let
A be a closed set in Y such that 4 = V,, and inty AN Y® # . Then, x(4) > a
by Lemma 11. Put B = cly(supp A). Then, by Lemma 11, (B\Uy)® < (B\U,,) N
X® = . Hence, x(B\Uy,) < «, which contradicts Lemma 12.

(c) Suppose that X(® is locally compact for a prime ordinal o < w;. Then,
there is a locally finite cover {C; : s € S} of X by closed sets such that C;N X is
compact for each seS. Let ye Y® and {U,:n < w} be a decreasing neigh-
borhood base of y in Y. Then, by Lemma 9, there is kK < w and a finite set F = S
such that supp Uy = | J,_ C;. It suffices to show that cly Uy N Y® is compact.
Suppose not; then there is a discrete family {V}, : n < w} of open sets in Y such
that ¥V, = Uy and U,NY® # ¢ for each n<w. Put C=|J,_,C; Since
C®c<cCcNX® by Lemma 11, C® is compact. Hence, there is a decreasing
neighborhood base {W, : n < w} of C® in X. By again, (supp W,,,)N
Vi = & for some m < w. Let 4 be a closed set in Y such that 4 = V,, and
inty V,,NY® % &. Then, x(4) > « by Lemma 11. Put B = cly(supp4). Since
B <= cly(supp Ux) = C,

(8) (B\Wm)® = (B\Wn)N C®

by Lemma 11. Since C® < W,,, (8) implies that (B\W,,)® = &, and hence,
k(B\W,,) < a. Since cly(supp W,,) N 4 = (&, this contradicts O

ReMArRk 3. For each ordinal o < w; which is not prime, there are Io-
equivalent spaces X and Y such that X® is compact but Y(«) is not locally
compact. To show this, let « < w; be an ordinal which is not prime. Then, by
[3, Corollary 2.1.18], there is the largest prime ordinal # less than «. Let S =
@ +1 and T = w* + 1. Since fw is prime, f < a < fw. Hence, it follows from
Bessaga-Pelczynski’s theorem [3, Theorem 2.4.1] that S and T are /y-equivalent.
Observe that S = ¢ and T® = {w*} (cf. [3, Proposition 2.2.5]). Define X =
(S x (wxw))U{o} and Y = (T x (w x w))U {0}, where the subspace S x
(w x w) of X has the usual product topology, a basic neighborhood of oo € X is a
set of the form (S x ((w\n) x w))U {0} for n < w, and the topology of Y is
analogously defined. Then, it is easily checked that X and Y are /y-equivalent and
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Y@ is not locally compact. If 8+ 1 < o, X® = ¥ and if §+ 1 = «, then X® =
{o0}. In each case, X is compact. The authors do not know if the statements
(a), (b) and (c) in hold for a prime ordinal greater than w; (cf. [3,
Question, p. 149]).

Gul’ko-Okunev [5] and McCoy-Ntantu [6] independently proved that for a
first countable, paracompact space X, Co(X) is a Baire space if and only if X is
locally compact. Since /,-equivalent paracompact spaces are lo-equivalent by [1,
Corollary 5], we have: For l,-equivalent, first countable, paracompact spaces X and
Y, if X is locally compact, then so is Y (cf. also [3, Theorem 1.5.10]). In [3,
Question 3, p. 37], Baars and de Groot asked if the paracompactness is essential
in this statement. The following example answers their question positively.

ExXAMPLE. There exist first countable, l,- and ly-equivalent spaces X and Y
such that X is locally compact, but Y is not. '

ProoF. Let X =w; X (w+1), A=w1 x{w}= X, Y=(X/A)PA, and
p:X — X /A the quotient map. Since A4 is a retract of X, it is routinely proved
that C,(X) is linearly homeomorphic to C,(Y) (cf. [2, Proposition 1]). Moreover,
since cly p~![K\p[4]] is compact for every compact set K < Y, it is also proved
that Co(X) is linearly homeomorphic to Cy(Y). Thus, X and Y are [,- and /o-
equivalent. The space X is first countable and locally compact, but Y is not
locally compact. Since every open set in X including A4 includes a set of the form
w1 X ((w+1)\n), Y is also first countable. O
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