A FAMILY OF BRAIDED COSEMISIMPLE HOPF ALGEBRAS OF FINITE DIMENSION

By

Satoshi Suzuki

0. Introduction

Recently some finite dimensional cosemisimple Hopf algebras were constructed [Mas2] [F] [G]. We aim to give a plain and systematic description of cosemisimple Hopf algebras of low dimension. For this purpose we construct them as quotient bialgebras of a sufficiently large bialgebra. This way has the advantage of defining homomorphisms and determining braidings.

In this paper we define and study a family of finite dimensional cosemisimple Hopf algebras

$$\mathcal{F} = \{A_{NL}^{(++)}, A_{NL}^{(++)}, A_{NL}^{(-+)}, A_{NL}^{(--)} \, | \, N \geq 1, L \geq 2\},$$

which consists of quotients of a bialgebra B over an algebraically closed field k with $chk \neq 2$.

This family contains the "non-trivial" cosemisimple Hopf algebras of dimension 8, 12 if $chk \neq 3$.

In Section 1 we review basic definitions and results.

In Section 2 quadratic bialgebras B, $B^{(+)}$ and $B^{(-)}$ are constructed. We use B to construct the family \mathcal{F} , and $B^{(\pm)}$ to obtain braidings on the members of a subfamily of \mathcal{F} . These bialgebras B, $B^{(\pm)}$ are cosemisimple, and we determine all braidings on them.

In Section 3 we define the family \mathscr{F} as a set of quotient bialgebras of the bialgebra B. We write $A_{NL}^{(+1,-1)}=A_{NL}^{(+-)}$, etc. Let $\nu,\lambda=\pm 1$. Our main results are as follows.

i) $A_{NL}^{(\nu\lambda)}$ is a non-cocommutative involutory cosemisimple Hopf algebra of dimension 4NL, which is non-commutative unless $(L,\lambda)=(2,+1)$. $A_{NL}^{(\nu\lambda)}$ is furthermore semisimple if $(\dim A_{NL}^{(\nu\lambda)})\cdot 1\neq 0$.

Received April 8, 1996. Revised October 7, 1996.

- ii) Any non-commutative subHopf algebra of $A_{NL}^{(\nu\lambda)}$ generated by a simple subcoalgebra is a member of the family.

 - iii) All braidings on $A_{NL}^{(\nu\lambda)}$ are determined. iv) We determine when $A_{N_1L_1}^{(\nu_1\lambda_1)}$ and $A_{N_2L_2}^{(\nu_2\lambda_2)}$ are isomorphic.

1. Preliminaries [D]

We follow Sweedler's book [S] and Montgomery's book [M] for terminology of Hopf algebras.

In this section we review basic definitions and results. They are due to Doi [D].

Let B be a bialgebra over a field k, $\tau: B \otimes B \to k$ a k-linear map which is invertible with respect to the convolution product. (B, τ) is called a braided bialgebra if the following three conditions hold:

(1)
$$\Sigma \tau(x_1, y_1) x_2 y_2 = \Sigma y_1 x_1 \tau(x_2, y_2)$$

(2)
$$\tau(xy,z) = \Sigma \tau(x,z_1)\tau(y,z_2)$$

(3)
$$\tau(x, yz) = \Sigma \tau(x_1, z) \tau(x_2, y)$$

for $x, y, z \in B$.

Then the following conditions are automatically satisfied:

$$\tau(x,1)=\varepsilon(x)=\tau(1,x),$$

$$\Sigma \tau(x_1, y_1) \tau(x_2, z_1) \tau(y_2, z_2) = \Sigma \tau(y_1, z_1) \tau(x_1, z_2) \tau(x_2, y_2)$$
 for $x, y, z \in B$.

We call this τ a braiding on B.

PROPOSITION 1.1 ([H, Proposition 1.2]). Let (B, τ) be a braided bialgebra generated by a subcoalgebra C, (I) the bi-ideal generated by a coideal I of B. Then au induces a braiding on the bialgebra B/(I) iff au=0 on $C\otimes I+I\otimes C$.

If (B, τ) is a braided bialgebra, $t\tau^{-1}$ is another braiding on B, where $^{t}\tau^{-1}(x,y)=\tau^{-1}(y,x)$, and the braiding τ is said to be symmetric if $^{t}\tau^{-1}=\tau$.

Let C be a coalgebra over $k, \sigma: C \otimes C \to k$ an invertible k-linear map. For any bialgebra B, a linear map $f: C \to B$ is called a σ -map if

$$\Sigma \sigma(x_1, y_1) f(x_2) f(y_2) = \Sigma f(y_1) f(x_1) \sigma(x_2, y_2), \quad x, y \in C.$$

Let T(C) be the tensor (bi-)algebra and I_{σ} is the (bi-)ideal generated by

(4)
$$\Sigma \sigma(x_1, y_1) x_2 y_2 - \Sigma y_1 x_1 \sigma(x_2, y_2), \quad x, y, z \in C.$$

We can form the bialgebra $M(C, \sigma) = T(C)/I_{\sigma}$, which is called is the quadratic bialgebra associated with (C, σ) .

REMARK 1.2. i) The map $i: C \hookrightarrow T(C) \to M(C, \sigma)$ is an injective coalgebra σ -map.

- ii) If B is a bialgebra and $f: C \to B$ is a σ -(coalgebra) map, then there is a unique (bi-) algebra map $\hat{f}: M(C, \sigma) \to B$ such that $\hat{f} \circ i = f$.
 - iii) $M(C,\sigma)$ has a natural algebra-gradation $\{C^n\}_{n\geq 0}$.
 - iv) $M(C,\sigma)^{op} = M(C,\sigma^{-1}) = M(C,{}^t\sigma), M(C,\sigma) = M(C,{}^t\sigma^{-1}).$

Let (C, σ) be as above. The map σ is called a Yang-Baxter form (or YB-form) if for all $x, y, z \in C$,

(5)
$$\Sigma \sigma(x_1, y_1) \sigma(x_2, z_1) \sigma(y_2, z_2) = \Sigma \sigma(y_1, z_1) \sigma(x_1, z_2) \sigma(x_2, y_2).$$

We call (C, σ) a YB-coalgebra if σ is a YB-form.

REMARK 1.3. If σ is a YB-form on C, so is ${}^t\sigma^{-1}$.

A YB-form σ is said to be symmetric if ${}^t\sigma^{-1} = \sigma$.

PROPOSITION 1.4 ([D, Theorem 2.6]). If (C, σ) is a YB-coalgebra, σ uniquely extends to a braiding $\tilde{\sigma}$ on $M(C, \sigma)$.

We note that if (C, σ) is a YB-coalgebra then $M(C, \sigma)$ has another braiding ${}^{t}\tilde{\sigma}^{-1}$.

COROLLARY 1.5. $\tilde{\sigma}$ is symmetric iff σ is symmetric.

For a bialgebra B, a Hopf algebra H and a bialgebra map $\iota: B \to H$, we call (H, ι) (or simply H) a Hopf closure of B if the following universality holds: for any Hopf algebra A and any bialgebra map $f: B \to A$, there is a unique Hopf algebra map $\tilde{f}: H \to A$ such that $\tilde{f} \circ \iota = f$. See [Man] [H] [D].

PROPOSITION 1.6 ([T2] [D, Theorem 3.6] [H]). Let $M(C, \sigma)$ be the quadratic bialgebra associated with (C, σ) , $d(\neq 0)$ a grouplike element of $M(C, \sigma)$. If there is a map $j: C \to M(C, \sigma)$ such that

$$\sum i(x_1)j(x_2) = \varepsilon(x)d = \sum j(x_1)i(x_2)$$
 for all $x \in C$,

then d is central and the (well-defined) localization $M(C,\sigma)[d^{-1}]$ becomes a Hopf algebra. Moreover it is a Hopf closure of $M(C,\sigma)$, and it follows that $M(C,\sigma)[d^{-1}] = M(C,\sigma)[G^{-1}]$, where G is the set of grouplike elements of $M(C,\sigma)$. If (C,σ) is a YB-coalgebra, $M(C,\sigma)[d^{-1}]$ has a braiding.

2. YB-coalgebras and quadratic bialgebras

From now on we work over an algebraically closed field k whose characteristic, chk, is not 2. Indices of Kronecker's δ_{ij} , X_{ij} , etc. are considered modulo 2.

In this section we define some YB-coalgebras and examine quadratic bialgebras associated with them.

Set $C = M_2(k)^*$, the dual coalgebra of the 2×2 -matrix algebra $M_2(k)$, and let $\{X_{ij}\}_{1 \le i,j \le 2}$ be the comatrix basis of C, namely it spans C and satisfies

$$\Delta(X_{ij}) = \sum_{k=1}^{2} X_{ik} \otimes X_{kj}, \quad \varepsilon(X_{ij}) = \delta_{ij}.$$

For any coalgebra D and $Y_{ij} \in D$, $1 \le i$, $j \le 2$, if the linear map $C \to D$, $X_{ij} \mapsto Y_{ij}$, is an injective coalgebra map, we denote the image by

$$span_k(Y_{ij}) = span_k \begin{pmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{pmatrix}.$$

Let $\lambda = \pm 1$. Now for any $\alpha \in k^{\times} = k - \{0\}$, we define linear maps $\sigma_{(\alpha)}$, $\tau_{(\alpha)}^{(\pm 1)} = \tau_{(\alpha)}^{(\pm)} : C \otimes C \to k$ as follows (see [D, Example 2.8] for $\tau^{(\lambda)}$):

					$ au_{(lpha)}^{(\lambda)}$				
$\overline{X_{11}}$	0	0	0	0	X_{11} X_{12} X_{21} X_{22}	α	0	0	1
X_{12}	0	α	1	0	X_{12}	0	0	0	0
X_{21}	0	1	α	0	X_{21}	0	0	0	0
X_{22}	0	0	0	0,	X_{22}	λ	0	0	α.

Proposition 2.1. $\sigma_{(\alpha)}$, $\tau_{(\alpha)}^{(\lambda)}$ $(\alpha \in k^{\times})$ are YB-forms on C.

PROOF. We show that $\sigma_{(\alpha)} = \sigma$ is a YB-form.

We can write $\sigma(X_{i,j+1}, X_{l,m+1}) = \delta_{ij}\delta_{lm}\alpha^{\delta_{il}}$.

