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ALGEBRAS OF FINITE DIMENSION
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Satoshi SuzUKI

0. Introduction

Recently some finite dimensional cosemisimple Hopf algebras were con-
structed [F] [G] We aim to give a plain and systematic description of
cosemisimple Hopf algebras of low dimension. For this purpose we construct
them as quotient bialgebras of a sufficiently large bialgebra. This way has the
advantage of defining homomorphisms and determining braidings.

In this paper we define and study a family of finite dimensional cosemisimple
Hopf algebras

F = (A, A, 40, 45 IN 21, Lz 2},

which consists of quotients of a bialgebra B over an algebraically closed field k
with chk # 2.

This family contains the “non-trivial” cosemisimple Hopf algebras of
dimension 8, 12 if chk # 3.

In Section 1 we review basic definitions and results.

In Section 2 quadratic bialgebras B, Bt) and B(~) are constructed. We use B
to construct the family %, and B(¥) to obtain braidings on the members of a
subfamily of #. These bialgebras B, B®) are cosemisimple, and we determine all
braidings on them.

In Section 3 we define the family & as a set of quotient bialgebras of the
bialgebra B. We write A%}LLI’_I) = Agf[), etc. Let v,A = +1. Our main results are
as follows.

1) Ag? is a non-cocommutative involutory cosemisimple Hopf algebra of
dimension 4NL, which is non-commutative unless (L,4) = (2,+1). A%) is
furthermore semisimple if (dim A(N"i)) -1 #0.
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i) Any non-commutative subHopf algebra of A%) generated by a simple
subcoalgebra is a member of the family.

iii) All braidings on A\ are determined.

iv) We determine when A(Nvllill) and Agj}lfz) are isomorphic.

1. Preliminaries [D]

We follow Sweedler’s book [S] and Montgomery’s book for terminology
of Hopf algebras.

In this section we review basic definitions and results. They are due to Doi
D]

Let B be a bialgebra over a field k, 1: B® B — k a k-linear map which is
invertible with respect to the convolution product. (B,t) is called a braided
bialgebra if the following three conditions hold:

(1) (X1, y1)x2y2 = Zy1x17(%x2, y2)
(2) t(xy,z) = Z1(x, 21)7(y, 22)

(3) t(x, yz) = Z1(x1, 2)7(x2, )

for x,y,z € B.

Then the following conditions are automatically satisfied:
7(x, 1) = &(x) = z(1, x),
Zz(x1, y1)7(x2, 21)T(¥2, 22) = Zt(y1,21)7(x1,22)7(%2,2)  for x,p,z € B.

We call this 7 a braiding on B.

ProposiTION 1.1 ([H, Proposition 1.2]). Let (B,t) be a braided bialgebra
generated by a subcoalgebra C, (I) the bi-ideal generated by a coideal I of B. Then
T induces a braiding on the bialgebra B/(I) iff 1=0 on CQI+I® C.

If (B,7) is a braided bialgebra, ‘z~! is another braiding on B, where
z7!(x,y) = v7!(y,x), and the braiding t is said to be symmetric if 't7! = 1.

Let C be a coalgebra over k, o : C ® C — k an invertible k-linear map. For
any bialgebra B, a linear map f: C — B is called a o-map if

Za(x1,y1)f (x2) f(y2) = Zf (1) f(x1)o(x2,32), x,y€C.
Let T(C) be the tensor (bi-)algebra and I, is the (bi-)ideal generated by
(4) To(x1,y1)X%292 — Zy1x10(x2,2), x,y,z€ C.
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We can form the bialgebra M(C,a) = T(C)/I,, which is called is the quadratic
bialgebra associated with (C,0).

REMARK 1.2. i) The map i: C— T(C) — M(C,o0) is an injective coalgebra
g-map.

ii) If B is a bialgebra and f: C — Bis a a-(coalgebra) map, then there is a
unique (bi-) algebra map f: M(C,6) — B such that foi=f.

iiiy M(C,o) has a natural algebra-gradation {C"},o.

iv) M(C,0)” = M(C,o7') = M(C,'s), M(C,a) = M(C,’ o 1.

Let (C,0) be as above. The map o is called a Yang-Baxter form (or YB-form)
if for all x,y,ze C,

(5) Yo (x1,y1)0(x2,21)0(y2, 22) = Za(y1,21)0(x1, 22)0(x2, y2)-
We call (C,0) a YB-coalgebra if o is a YB-form.

REMARK 1.3. If ¢ is a YB-form on C, so is ‘o™

A YB-form o is said to be symmetric if 'a”! =o.

PrOPOSITION 1.4 ([D, Theorem 2.6]). If (C,0) is a YB-coalgebra, ¢ uniquely
extends to a braiding 6 on M(C,o).

We note that if (C,o) is a YB-coalgebra then M(C,0o) has another braiding

tg—1,

COROLLARY 1.5. & is symmetric iff o is symmetric.

For a bialgebra B, a Hopf algebra H and a bialgebra map z: B — H, we call
(H,1) (or simply H) a Hopf closure of B if the following universality holds: for
any Hopf algebra A and any bialgebra map f : B — A, there is a unique Hopf

algebra map f : H — A such that f o1 =f. See [Man] [H] [D]

ProposITION 1.6 ([T2] [D, Theorem 3.6] [H]). Let M(C,0) be the quadratic
bialgebra associated with (C,a), d(#0) a grouplike element of M(C, o). If there is
a map j:C — M(C,o0) such that

Ti(x1)j(x2) = e(x)d = Zj(x1)i(x2)  forall xe C,
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then d is central and the (well-defined) localization M (C,0)[d!] becomes a Hopf
algebra. Moreover it is a Hopf closure of M (C,