For X_{ij} , X_{lm} and X_{uv} , observe that

$$\begin{split} \Sigma_{a,b,c}\sigma(X_{ia},X_{lb})\sigma(X_{aj},X_{uc})\sigma(X_{bm},X_{cv}) \\ &= \sigma(X_{i,i+1},X_{l,l+1})\sigma(X_{i+1,j},X_{u,u+1})\sigma(X_{l+1,m},X_{u+1,v}) \\ &= \delta_{ij}\delta_{lm}\delta_{uv}\alpha^{\delta_{il}}\alpha^{\delta_{i+1,u}}\alpha^{\delta_{lu}}, \end{split}$$

and

$$\begin{split} &\Sigma_{a,b,c}\sigma(X_{lb},X_{uc})\sigma(X_{ia},X_{cv})\sigma(X_{aj},X_{bm})\\ &=\sigma(X_{l,l+1},X_{u,u+1})\sigma(X_{i,i+1},X_{u+1,v})\sigma(X_{i+1,j},X_{l+1,m})\\ &=\delta_{uv}\delta_{ij}\delta_{lm}\alpha^{\delta_{lu}}\alpha^{\delta_{iu}+1}\alpha^{\delta_{il}}. \end{split}$$

Thus Condition (5) is satisfied.

The inverse is given by

$$\sigma_{(\alpha)}^{-1} = \sigma_{(\alpha^{-1})}.$$

Therefore $\sigma_{(\alpha)}$ is a YB-form for $\alpha \in k^{\times}$.

It is easy to check that $\tau_{(\alpha)}^{(\lambda)}$ is also a YB-form on C.

Therefore $(C, \sigma_{(\alpha)})$ and $(C, \tau_{(\alpha)}^{(\lambda)})$ are YB-coalgebras for all $\alpha \in k^{\times}$.

REMARK 2.2. $\{\sigma_{(\alpha)}, \tau_{(\beta)}^{(+)} \mid \alpha, \beta \in k^{\times}\}, \{\tau_{(\alpha)}^{(+)}, \tau_{(\beta)}^{(-)} \mid \alpha, \beta \in k^{\times}\}$ form subgroups of the unit group of $M_2(k)^{\otimes 2}$.

Next we examine the defining relations of the quadratic bialgebras associated with them.

Proposition 2.3.

i) The ideal I_{σ} , where $\sigma = \sigma_{(\alpha)}$, is generated by the following:

$$\{X_{11}^2 - X_{22}^2, X_{12}^2 - X_{21}^2, X_{j,j+1}X_{ii} - \alpha X_{i+1,i+1}X_{j+1,j}\} \quad \text{if } \alpha^2 = 1,$$

$$\{X_{11}^2 - X_{22}^2, X_{12}^2 - X_{21}^2, X_{ij}X_{lm}(i+j+l+m \equiv 1)\} \quad \text{if } \alpha^2 \neq 1.$$

ii) The ideal $I_{\tau^{(\lambda)}}$, where $\tau^{(\lambda)} = \tau^{(\lambda)}_{(\alpha)}$, is generated by the following:

$$\{X_{11}X_{22} - X_{22}X_{11}, X_{12}X_{21} - \lambda X_{21}X_{12}, X_{i2}X_{i1} - \alpha X_{il}X_{i2}, X_{2j}X_{1j} - \lambda \alpha X_{1j}X_{2j}\}$$
if $\alpha^2 = \lambda$.

$$\{X_{11}X_{22} - X_{22}X_{11}, X_{12}X_{21} - \lambda X_{21}X_{12}, X_{ij}X_{lm}(i+j+l+m \equiv 1)\}$$
 if $\alpha^2 \neq \lambda$.

PROOF. i) For X_{ij} , X_{lm} , observe that

$$\Sigma \sigma(X_{ia}, X_{lb}) X_{aj} X_{bm} = \sigma(X_{i,i+1}, X_{l,l+1}) X_{i+1,j} X_{l+1,m}$$

$$= \alpha^{\delta_{il}} X_{i+1,j} X_{l+1,m},$$

$$\Sigma X_{lb} X_{ia} \sigma(X_{aj}, X_{bm}) = X_{l,m+1} X_{i,j+1} \sigma(X_{j+1,j}, X_{m+1,m})$$

$$= X_{l,m+1} X_{i,j+1} \alpha^{\delta_{jm}}.$$

Thus the subset

$$\{\alpha^{\delta_{il}}X_{ij}X_{lm} - X_{l+1,m+1}X_{i+1,j+1}\alpha^{\delta_{jm}} \mid 1 \leq i, j, l, m \leq 2\}$$

generates the ideal I_{σ} . The above polynomials are written as follows:

$$\begin{cases} \alpha X_{ij}^{2} - X_{i+1,j+1}^{2} \alpha & \text{if } i = l, j = m, \\ X_{ij} X_{lj} - X_{l+1,j+1} X_{i+1,j+1} \alpha & \text{if } i \neq l, j = m, \\ \alpha X_{ij} X_{im} - X_{i+1,m+1} X_{i+1,j+1} & \text{if } i = l, j \neq m, \\ X_{ij} X_{lm} - X_{l+1,m+1} X_{i+1,j+1} & \text{if } i \neq l, j \neq m \text{ (i.e., } l \equiv i+1, m \equiv j+1). \end{cases}$$

ii) This is similarly shown as i).

REMARK 2.4. i) For the bialgebra $M(C, \sigma_{(-1)})$, see the quantum conformal group in [Man].

- ii) $M(C, \tau_{(\pm 1)}^{(+)})$ are the quantum matrix bialgebras $M_{\pm 1}(2)$.
- iii) $M(C, \tau_{(\sqrt{-1})}^{(-)})$ is Takeuchi's two-parameter bialgebra $M_{\alpha,\beta}(2)$ for $\alpha = \sqrt{-1}$, $\beta = -\sqrt{-1}$ ([T1], [D]).

Define $B = M(C, \sigma_{(\alpha)})$ for $\alpha^2 \neq 1$ and $B^{(\lambda)} = M(C, \tau_{(\alpha)}^{(\lambda)})$ for $\alpha^2 \neq \lambda$. We write $B^{(\pm 1)} = B^{(\pm)}$. These definitions, ignoring choice of α , are reasonable by Proposition 2.3.

On the other hand, we see by Proposition 1.1 that braidings $\tilde{\sigma}_{(\pm 1)}$, $\tilde{\tau}_{(\pm \sqrt{\lambda})}^{(\lambda)}$ are induced on B, $B^{(\lambda)}$, respectively, via the canonical surjections

$$M(C, \sigma_{(\pm 1)}) \to B, \quad M(C, \tau_{(\pm \sqrt{\lambda})}^{(\lambda)}) \to B^{(\lambda)}.$$

Note that $\{X_{ij}X_{lm}|i+j+l+m\equiv 1\}$ spans a coideal of T(C). Therefore we have the following claim:

CLAIM 2.5.

- i) $\sigma_{(\alpha)}: C \otimes C \to k$ extends to a braiding $\tilde{\sigma}_{(\alpha)}$ on B for every $\alpha \in k^{\times}$. ii) $\tau_{(\alpha)}^{(\lambda)}: C \otimes C \to k$ extends to a braiding $\tilde{\tau}_{(\alpha)}^{(\lambda)}$ on $B^{(\lambda)}$ for every $\alpha \in k^{\times}$.

We examine the coalgebra structure of B.

Proposition 2.6.

i) B has the following set as a basis

$$\{X_{11}^{n-r} \overbrace{X_{22}X_{11}X_{22}\dots, X_{12}^{n-r}}^{r} \overbrace{X_{21}X_{12}X_{21}\dots}^{r} \mid n \geq 0, 0 \leq r \leq n\}.$$

ii) The grouplike elements but 1 in B are given by

$$X_{11}^{2s} \pm X_{12}^{2s} \quad (s \ge 1).$$

Then are central non-zero divisors.

iii) The simple subcoalgebras of B which are not spanned by grouplike elements are of dimension 4. They are given by

$$C_{st} = span_k \begin{pmatrix} X_{11}^{2s} \overbrace{X_{11} X_{22} X_{11} \cdots}^{t} & X_{12}^{2s} \overbrace{X_{12} X_{21} X_{12} \cdots}^{t} \\ X_{12}^{2s} \overbrace{X_{21} X_{12} X_{21} \cdots}^{t} & X_{11}^{2s} \overbrace{X_{22} X_{11} X_{22} \cdots}^{t} \end{pmatrix} \quad (s \ge 0, t \ge 1).$$

iv) B is cosemisimple. The nth component C^n $(n \ge 1)$ of B is decomposed as the sum of simple subcoalgebras as follows:

$$C^{n} = \begin{cases} \sum_{n=2s+t} C_{st}, & \text{if n is odd;} \\ \sum_{n=2s+t} C_{st} + k(X_{11}^{n} \pm X_{12}^{n}), & \text{if n is even.} \end{cases}$$

PROOF. i) It is verified in the same manner as Theorem 3.1.i) below.

ii), iii), iv) It is easy to see that $X_{11}^{2s} \pm X_{12}^{2s}$ is grouplike for $s \ge 1$. By i) and the defining relations of B, it is a central non-zero divisor. C is isomorphic to C_{st} as coalgebras by

$$X_{11} \mapsto X_{11}^{2s} \underbrace{X_{11} X_{22} X_{11} \dots}_{t},$$

$$X_{12} \mapsto X_{12}^{2s} X_{12} X_{21} X_{12} \dots,$$

$$X_{21} \mapsto X_{12}^{2s} X_{21} X_{12} X_{21} \dots,$$

$$X_{22} \mapsto X_{11}^{2s} X_{22} X_{11} X_{22} \dots.$$

By i) we have that

$$B = k \cdot 1 + \sum k(X_{11}^{2s} \pm X_{12}^{2s}) + \sum C_{st}$$

= $k \cdot 1 \oplus \{ \bigoplus_{s \ge 1} k(X_{11}^{2s} \pm X_{12}^{2s}) \oplus \{ \bigoplus_{s \ge 0, t \ge 1} C_{st} \}.$

Thus ii), iii), iv) are done.

Proposition 2.7.

i) $B^{(\lambda)}$ has the following set as a basis

$$\{X_{11}^u X_{22}^v, X_{12}^u X_{21}^v \mid u+v \ge 0\}.$$

ii) The grouplike elements but 1 in $B^{(\lambda)}$ are given by

$$X_{11}^{u}X_{22}^{u} \pm \sqrt{\lambda^{u}}X_{12}^{u}X_{21}^{u} \quad (u \ge 1).$$

They are non-zero divisors.

iii) The simple subcoalgebras of $B^{(\lambda)}$ which are not spanned by grouplike elements are all of dimension 4. They are given by

$$D_{uv} = span_k \begin{pmatrix} X_{11}^u X_{22}^v & X_{12}^u X_{21}^v \ X_{21}^u X_{12}^v & X_{22}^u X_{11}^v \end{pmatrix}, \quad (u \leq v).$$

iv) $B^{(\lambda)}$ is cosemisimple. The nth component C^n $(n \ge 1)$ of $B^{(\lambda)}$ is decomposed as the sum of simple subcoalgebras as follows:

$$C^{n} = \begin{cases} \Sigma_{n=u+v,u \leq v} D_{uv}, & \text{if n is odd;} \\ \Sigma_{n=u+v,u \leq v} D_{uv} + k(X_{11}^{n/2} X_{22}^{n/2} \pm \sqrt{\lambda^{n/2}} X_{12}^{n/2} X_{21}^{n/2}), & \text{if n is even.} \end{cases}$$

We omit the proof.

COROLLARY 2.8. Let $\langle C_{st} \rangle$ denote the sub-bialgebra generated by the simple subcoalgebra $C_{st} \subset B$. Then as bialgebras,

$$B \supseteq \langle C_{st} \rangle \simeq \begin{cases} B, & \text{if } t \text{ is odd}; \\ B^{(+)}, & \text{if } t \text{ is even}. \end{cases}$$

We omit the proof. See the proof of Theorem 3.5 below.

Define linear maps $\sigma_{\alpha\beta} = \beta \sigma_{(\alpha\beta^{-1})}$, $\tau_{\alpha\beta}^{(\lambda)} = \beta \tau_{(\alpha\beta^{-1})}^{(\lambda)}$ for α , $\beta \in k^{\times}$, $\lambda = \pm 1$. They are also YB-forms on C. The YB-form $\sigma_{\alpha\beta}$ extends to a braiding $\tilde{\sigma}_{\alpha\beta}$ on B, and $\tau_{\alpha\beta}^{(\lambda)}$ extends to a braiding $\tilde{\tau}_{\alpha\beta}^{(\lambda)}$ on $B^{(\lambda)}$.

Proposition 2.9. i) $\sigma_{\alpha\beta}$ is symmetric iff $\alpha^2=1=\beta^2$. $\tau_{\alpha\beta}^{(\lambda)}$ is symmetric iff $\alpha^2=1,\ \beta^2=\lambda$.

ii) The set of braidings on B is $\{\tilde{\sigma}_{\alpha\beta} \mid \alpha, \beta \in k^{\times}\}$, and that on $B^{(\lambda)}$ is $\{\tilde{\tau}_{\alpha\beta}^{(\lambda)} \mid \alpha, \beta \in k^{\times}\}$.

PROOF. i) We note that ${}^t\sigma_{\alpha\beta} = \sigma_{\alpha\beta}$, ${}^t\tau_{\alpha\beta}^{(\lambda)} = \tau_{\alpha,\lambda\beta}^{(\lambda)}$. The statement follows from these.

ii) We show the statement with B. The statement with $B^{(\lambda)}$ is similarly verified.

We have obtained braidings $\tilde{\sigma}_{\alpha\beta}(\alpha,\beta\in k^{\times})$ on B.

Let σ be a braiding. Note that the second component C^2 of B has a basis

$$\{X_{11}^2, X_{12}^2, X_{11}X_{22}, X_{22}X_{11}, X_{12}X_{21}, X_{21}X_{12}\}.$$

So for X_{ij} , X_{lm} , it follows that

$$\Sigma \sigma(X_{ia}, X_{lb}) X_{aj} X_{bm} = \sigma(X_{ij}, X_{lm}) X_{jj} X_{mm} + \sigma(X_{i,j+1}, X_{l,m+1}) X_{j+1,j} X_{m+1,m},$$

$$\Sigma X_{lb} X_{ia} \sigma(X_{aj}, X_{bm}) = X_{ll} X_{ii} \sigma(X_{ij}, X_{lm}) + X_{l,l+1} X_{i,i+1} \sigma(X_{i+1,j}, X_{l+1,m}).$$

These must be equal, so we obtain the following by Proposition 2.6.i):

$$\sigma(X_{ij}, X_{lm}) X_{jj} X_{mm} = X_{ll} X_{ii} \sigma(X_{ij}, X_{lm}),$$

$$\sigma(X_{i,j+1}, X_{l,m+1}) X_{j+1,j} X_{m+1,m} = X_{l,l+1} X_{i,i+1} \sigma(X_{i+1,j}, X_{l+1,m}).$$

The above equations imply that $\sigma|_{C\otimes C}$ is given as follows with some α , β , $\gamma \in k$:

σ	X_{11}	X_{12}	X_{21}	X_{22}
$\overline{X_{11}}$	γ	0	0	0
X_{12}	0	α	β	0
X_{21}	0	β	α	0
X_{22}	0	0	0	γ.

Moreover it follows by Condition (2) that

$$0 = \sigma(0, X_{12}) = \sigma(X_{11}X_{12}, X_{12})$$

= $\sigma(X_{11}, X_{11})\sigma(X_{12}, X_{12}) + \sigma(X_{11}, X_{12})\sigma(X_{12}, X_{22}) = \gamma\alpha$,

and

$$0 = \sigma(0, X_{12}) = \sigma(X_{11}X_{21}, X_{12})$$

= $\sigma(X_{11}, X_{11})\sigma(X_{21}, X_{12}) + \sigma(X_{11}, X_{12})\sigma(X_{21}, X_{22}) = \gamma \beta.$

We have that $\gamma = 0$, α , $\beta \in k^{\times}$ since σ is invertible.

Therefore
$$\sigma|_{C \otimes C} = \sigma_{\alpha\beta}$$
, so $\sigma = \tilde{\sigma}_{\alpha\beta}$.

We describe a Hopf closure of the bialgebra B.

Set $d_{\pm} = X_{11}^2 \pm X_{12}^2$. These are central grouplike elements. For example, observe that

$$egin{pmatrix} X_{11} & X_{12} \ X_{21} & X_{22} \end{pmatrix} egin{pmatrix} X_{11} & X_{21} \ X_{12} & X_{22} \end{pmatrix} = d_+ egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} = egin{pmatrix} X_{11} & X_{21} \ X_{12} & X_{22} \end{pmatrix} egin{pmatrix} X_{11} & X_{12} \ X_{21} & X_{22} \end{pmatrix},$$

and

$$\begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \begin{pmatrix} X_{11} & -X_{21} \\ -X_{12} & X_{22} \end{pmatrix} = d_{-} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} X_{11} & -X_{21} \\ -X_{12} & X_{22} \end{pmatrix} \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}.$$

Using Proposition 1.6 and Proposition 2.6, we have the following.

PROPOSITION 2.10. The Hopf closure H of B is given by

$$H = B[d_{+}^{-1}] = B[d_{-}^{-1}] = B[G(B)^{-1}],$$

where G(B) is the set of grouplike elements in B. This Hopf algebra is braided and cosemisimple, and includes B as a sub-bialgebra. Furthermore, H is involutory. In fact, the antipode S is determined by

$$S(X_{ij}) = X_{ji}d_{+}^{-1} = (-1)^{i+j}X_{ii}d_{-}^{-1}$$

3. Quotients of the bialgebra B

In this section we define and study a family of finite dimensional cosemisimple bi(Hopf) algebras which are quotients of the bialgebra B over an algebraically closed field k with $chk \neq 2$.

It will be shown that the family contains the "non-trivial" cosemisimple Hopf algebras of dimension 8 ([Mas2]) and of dimension 12 ([F]) if $chk \neq 3$. See also Gelaki's Hopf algebras of dimension 4p, where $p(\geq 3)$ is prime ([G]).

We construct the family. It is easy to see by Proposition 2.6 that for $L \ge 2$, $N \ge 1$ and λ , $\nu = \pm 1$, the following subsets

$$\{\overline{X_{22}X_{11}X_{22}\cdots} - \overline{X_{11}X_{22}X_{11}\cdots}, \quad \overline{X_{21}X_{12}X_{21}\cdots} - \lambda \overline{X_{12}X_{21}X_{12}\cdots}\}, \\ \{1 - (X_{11}^{2N} + \nu X_{12}^{2N})\}$$

span coideals of B. Let J_L^{λ} and I_N^{ν} be the ideals generated by these coideals respectively, which are bi-ideals.

We can form the bialgebra

$$A_{NL}^{(\nu\lambda)}=B/J_L^{\lambda}+I_N^{\nu}.$$

We write $A_{NL}^{(+-)} = A_{NL}^{(+1,-1)}$, etc. Let π be the following surjective bialgebra map:

$$\pi: B \to A_{NL}^{(\nu\lambda)}, \quad X_{ij} \mapsto \overline{X}_{ij} = x_{ij}.$$

THEOREM 3.1.

i) $A_{NL}^{(\nu\lambda)}$ has the following set as a basis

$$\{x_{11}^s, \underbrace{x_{22}x_{11}x_{22}\dots}_{t}, x_{12}^s, \underbrace{x_{21}x_{12}x_{21}\dots}_{t} | 1 \le s \le 2N, \ 0 \le t \le L-1\}.$$

Thus $dim A_{NL}^{(\nu\lambda)}=4NL$. ii) Let $G(A_{NL}^{(\nu\lambda)})=G$ be the set of grouplike elements of $A_{NL}^{(\nu\lambda)}$. Then

$$G = \{x_{11}^{2s} \pm x_{12}^{2s}, x_{11}^{2s} \underbrace{x_{11}^{2s} x_{22}^{2s} x_{11} \cdots}_{L} \pm \sqrt{\lambda} x_{12}^{2s} \underbrace{x_{12}^{2s} x_{21}^{2s} x_{12} \cdots}_{L} \mid 1 \le s \le N \}.$$

iii) The simple subcoalgebras of $A_{NL}^{(\nu\lambda)}$ which are not spanned by grouplike elements are given by

$$C_{st} = span_k \begin{pmatrix} x_{11}^{2s} \overline{x_{11} x_{22} x_{11}} \cdots & x_{12}^{2s} \overline{x_{12} x_{21} x_{12}} \cdots \\ x_{12}^{2s} \overline{x_{21} x_{12} x_{21}} \cdots & x_{11}^{2s} \overline{x_{22} x_{11} x_{22}} \cdots \end{pmatrix}$$

$$for \ 0 \le s \le N - 1, \ 1 \le t \le L - 1.$$

- iv) $|G(A_{NL}^{(\nu\lambda)})| = 4N$, and there are exactly N(L-1) simple subcoalgebras of
- v) $A_{NL}^{(\nu\lambda)}$ is non-cocommutative and cosemisimple. It is non-commutative unless $(L,\lambda)=(2,+1).$
 - vi) $A_{NL}^{(\nu\lambda)}$ is an involutory Hopf algebra.
- vii) Let $\Lambda = \sum x_{11}^s \overbrace{x_{22}x_{11}x_{22}\cdots} (1 \le s \le 2N, 0 \le t \le L-1)$. Then Λ is a nonzero two-sided integral.
 - viii) $A_{NL}^{(\nu\lambda)}$ is semisimple if $chk \nmid NL$.

PROOF. i) Let B' be the algebra $k\langle X, Y \rangle/\{X^2 - Y^2\}$ and λ , $\nu = \pm 1$. Let V be the k-vector space with a basis $\{\langle s,t\rangle\in V\,|\,s\geq 1,0\leq t\leq L-1\}.$

We define the following ideals of B':

$$J_L^{\lambda\prime} = (\overbrace{YXYX\cdots}^L - \lambda \overbrace{XYXY\cdots}^L),$$
$$I_N^{\nu\prime} = (1 - \nu X^{2N}).$$

We prove i) step-by-step.

(Step 1) We define a right B'-module structure on V.

Define the actions of X and Y as follows:

$$X: \langle s, t \rangle \mapsto \begin{cases} \langle s, t+1 \rangle, & \text{if } t \text{ is odd,} \quad t \leq L-2, \\ \lambda \langle s+1, L-1 \rangle, & t = L-1, \\ \langle s+1, 0 \rangle, & \text{if } t \text{ is even,} \quad t = 0, \\ \langle s+2, t-1 \rangle, & t \geq 2, \end{cases}$$

$$Y: \langle s, t \rangle \mapsto \begin{cases} \langle s+2, t-1 \rangle, & \text{if } t \text{ is odd,} \\ \langle s, t+1 \rangle, & \text{if } t \text{ is even,} \quad t \leq L-2, \\ \lambda \langle s+1, L-1 \rangle, & t = L-1. \end{cases}$$

It is easy to see $X^2 \equiv Y^2$ in $End_k(V)$.

Thus we have a right B'-module structure on V.

(Step 2) We claim the subspace W spanned by

$$\{\langle q(2N) + s, t \rangle - v^q \langle s, t \rangle \mid 1 \le s \le 2N, q \ge 1, 0 \le t \le L - 1\}$$

is a submodule of V.

For example, when t = L - 1 is odd and s = 2N, observe the following:

$$X: \langle q(2N) + 2N, L - 1 \rangle \mapsto \lambda \langle q(2N) + 2N + 1, L - 1 \rangle$$

$$= \lambda \langle (q+1)(2N) + 1, L - 1 \rangle$$

$$\equiv \lambda v^{q+1} \langle 1, L - 1 \rangle \pmod{W},$$

and

$$X: v^{q} \langle 2N, L-1 \rangle \mapsto v^{q} \lambda \langle 2N+1, L-1 \rangle$$

$$= v^{q} \lambda \langle 1 \cdot (2N) + 1, L-1 \rangle$$

$$\equiv v^{q} \lambda v \langle 1, L-1 \rangle \pmod{W}.$$

(Step 3) The action of B' induces the $B'/J_L^{\lambda'}$ -module structure on V. We check it case-by-case.

When L is even, for each $0 \le 2u \le L - 2$, observe the following:

$$\underbrace{YX} \cdots X : \cdot \langle s, 2u \rangle \xrightarrow{(YX)^{L/2-u-1}} \langle s, L-2 \rangle$$

$$\xrightarrow{YX} \lambda \langle s+1, L-1 \rangle$$

$$\xrightarrow{(YX)^u} \lambda \langle s+1+4u, L-1-2u \rangle,$$

$$\cdot \langle s, 2u+1 \rangle \xrightarrow{(YX)^u} \langle s+4u, 1 \rangle \xrightarrow{YX} \langle s+4u+3, 0 \rangle$$

$$\xrightarrow{(YX)^{L/2-u-1}} \langle s+4u+3, L-2u-2 \rangle.$$

$$\underbrace{XY} \cdots Y : \cdot \langle s, 2u \rangle \xrightarrow{(XY)^u} \langle s+4u, 0 \rangle \xrightarrow{XY} \langle s+4u+1, 1 \rangle$$

$$\xrightarrow{(XY)^{L/2-u-1}} \langle s+4u+1, L-2u-1 \rangle,$$

$$\cdot \langle s, 2u+1 \rangle \xrightarrow{(XY)^{L/2-u-1}} \langle s, L-1 \rangle$$

$$\xrightarrow{XY} \lambda \langle s+3, L-2 \rangle$$

$$\xrightarrow{(XY)^u} \lambda \langle s+3+4u, L-2-2u \rangle.$$

Thus it follows that $\overbrace{YX\cdots X}^{L} \equiv \lambda \overbrace{XY\cdots Y}^{L}$ in $End_k(V)$. When L is odd (so $L \geq 3$), for each $2 \leq 2u \leq L-1$, observe the following:

$$\underbrace{(YX)^{(L-1)/2}}_{YX \cdots Y} : \cdot \langle s, 0 \rangle \xrightarrow{(YX)^{(L-1)/2-u}}_{\longrightarrow} \langle s, L - 1 \rangle \xrightarrow{Y}_{\longrightarrow} \lambda \langle s + 1, L - 1 \rangle,$$

$$\cdot \langle s, 2u \rangle \xrightarrow{(YX)^{(L-1)/2-u}}_{\longrightarrow} \langle s, L - 1 \rangle \xrightarrow{Y}_{\longrightarrow} \lambda \langle s + 1, L - 1 \rangle$$

$$\underbrace{(XY)^{u}}_{\longrightarrow} \lambda \langle s + 1 + 4u, L - 1 - 2u \rangle.$$

$$\cdot \langle s, 2u - 1 \rangle \xrightarrow{(YX)^{u-1}}_{\longrightarrow} \langle s + 4u - 4, 1 \rangle \xrightarrow{YX}_{\longrightarrow} \langle s + 4u - 1, 0 \rangle$$

$$\underbrace{(YX)^{(L-1)/2-u}}_{\longrightarrow} \langle s + 4u - 1, L - 1 - 2u \rangle \xrightarrow{Y}_{\longrightarrow} \langle s + 4u - 1, L - 2u \rangle.$$

$$\overbrace{XY \cdots X}^{L} : \langle s, 0 \rangle \mapsto \langle s+1, L-1 \rangle,$$

$$\cdot \langle s, 2u \rangle \xrightarrow{(XY)^{u}} \langle s+4u, 0 \rangle \xrightarrow{X} \langle s+4u+1, 0 \rangle$$

$$\xrightarrow{(YX)^{(L-1)/2-u}} \langle s+4u+1, L-2u-1 \rangle,$$

$$\cdot \langle s, 2u-1 \rangle \xrightarrow{(XY)^{(L-1)/2-u}} \langle s, L-2 \rangle \xrightarrow{XY} \lambda \langle s+1, L-1 \rangle$$

$$\xrightarrow{(XY)^{u-1}} \lambda \langle s+4u-3, L-2u+1 \rangle \xrightarrow{X} \lambda \langle s+4u-1, L-2u \rangle.$$

Thus we have that $YX \cdots Y \equiv \lambda XY \cdots X$ in $End_k(V)$.

In either case V becomes a right $B'/J_L^{\lambda'}$ -module by the action.

(Step 4) V/W is a $B'/J_L^{\lambda'} + I_N^{\nu'}$ -module of dimension 2NL.

Since V/W has the set $\{\langle s,t\rangle | 1 \le s \le 2N, 0 \le t \le L-1\}$ as a basis, V/W has dimension 2NL.

The action of X^2 is given by $X^2: \langle s, t \rangle \mapsto \langle s+2, t \rangle$.

Thus for $1 \le s \le 2N$, $0 \le t \le L - 1$, it follows that

$$X^{2N}: \langle s, t \rangle \mapsto \langle s + 2N, t \rangle = \langle 1 \cdot (2N) + s, t \rangle \equiv v \langle s, t \rangle \mod W.$$

So we have that $1 \equiv \nu X^{2N}$ in $End_k(V/W)$.

Thus it is done.

(Step 5) We construct a right $A_{NL}^{\nu\lambda}$ -module $M = (V/W) \oplus (V/W)$. There are two algebra maps

$$\pi'_0: B \to B'/J_L^{+\prime} + I_N^{+\prime},$$
 $X_{11} \mapsto \overline{X} = x, \quad X_{22} \mapsto \overline{Y} = y,$
 $X_{i,i+1} \mapsto 0,$

and

$$\pi_1': B \to B'/J_L^{\lambda\prime} + I_N^{\nu\prime}, \ X_{12} \mapsto \overline{X} = x, \quad X_{21} \mapsto \overline{Y} = y, \ X_{ii} \mapsto 0.$$

They induce algebra maps

$$\pi_0:A_{NL}^{(\nu\lambda)} o B'/J_L^{+\prime}+I_N^{+\prime}, \ x_{11}\mapsto x, \quad x_{22}\mapsto y, \quad x_{i,i+1}\mapsto 0, \ \pi_1:A_{NL}^{(\nu\lambda)} o B'/J_L^{\lambda\prime}+I_N^{\nu\prime}, \ x_{12}\mapsto x, \quad x_{21}\mapsto y, \quad x_{ii}\mapsto 0.$$

Using these, we obtain the right $A_{NL}^{(\nu\lambda)}$ -module $V/W=V_0$ through π_0 with a basis

$$\{\langle s, t \rangle_0 = \langle s, t \rangle \mid 1 \le s \le 2N, 0 \le t \le L - 1\},$$

and the right $A_{NL}^{(\nu\lambda)}$ -module $V/W=V_1$ through π_1 with a basis

$$\{\langle s, t \rangle_1 = \langle s, t \rangle \mid 1 \le s \le 2N, 0 \le t \le L - 1\}.$$

Let M be the right $A_{NL}^{(\nu\lambda)}$ -module $V_0 \oplus V_1$. We note that M has dimension 4NL.

(Step 6) It follows that $M \simeq A_{NL}^{(\nu\lambda)}$ as right $A_{NL}^{(\nu\lambda)}$ -modules. Define an $A_{NL}^{(\nu\lambda)}$ -module map $\phi: A_{NL}^{(\nu\lambda)} \to M$ and a k-linear map $\psi: M \to A_{NL}^{(\nu\lambda)}$ as follows:

$$\phi: A_{NL}^{(\nu\lambda)} \to M, \quad a \mapsto \{\langle 2N, 0 \rangle_0 + \nu \langle 2N, 0 \rangle_1\} \cdot a,$$

$$\psi: M \to A_{NL}^{(\nu\lambda)}, \quad \langle s, t \rangle_0 \mapsto x_{11}^s \underbrace{x_{22}x_{11}x_{22}\cdots}_{t},$$

$$\langle s, t \rangle_1 \mapsto x_{12}^s \underbrace{x_{21}x_{12}x_{21}\cdots}_{t}.$$

It is easy to see that ψ is surjective and that $\phi \circ \psi$ is the identity map on M. Therefore we have that $M \simeq A_{NL}^{(\nu\lambda)}$ as $A_{NL}^{(\nu\lambda)}$ -modules, in particular $\dim A_{NL}^{(\nu\lambda)}$ dim M = 4NL.

This completes the proof of i).

- ii) \sim v) These are easily verified by i). Since $A_{NL}^{(\nu\lambda)}$ is generated by $\{x_{ij}\}$, it is commutative iff $(L, \lambda) = (2, +1)$.
- vi) There is an algebra map $B \to B^{op}$, $X_{ij} \mapsto X_{ji} \cdot (X_{11}^{2(2N-1)} + X_{12}^{2(2N-1)})$, and this induces an algebra map S,

The anti-algebra map S is an antipode of $A_{NL}^{(\nu\lambda)}$, which is given by

$$S: x_{ij} \mapsto x_{ji} \left(x_{11}^{2(2N-1)} + x_{12}^{2(2N-1)} \right)$$
$$= x_{ji} \left(x_{11}^2 + x_{12}^2 \right)^{-1}.$$

So $A_{NL}^{(\nu\lambda)}$ is an involutory Hopf algebra.

vii) The element $\Lambda = \sum x_{11}^s \overbrace{x_{22}x_{11}x_{22}\cdots}^t$ $(1 \le s \le 2N, 0 \le t \le L-1)$ is non-zero by i).

Recall that Λ is called a left (resp. right) integral if $a\Lambda$ (resp. Λa) = $\varepsilon(a)\Lambda$ for all $a \in A_{NL}^{(\nu\lambda)}$.

It is enough to check on the subset $\{x_{ij}\}$. Observe the following.

$$x_{12}\Lambda = x_{21}\Lambda = 0$$

$$= \varepsilon(x_{12})\Lambda = \varepsilon(x_{21})\Lambda.$$

$$x_{11}\Lambda = \sum_{t=1}^{t} \frac{1}{x_{22}x_{11}x_{22}} = \sum_{t=1}^{t} \frac{1}{x_{22}x_{11}x_{22}} = \Lambda$$

$$= \varepsilon(x_{11})\Lambda.$$

$$x_{22}\Lambda = \sum_{t=1}^{t} \frac{1}{x_{22}x_{11}x_{22}} = \sum_{t=1}^{t} \frac{1}{x_{22}x_{11}x_{22}} = \Lambda$$

$$= \sum_{t=1}^{t} x_{22}x_{11}^{s} x_{22} = \sum_{t=1}^{t} \frac{1}{x_{22}x_{11}x_{22}} = \sum_{t=1}^{t} \frac{1}{x_{22}x_{11}x_{22}} = \frac{1}{x_{22}x_{11}x_{22}} = \Lambda$$

$$= \sum_{t=1}^{t} x_{11}^{s} x_{22} + \sum_{t=1}^{t} x_{11}^{s+2} + \sum_{t=1}^{t} x_{11}^{s+2} + \sum_{t=1}^{t} x_{11}^{s+2} = X_{11}^{s+3} = X_{11}^{s+3} = X_{11}^{s+2} = X_{11}^{s+2} = X_{11}^{s} = X_{11}^{s}$$

Thus Λ is a left integral. It is similarly shown that Λ is a right integral. Therefore Λ is a non-zero two-sided integral.

viii) It follows that
$$\varepsilon(\Lambda) = 2NL \neq 0$$
 iff $chk \nmid NL$.

REMARK 3.2. For the multiplication relations of $A_{NL}^{(\nu\lambda)}$, we note the following.

- x_{ii}^2 is central.
- $x_{ii}^{2N+1} = x_{ii}$, and $x_{i,i+1}^{2N+1} = vx_{i,i+1}$.
- $x_{11}^{4N} + x_{12}^{4N} = 1$.
- $(x_{11}^{2s} + \mu x_{12}^{2s})^{-1} = x_{11}^{2(2N-s)} + \mu x_{12}^{2(2N-s)}$ for $1 \le s \le N, \mu = \pm 1$.

Set $h_{\pm} = x_{11}^2 \pm x_{12}^2$ and $g = \underbrace{x_{11}x_{22}x_{11}\cdots}_{L} + \sqrt{\lambda}\underbrace{x_{12}x_{21}x_{12}\cdots}_{L}$ for a fixed $\sqrt{\lambda}$. C_m denotes the cyclic group of order m.

PROPOSITION 3.3. i) The subgroup $\langle h_+, h_- \rangle$ of G is central in $A_{NL}^{(\nu\lambda)}$, and the order is 2N. As groups

$$\langle h_+, h_- \rangle \simeq \begin{cases} C_N \times C_2, & if(N, v) = (even, +1); \\ C_{2N}, & otherwise. \end{cases}$$

ii) $G \subset Z(A_{NL}^{(\nu\lambda)})$, the center of $A_{NL}^{(\nu\lambda)}$, iff $g \in Z(A_{NL}^{(\nu\lambda)})$ iff $(L,\lambda) = (even, +1)$.

PROOF. i) The order of $\langle h_+, h_- \rangle$ is 2N by Theorem 3.1. If $(N, \nu) =$

$$\begin{cases} (\text{even}, +1), & \text{then } \langle h_+, h_- \rangle = \langle h_+ \rangle \times \langle x_{11}^{2N} - x_{12}^{2N} \rangle, \\ (\text{even}, -1), & \text{then } \langle h_+, h_- \rangle = \langle h_+ \rangle = \langle h_- \rangle, \\ (\text{odd}, +1), & \text{then } \langle h_+, h_- \rangle = \langle h_- \rangle, \\ (\text{odd}, -1), & \text{then } \langle h_+, h_- \rangle = \langle h_+ \rangle. \end{cases}$$

ii) Note that $G = \langle h_+, h_- \rangle \cup \langle h_+, h_- \rangle g$. So it follows that $G \subset Z(A_{NL}^{(\nu\lambda)})$ iff $g \in Z(A_{NL}^{(\nu\lambda)}).$

It is easy to see that

$$g \text{ is central} \Leftrightarrow \begin{cases} x_{ii} \cdot \overbrace{x_{11}x_{22}\cdots}^{L} = \overbrace{x_{11}x_{22}\cdots}^{L} \cdot x_{ii}, \\ x_{i,i+1} \cdot \overbrace{x_{12}x_{21}\cdots}^{L} = \overbrace{x_{12}x_{21}\cdots}^{L} \cdot x_{i,i+1}, & \text{for } i = 1, 2. \end{cases}$$

REMARK 3.4.

- i) The dimension of a simple subcoalgebra of $A_{NL}^{(\nu\lambda)}$ is either 1 or $2^2=4$. ii) The simple subcoalgebra C_{01} generates $A_{NL}^{(\nu\lambda)}$ as an algebra.

iii) For the YB-coalgebra $(C, \sigma_{\alpha\beta})$, $C \simeq C_{01} \subset A_{NL}^{(\nu\lambda)}$, $X_{ij} \mapsto x_{ij}$, is a coalgebra $\sigma_{\alpha\beta}$ -map.

We identify C and C_{01} .

iv) $A_{12}^{(+-)}$ ($\simeq A_{12}^{(--)}$, see Prop.3.12 below) is the "non-trivial" semisimple Hopf algebra of dimension 8 ([Mas2]). The ideal decomposition is given as follows:

$$A_{12}^{(+-)} = k(x_{11} + x_{22} + x_{11}^2 + x_{11}x_{22}) \oplus k(x_{11} - x_{22} - x_{11}^2 + x_{11}x_{22})$$

$$\oplus k(x_{11} - x_{22} + x_{11}^2 - x_{11}x_{22}) \oplus k(x_{11} + x_{22} - x_{11}^2 - x_{11}x_{22})$$

$$\oplus span_k\{x_{12}, x_{21}, x_{12}^2, x_{12}x_{21}\}.$$

v) Since the subHopf algebra $K = k\langle h_+, h_- \rangle$ is normal, $A_{NL}^{(\nu\lambda)}K^+$ is a Hopf ideal, where $K^+ = \operatorname{Ker} \varepsilon_K$. So $A_{NL}^{(\nu\lambda)}/A_{NL}^{(\nu\lambda)}K^+ = \bar{A}$ is a Hopf algebra of dimension 2L. It is easy to see that the elements $\bar{x}_{11} = a$, $\bar{x}_{22} = b \in \bar{A}$ are grouplike and generate \bar{A} as an algebra. This means that \bar{A} is a group-algebra. Moreover let ab = c, then the order of c is L. Then,

$$ar{A} = k \langle a, b \mid a^2 = 1 = b^2, \overleftarrow{baba \cdots} = \overleftarrow{abab \cdots} \rangle$$

$$= k \langle a, c \mid a^2 = 1, c^L = 1, aca^{-1} = c^{-1} \rangle$$

$$= kD_L, \quad \text{where } D_L \text{ is the dihedral group of order } 2L.$$

Thus we obtain a short exact sequence by means of [Mas1, Definition 1.3]

$$1 \to K \hookrightarrow A_{NL}^{(\nu\lambda)} \to kD_L \to 1.$$

vi) As bialgebras

$$B/J_2^{\lambda} = B/(X_{11}X_{22} - X_{22}X_{11}, X_{12}X_{21} - \lambda X_{21}X_{12})$$

$$= k\langle X_{ij}\rangle/(X_{11}^2 - X_{22}^2, X_{12}^2 - X_{21}^2, X_{ij}X_{lm} \ (i+j+l+m \equiv 1),$$

$$X_{11}X_{22} - X_{22}X_{11}, X_{12}X_{21} - \lambda X_{21}X_{12})$$

$$= B^{(\lambda)}/(X_{11}^2 - X_{22}^2, X_{12}^2 - X_{21}^2).$$

Thus $A_{N2}^{(\nu\lambda)}$ is furthermore a quotient bialgebra of $B^{(\lambda)}$:

$$A_{N2}^{(\nu\lambda)} = B^{(\lambda)}/(X_{11}^2 - X_{22}^2, X_{12}^2 - X_{21}^2, 1 - (X_{11}^{2N} + \nu X_{12}^{2N})).$$

We note that $\{X_{11}^2 - X_{22}^2, X_{12}^2 - X_{21}^2\}$ spans a coideal of $B^{(\lambda)}$ and that $\{1 - (X_{11}^{2N} + \nu X_{12}^{2N})\}$ spans a coideal modulo the coideal $span_k\{X_{11}^2 - X_{22}^2, X_{12}^2 - X_{21}^2\}$.

Recall that C_{st} denotes a simple subcoalgebra of dimension 4 of $A_{NL}^{(\nu\lambda)}$ for $0 \le s \le N-1$, $1 \le t \le L-1$. Let $\langle C_{st} \rangle$ denote the subHopf algebra generated by C_{st} . It is easy to see that $\langle C_{st} \rangle$ is commutative iff either t is even or $(L,\lambda)=(2t,+1)$. So it follows that t is odd if $\langle C_{st} \rangle$ is non-commutative.

We show that $\langle C_{st} \rangle$ is a member of the family $\{A_{NL}^{(\nu\lambda)}\}$ if t is odd. Set

$$GCD(L, t) = m_L, \quad GCD(N, 2s + t) = m_N,$$
 $L/m_L = L_0, \quad N/m_N = N_0, \quad t/m_L = t_0, \quad (2s + t)/m_N = (s, t)_0,$ $(2 \le L_0 \le L, 1 \le N_0 \le N).$

THEOREM 3.5. Assume that t is odd and $C_{st} \subset A_{NL}^{(v\lambda)}$. Then

$$\langle C_{st} \rangle \simeq A_{N_0 L_0}^{(\nu \lambda)}$$
 as Hopf algebras.

PROOF. Let t be odd, and fix $0 \le s \le N-1$ and $1 \le t \le L-1$. We note that integers 2s+t, t_0 , $(s,t)_0$, m_L and m_N are also odd.

Set

$$z_{11} = x_{11}^{2s} \underbrace{x_{11} x_{22} \cdots x_{11}}^{t}, \quad z_{12} = x_{12}^{2s} \underbrace{x_{12} x_{21} \cdots x_{12}}^{t},$$

$$z_{21} = x_{12}^{2s} \underbrace{x_{21} x_{12} \cdots x_{21}}^{t}, \quad z_{22} = x_{11}^{2s} \underbrace{x_{22} x_{11} \cdots x_{22}}^{t}.$$

The map $\omega: A_{N_0L_0}^{(\nu\lambda)} \to \langle C_{st} \rangle$, $x_{ij} \mapsto z_{ij}$, is a (well-defined) surjective Hopf algebra map. This is easily verified.

We show that the map ω is injective.

Recall and set that

$$G_{0} = G(A_{N_{0}L_{0}}^{(\nu\lambda)})$$

$$= \{x_{11}^{2u} \pm x_{12}^{2u}, x_{11}^{2u} \cdot \overbrace{x_{11}x_{22}x_{11}\cdots}^{L_{0}} \pm \sqrt{\lambda}x_{12}^{2u} \cdot \overbrace{x_{12}x_{21}x_{12}\cdots}^{L_{0}} | 1 \leq u \leq N_{0} \},$$

$$(C_{uv})_{0} = C_{uv} \subset A_{N_{0}L_{0}}^{(\nu\lambda)}.$$

Then it follows that

$$A_{N_0L_0}^{(\nu\lambda)}=kG_0\oplus\Sigma(C_{uv})_0.$$

Thus it is enough to show that ω is injective on kG_0 and on $\Sigma(C_{uv})_0$.

It is easy to see that ω is injective on kG_0 .

So we show that ω is injective on $\Sigma(C_{uv})_0$.

First we examine $\omega((C_{uv})_0)$ for $0 \le u \le N_0 - 1$, $1 \le v \le L_0 - 1$.

Let tv = qL + r, for some q, $0 \le r \le L - 1$. It is easy to see that $r \ne 0$, so it follows that $1 \le r$, $L - r \le L - 1$.

For $x_{11}^{2u} \overbrace{x_{11} x_{22} x_{11} \cdots}^{v} \in (C_{uv})_0$, observe that

$$\omega(x_{11}^{2u} \overbrace{x_{11} x_{22} x_{211} \cdots}^{v})$$

$$= z_{11}^{2u} \overbrace{z_{11} z_{22} z_{211} \cdots}^{v}$$

$$= (x_{11}^{2s} \overbrace{x_{11} x_{22} \cdots x_{11}}^{t})^{2u} \cdot \overbrace{(x_{11}^{2s} \cdot x_{11} x_{22} \cdots x_{11})(x_{11}^{2s} \cdot x_{22} x_{11} \cdots x_{22}) \cdots}^{v}$$

$$= x_{11}^{2(2s+t)u} \underbrace{x_{11}^{2sv}}_{x_{11}} \overbrace{x_{11} x_{22} x_{11} \cdots}^{tv}$$

$$= x_{11}^{2(2s+t)u} \underbrace{x_{11}^{2sv}}_{x_{11}} \underbrace{x_{11} x_{22} x_{11} \cdots}^{r}, \quad \text{if } q \text{ is even,}$$

$$\times \begin{cases} x_{11}^{qL} \cdot \overbrace{x_{11} x_{22} x_{11} \cdots}^{r}, \quad \text{if } q \text{ is odd} \end{cases}$$

$$= \begin{cases} x_{11}^{2\{(2s+t)u+sv+(q/2)L\}} \cdot \overbrace{x_{11} x_{22} x_{11} \cdots}^{r}, \quad \text{if } q \text{ is even,} \end{cases}$$

$$= x_{11}^{2\{(2s+t)u+sv+((q-1)/2)L\}} \cdot \underbrace{x_{11}^{r} x_{22} x_{11} \cdots}^{r}, \quad \text{if } q \text{ is even,} \end{cases}$$

$$= \begin{cases} x_{11}^{2\{(2s+t)u+sv+((q-1)/2)L+r\}} \cdot \underbrace{x_{22} x_{11} x_{22} \cdots}^{r}, \quad \text{if } q \text{ is odd} \end{cases}$$

$$\neq 0.$$

Let

$$(a,b) = \begin{cases} ((2s+t)u + sv + \frac{q}{2}L \mod N, r), & \text{if } q \text{ is even,} \\ ((2s+t)u + sv + \frac{(q-1)}{2}L + r \mod N, L - r), & \text{if } q \text{ is odd,} \\ (0 \le a \le N - 1, 1 \le b \le L - 1). \end{cases}$$

So we have that

$$0 \neq \omega(x_{11}^{2u} \overbrace{x_{11} x_{22} x_{11} \cdots}^{v}) \in \omega((C_{uv})_{0}) \cap C_{ab}.$$

Since C_{ab} is a simple subcoalgebra, it follows that

$$\omega((C_{uv})_0)=C_{ab}\subset A_{NL}^{(v\lambda)}.$$

Thus ω is injective on $(C_{uv})_0$.

Next assume that there are $0 \le u$, $u' \le N_0 - 1$, $1 \le v$, $v' \le L_0 - 1$ such that $\omega((C_{uv})_0) = \omega((C_{u'v'})_0)$.

Let $tv' = q'L + r', \ 1 \le r' \le L - 1.$

It is easy to see that $q \equiv q' \mod 2$ implies u = u' and v = v'.

So let q be even and q' odd. This implies that q + q' + 1 is even and that L = r + r'.

We have that t(v+v')=(q+q'+1)L, so it follows that $L_0|v+v'$.

It follows that $L_0 = v + v'$, since $1 \le v$, $v' \le L_0 - 1$.

So we have $t = (q + q' + 1)m_L$, and this means that t is even. A contradiction.

Thus $\omega((C_{uv})_0) = \omega((C_{u'v'})_0)$ iff u = u', v = v', so ω is injective on $\Sigma(C_{uv})_0$. Therefore we have the injectivity of ω .

This completes the proof of the theorem.

It is easy to see that the following lemma holds.

LEMMA 3.6. Assume that A_1 and A_2 are bialgebras over an algebraically closed field. If the bialgebra $A_1 \otimes A_2$ is generated by a simple subcoalgebra as an algebra, then so is A_i , i = 1, 2. Moreover if any simple subcoalgebra of $A_1 \otimes A_2$ has dimension 1 or n^2 , then either A_1 or A_2 is pointed.

COROLLARY 3.7.

i) Assume that $A_{NL}^{(\nu\lambda)}$ is non-commutative, i.e. $(L,\lambda) \neq (2,+1)$, and $C_{st} \subset A_{NL}^{(\nu\lambda)}$. Then

$$\langle C_{st} \rangle = A_{NL}^{(\nu\lambda)}$$
 iff t is odd, $(L,t) = 1$ and $(N,2s+t) = 1$.

ii) Assume simply that t is odd and $C_{st} \subset A_{NL}^{(\nu\lambda)}$. Then

$$\langle C_{st} \rangle = A_{NI}^{(\nu\lambda)}$$
 iff $(L,t) = 1, (N,2s+t) = 1.$

iii) Let N be 2ⁿm, and m odd. Then

$$A_{NL}^{(\nu\lambda)} \simeq A_{2^n,L}^{(\nu\lambda)} \otimes kC_m$$
 as Hopf algebras.

iv) If $A_{2^n,L}^{(\nu\lambda)}$ is non-commutative, then it is indecomposable as the tensor product of its subHopf algebras.

PROOF. i), ii) These follow from the dimensionality.

iii) Let N be $2^n m$ and m odd. We may assume that $m \ge 3$. Now let s = (m-1)/2, t = 1, then it follows that 2s + t = m, $N_0 = 2^n$, $L_0 = L$, and $\langle C_{st} \rangle \simeq A_{2^n,L}^{(\nu\lambda)}$.

Let $f = x_{11}^{2 \cdot 2^n} + \nu x_{12}^{2 \cdot 2^n}$. Then f is a central grouplike element with order m, and $C_{st} \cdot f = C_{s't}$, where $s' = 2^n + (m-1)/2 \le N-1$.

For such s, s' and t, it follows that

$$(2s' + t, N) = \left(2\left\{2^n + \frac{m-1}{2}\right\} + 1, 2^n m\right)$$
$$= (2^{n+1} + m, 2^n m)$$
$$= 1.$$

Thus the simple subcoalgebra $C_{st} \cdot f = C_{s't}$ generates $A_{NL}^{(\nu\lambda)}$ as an algebra by ii). Therefore we have that

$$A_{2^n m, L}^{(\nu \lambda)} \simeq A_{2^n, L}^{(\nu \lambda)} \otimes k C_m$$
, as Hopf algebras.

iv) Let $2^n = N$. Applying Lemma 3.6 to $A_{NL}^{(\nu\lambda)}$, we may assume

$$A_{NL}^{(\nu\lambda)}=\langle C_{st}\rangle\otimes kF,$$

for some $0 \le s \le N-1$, $1 \le t \le L-1$, (abelian)subgroup $F \subset G(A_{NL}^{(\nu\lambda)})$.

Since $A_{NL}^{(\nu\lambda)}$ is non-commutative, so is $\langle C_{st} \rangle$. This means that t is odd. By Theorem 3.5, $\langle C_{st} \rangle \simeq A_{N_0 L_0}^{(\nu\lambda)}$.

Comparing the dimensions, we have that $|F| = m_N m_L$.

Counting the number of 4-dimensional simple subcolagebras, we have the following:

$$N(L-1) = N_0(L_0 - 1) \cdot |F|$$

$$= N_0(L_0 - 1)m_N m_L$$

$$= N(L - m_L).$$

Thus we have that $m_L = 1$.

On the other hand, it follows that $m_N = 1$ since 2s + t is odd and N is a power of 2.

Thus we have that
$$F = \langle 1 \rangle$$
.

Next we show that we can obtain all braidings on $A_{NL}^{(\nu\lambda)}$. See [GW], [G]. We identify $C < A_{NL}^{(\nu\lambda)}$ as in Remark 3.4. Note that any braiding on $A_{NL}^{(\nu\lambda)}$ is

determined on $C \otimes C$. If a bilinear map τ on C extends to a braiding on $A_{NL}^{(\nu\lambda)}$, we denote the braiding by $\tilde{\tau}$.

Recall YB-forms $\sigma_{\alpha\beta}$, $\tau_{\alpha\beta}^{(\lambda)}$ on C.

CLAIM 3.8. Let σ be a braiding on $A_{NL}^{(\nu\lambda)}$.

i) If $L \geq 3$, $\sigma|_{C \otimes C}$ coincides with $\sigma_{\alpha\beta}$ for some $\alpha, \beta \in k^{\times}$ such that $(\alpha\beta)^N = \nu$, $(\alpha\beta^{-1})^L = \lambda$.

ii) If L=2, $\sigma'|_{C\otimes C}$ coincides with either $\sigma_{\alpha\beta}$ for some $\alpha,\beta\in k^{\times}$ such that $(\alpha\beta)^N=v$, $(\alpha\beta^{-1})^2=\lambda$ or $\tau_{\gamma\delta}^{(\lambda)}$ for some $\gamma,\delta\in k^{\times}$ such that $\delta^2=\gamma^2$, $\gamma^{2N}=1$.

PROOF. i) Assume that $L \ge 3$.

The subcoalgebra $C \cdot C$ of $A_{NL}^{(\nu\lambda)}$ has a basis

$$\{x_{11}^2, x_{12}^2, x_{11}x_{22}, x_{22}x_{11}, x_{12}x_{21}, x_{21}x_{12}\}.$$

We have similarly as in Proposition 2.9,

$$\sigma|_{C \otimes C} = \sigma_{\alpha\beta}$$
 for some $\alpha, \beta \in k^{\times}$.

Moreover σ satisfies the following:

$$0 = \sigma(1 - (x_{11}^{2N} + \nu x_{12}^{2N}), x_{11})$$

$$= 1 - \nu \{\sigma_{\alpha\beta}(x_{12}, x_{12})\sigma_{\alpha\beta}(x_{12}, x_{21})\}^{N}$$

$$= 1 - \nu (\alpha\beta)^{N}.$$

Thus it follows that $(\alpha \beta)^N = \nu$.

Observe that when L is even,

$$0 = \sigma(\overbrace{x_{21}x_{12}\cdots x_{12}}^{L} - \lambda \overbrace{x_{12}x_{21}\cdots x_{21}}^{L}, x_{22})$$
$$= \alpha^{L} - \lambda \beta^{L},$$

and that when L is odd,

$$0 = \sigma(\overbrace{x_{21}x_{12}\cdots x_{21}}^{L} - \lambda \overbrace{x_{12}x_{21}\cdots x_{12}}^{L}, x_{21})$$
$$= \alpha^{L} - \lambda \beta^{L}.$$

Thus in either case, it follows that $\alpha^L = \lambda \beta^L$, or $(\alpha \beta^{-1})^L = \lambda$.

ii) Assume that L=2.

The subcoalgebra $C \cdot C$ of $A_{N2}^{(\nu\lambda)}$ has a basis

$$\{x_{11}^2, x_{12}^2, x_{11}x_{22}, x_{12}x_{21}\}.$$

As in the proof of Proposition 2.9, we have the following:

$$\sigma(x_{ij}, x_{lm})x_{jj}x_{mm} = x_{ll}x_{ii}\sigma(x_{ij}, x_{lm}),$$

$$\sigma(x_{i,j+1}, x_{l,m+1})x_{j+1,j}x_{m+1,m} = x_{l,l+1}x_{i,i+1}\sigma(x_{i+1,j}, x_{l+1,m}).$$

Using these relations, we have the following with α , β , γ , $\delta \in k$,

σ	X_{11}	X_{12}	X_{21}	X_{22}
X_{11}	γ	0	0	δ
X_{12}	0	α	β	0
X_{21}	0	β	α	0
X_{22}	$\lambda\delta$	0	0	γ.

Moreover σ satisfies the following equations:

$$0 = \sigma(x_{11}x_{12}, x_{12}) = \gamma \alpha,$$

$$0 = \sigma(x_{11}x_{21}, x_{12}) = \gamma \beta,$$

$$0 = \sigma(x_{11}x_{12}, x_{21}) = \delta \beta,$$

$$0 = \sigma(x_{11}x_{21}, x_{21}) = \delta \alpha.$$

So it follows that either $\gamma=0=\delta$ or $\alpha=0=\beta$. Thus $\sigma|_{C\otimes C}$ is either $\sigma_{\alpha\beta}$ or $\tau_{\gamma\delta}^{(\lambda)}$, for α , β , γ , $\delta\in k^{\times}$.

If $\sigma|_{C\otimes C} = \sigma_{\alpha\beta}$, then the relations on α , β follow similarly as in the proof of i). Let $\sigma|_{C\otimes C} = \tau_{\gamma\delta}^{(\lambda)}$. Observe that

$$0 = \sigma(x_{11}^2 - x_{22}^2, x_{22})$$

$$= \tau_{\gamma\delta}^{(\lambda)}(x_{11}, x_{22})^2 - \tau_{\gamma\delta}^{(\lambda)}(x_{22}, x_{22})^2$$

$$= \delta^2 - \gamma^2,$$

$$0 = \sigma(1 - (x_{11}^{2N} - \nu x_{12}^{2N}), x_{11})$$

$$= 1 - \tau_{\gamma\delta}^{(\lambda)}(x_{11}, x_{11})^{2N}$$

$$= 1 - \gamma^{2N}.$$

Thus it follows that $\delta^2 = \gamma^2$, $\gamma^{2N} = 1$.

CLAIM 3.9.

- i) The YB-form $\sigma_{\alpha\beta}$ extends to a braiding on $A_{NL}^{(\nu\lambda)}$ if $(\alpha\beta)^N = \nu$, $(\alpha\beta^{-1})^L = \lambda$. ii) The YB-form $\tau_{\gamma\delta}^{(\lambda)}$ extends to a braiding on $A_{N2}^{(\nu\lambda)}$ if $\delta^2 = \gamma^2$, $\gamma^{2N} = 1$.

PROOF. Recall that B has braidings $\{\tilde{\sigma}_{\alpha\beta} | \alpha, \beta \in k^{\times}\}$ and that $B^{(\lambda)}$ has braidings $\{\tilde{\tau}_{\gamma\delta}^{(\lambda)}|\gamma,\delta\in k^{\times}\}.$

i) It is easy to see by Proposition 1.1 that $\tilde{\sigma}_{\alpha\beta}:B\otimes B\to k$ induces a braiding on $A_{NL}^{(\nu\lambda)}$ iff

$$\begin{cases} (\alpha \beta)^N = \nu, \\ (\alpha \beta^{-1})^L = \lambda. \end{cases}$$

ii) Recall that $A_{N2}^{(\nu\lambda)}=B^{(\lambda)}/(X_{11}^2-X_{22}^2,X_{12}^2-X_{21}^2,1-(X_{11}^{2N}+\nu X_{12}^{2N})).$ It follows that $\tau_{\gamma\delta}^{(\lambda)}$ induces a braiding on $B^{(\lambda)}/(X_{11}^2-X_{22}^2,X_{12}^2-X_{21}^2)$ iff $\delta^2=\gamma^2$, and that $\tau_{\gamma\delta}^{(\lambda)}$ induces a braiding on $A_{N2}^{(\nu\lambda)}$ iff $\delta^2=\gamma^2,\ \gamma^{2N}=1=\delta^{2N}.$

Proposition 3.10.

i) The set of braidings on $A_{NL}^{(v\lambda)}$ is given as follows:

$$\{ ilde{\sigma}_{lphaeta}|(lphaeta)^N=
u,(lphaeta^{-1})^L=\lambda\},\quad ext{if }L\geqq3, \ \{ ilde{\sigma}_{lphaeta}, ilde{ au}_{\gamma\delta}^{(\lambda)}|(lphaeta)^N=
u,(lphaeta^{-1})^2=\lambda,\delta^2=\gamma^2,\gamma^{2N}=1\},\quad ext{if }L=2.$$

ii) $A_{NL}^{(\nu\lambda)}$ is, in fact, a braided Hopf algebra. If chk χ NL, the number of braidings on $A_{NL}^{(\nu\lambda)}$ is

$$\begin{cases} 2NL, & \text{if } L \ge 3, \\ 8N, & \text{if } L = 2. \end{cases}$$

iii) The number of symmetric braidings on $A_{NL}^{(\nu\lambda)}$ is given as follows; When $L \ge 3$,

When L=2,

PROOF. i) This follows from Claim 3.8 and 3.9.

ii) There is a surjective map

$$\{(p,q) \in k \times k \mid p^{2N} = \nu, q^{2L} = \lambda\} \to \{(\alpha,\beta) \in k \times k \mid (\alpha\beta)^N = \nu, (\alpha\beta^{-1})^L = \lambda\},\ (p,q) \mapsto (pq,pq^{-1}).$$

Set $(p,q) \sim (p',q') \Leftrightarrow (p,q) = \pm (p',q')$. It is an equivalence relation, which induces the bijection

$$\{(p,q) \mid p^{2N} = \nu, q^{2L} = \lambda\} / \sim \approx \{(\alpha,\beta) \mid (\alpha\beta)^N = \nu, (\alpha\beta^{-1})^L = \lambda\} \}.$$

Let $chk \not\upharpoonright NL$. Then it follows that $|\{\tilde{\sigma}\}| = 2N \cdot 2L \cdot \frac{1}{2} = 2NL$. For $\tilde{\tau}^{(\lambda)}$, since $\gamma^{2N} = 1$ and $\delta^2 = \gamma^2$, it follows that $|\{\tilde{\tau}^{(\lambda)}\}| = 2N \cdot 2 = 4N$.

iii) Recall that $chk \neq 2$. On $A_{NL}^{(\nu\lambda)}$, $\tilde{\sigma}_{\alpha\beta}$ is symmetric iff $\alpha^2 = 1 = \beta^2$ and $(\alpha\beta)^N = \nu$, $(\alpha\beta^{-1})^L = \lambda$.

On
$$A_{N2}^{(\nu\lambda)}$$
, $\tilde{\tau}_{\gamma\delta}^{(\lambda)}$ is symmetric iff $\gamma^2 = 1$, $\delta^2 = \lambda$ and $\gamma^{2N} = 1$, $\delta^2 = \gamma^2$.

REMARK 3.11. The algebra map $\theta:A_{NL}^{(v\lambda)}\to A_{NL}^{(v\lambda)cop},\ x_{ij}\mapsto x_{ji}$, is a bijective Hopf algebra map. Define $\langle a,b\rangle=\tilde{\sigma}_{\alpha\beta}(\theta(a),b)$ for $a,b\in A_{NL}^{(v\lambda)}$. The linear map $\langle\ ,\ \rangle:A_{NL}^{(v\lambda)}\otimes A_{NL}^{(v\lambda)}\to k$ is a non-trivial Hopf paring.

Using Proposition 3.10, we have the following indispensable proposition.

PROPOSITION 3.12. $A_{N_1L_1}^{(\nu_1\lambda_1)} \simeq A_{N_2L_2}^{(\nu_2\lambda_2)}$ if and only if both $(N_1, L_1) = (N_2, L_2)$ and

$$\begin{cases} (v_2, \lambda_2) = \pm(v_1, \lambda_1), & (\textit{case } N_1, L_1 \textit{ odd}); \\ \lambda_2 = \lambda_1, & (\textit{case } N_1 \textit{ odd}, L_1 \textit{ even}); \\ v_2 = v_1, & (\textit{case } N_1 \textit{ even}, L_1 \textit{ odd}); \\ (v_2, \lambda_2) = (v_1, \lambda_1), & (\textit{case } N_1, L_1 \textit{ even}). \end{cases}$$

PROOF. For a fixed $\sqrt{-1}$, we can define a bialgebra map $\xi: B \to B$,

$$\xi: X_{ii} \mapsto X_{ii},$$

$$X_{12} \mapsto \sqrt{-1}X_{12},$$

$$X_{21} \mapsto -\sqrt{-1}X_{21}.$$

Let

$$\check{A}_{NL}^{(\nu\lambda)} = \begin{cases}
A_{NL}^{(-\nu,-\lambda)}, & \text{if } N, L \text{ are odd,} \\
A_{NL}^{(-\nu,\lambda)}, & \text{if } N \text{ is odd, } L \text{ is even,} \\
A_{NL}^{(\nu,-\lambda)}, & \text{if } N \text{ is even, } L \text{ is odd,} \\
A_{NL}^{(\nu\lambda)}, & \text{if } N, L \text{ are even.}
\end{cases}$$

Then the following diagram commutes:

Thus by Proposition 3.10.iii), if N or L is odd, then the statement follows. Assume that both N and L are even. Then

$$(\nu_{1}, \lambda_{1}) = \begin{cases} (++) \Rightarrow \text{by Prop. } 3.10.\text{iii}), & (\nu_{2}, \lambda_{2}) = (++). \\ (-+) \Rightarrow \text{by Prop. } 3.3.\text{ii}), & G(A_{N_{1}L_{1}}^{(\nu_{1}\lambda_{1})}) \text{ is central so } \lambda_{2} = +1. \\ \text{By Prop. } 3.10.\text{iii}), & \nu_{2} = -1 \text{ so}(\nu_{2}, \lambda_{2}) = (-+). \\ (+-) \Rightarrow \text{by Prop. } 3.3.\text{ii}), & kG(A_{N_{1}L_{1}}^{(\nu_{1}\lambda_{1})}) \cap Z(A_{N_{1}L_{1}}^{(\nu_{1}\lambda_{1})}) = K \text{ so } \lambda_{2} = -1. \\ \text{By Prop. } 3.3.\text{i}), & \nu_{2} = +1 \text{ so}(\nu_{2}, \lambda_{2}) = (+-). \\ (--) \Rightarrow \text{it follows that}(\nu_{2}, \lambda_{2}) = (--). \end{cases}$$

This completes the proof.

REMARK 3.13 ([Mas2], [F]). The "non-trivial" 8-dimensional semisimple Hopf algebra is given by

$$A_{1,2}^{(+-)} \simeq A_{1,2}^{(--)}.$$

Let $chk \neq 3$. The two "non-trivial" 12-dimensional semisimple Hopf algebras are given by

$$A_{1,3}^{(++)} \simeq A_{1,3}^{(--)}$$
 and $A_{1,3}^{(+-)} \simeq A_{1,3}^{(-+)}$.

Recall that H is a Hopf closure of B and that $A_{NL}^{(\nu\lambda)}$ is a Hopf algebra which is a quotient of B through π . So there is a Hopf algebra map $\tilde{\pi}: H \to A_{NL}^{(\nu\lambda)}$ such that $\tilde{\pi} = \pi|_B$.

H is a right $A_{NL}^{(\nu\lambda)}$ -comodule algebra via $\tilde{\pi}$. See [DT]. Then

Proposition 3.14. H is a cleft $A_{NL}^{(\nu\lambda)}$ -comodule algebra. Namely there is an invertible comodule map $\phi:A_{NL}^{(\nu\lambda)}\to H$.

PROOF. Recall the basis $\{x_{11}^s \cdot \overbrace{x_{22}x_{11}\cdots}^t, x_{12}^s \cdot \overbrace{x_{21}x_{12}\cdots}^t \mid 1 \le s \le 2N, \ 0 \le t \le L-1\}$. This can be written as follows:

$$\begin{pmatrix} x_{11}^{2(s+1)} & x_{12}^{2(s+1)} & x_{12}^{2(s+1)} \\ x_{11}^{2s} \cdot x_{11} & x_{12}^{2s} \cdot x_{22} & x_{12}^{2s} \cdot x_{12} & x_{12}^{2s} \cdot x_{21} \\ x_{11}^{2s} \cdot x_{11}x_{22} & x_{11}^{2s} \cdot x_{22}x_{11} & x_{12}^{2s} \cdot x_{12}x_{21} & x_{12}^{2s} \cdot x_{21}x_{12} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{11}^{2s} \cdot x_{11}x_{22} \cdots & x_{11}^{2s} \cdot x_{22}x_{11} \cdots & x_{12}^{2s} \cdot x_{12}x_{21} \cdots & x_{12}^{2s} \cdot x_{21}x_{12} \cdots \\ x_{12}^{2s} \cdot x_{11}x_{22} \cdots x_{LL} & x_{12}^{2s} \cdot x_{21}x_{21} \cdots & x_{L+1}^{2s} \end{pmatrix}$$

for $0 \le s \le N-1$

We use it. Define, for example, a linear map $\phi: A_{NL}^{(\nu\lambda)} \to B \to H$ by the small letters to its capital letters, i.e., x_{ij} to X_{ij} , etc. Then ϕ is a right $A_{NL}^{(\nu\lambda)}$ -comodule map.

We define another linear map $\psi:A_{NL}^{(\nu\lambda)}\to H$ as follows: On the bottom row,

$$\psi : x_{11}^{2s} \cdot \overbrace{x_{11}x_{22}\cdots x_{LL}}^{L} \mapsto \underbrace{(X_{LL}\cdots X_{22}X_{11}\cdot X_{11}^{2s})}_{L} \left(\frac{1}{d_{+}}\right)^{2s+L},$$

$$x_{12}^{2s} \cdot \overbrace{x_{12}x_{21}\cdots x_{L,L+1}}^{L} \to \lambda \underbrace{(X_{L,L+1}\cdots X_{21}X_{12}\cdot X_{12}^{2s})}_{L} \left(\frac{1}{d_{+}}\right)^{2s+L},$$

and on the other rows,

$$\psi = S \circ \phi$$
.

Then we have $\psi = \phi^{-1}$, so ϕ is invertible. Therefore H is a cleft $A_{NL}^{(\nu\lambda)}$ -comodule algebra.

Added in Proof

The group $G = G(A_{NL}^{(\nu\lambda)})$ is abelian, and the type is given as follows. The case that L is even:

$$G = \langle h_+, h_- \rangle \times \langle h_+^{-L/2} g \rangle$$

$$= \begin{cases} (C_N \times C_2) \times C_2, & \text{if } (N, v) = (even, +1); \\ (C_{2N}) \times C_2, & \text{otherwise.} \end{cases}$$

The case that L is odd:

$$G = \begin{cases} \langle h_{\lambda}^{(1-L)/2} g \rangle = C_{4N} & \text{if } \nu = -\lambda^N; \\ \langle h_{\lambda}^{(1-L)/2} g \rangle \times \langle h_{+}^{-1} h_{-} \rangle = C_{2N} \times C_2, & \text{if } \nu = \lambda^N. \end{cases}$$

Proposition 3.12 follows from this and Proposition 3.3.

References

- [D] Y. Doi, Braided bialgebras and quadratic bialgebras, Comm. Algebra 21(5), 1731-1749.
- [DT] Y. Doi and M. Takeuchi, Cleft comodule algebras for a bialgebra, Comm. Algebra 14 (1986), 801-817.
- [F] N. Fukuda, Semisimple Hopf algebras of dimension 12 (to appear).
- [GW] S. Gelaki and S. Westreich, On the quasitriangularity of $U_q(sl_n)'$, preprint.
- [G] S. Gelaki, Quantum groups of dimension pq^2 , preprint.
- [H] T. Hayashi, Quantum groups and quantum determinants, J. Algebra 152 (1992), 146-165.
- [Man] Yu. Manin, Quantum groups and non-commutative geometry, U. of Montreal Lectures, 1988.
- [Mas1] A. Masuoka, Coideal subalgebras in finite Hopf algebras, J. Algebra 163 (1994), 819-831.
- [Mas2] —, Semisimple Hopf algebras of dimension 6, 8, Israel J. Math. 92 (1995), 361-373.
- [M] S. Montgomery, Hopf algebras and their actions on rings, American Mathematical Society, Prividence, 1993.
- [S] M. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
- [T1] M. Takeuchi, A two-parameter quantization of GL(n), Proc. Japan Acad. 66. Ser. A (1990),
- [T2] —, Matric bialgebras and quantum groups, Israel J. Math. 72 (1990), 232-251.

Institute of Mathematics University of Tsukuba Ibaraki 305, Japan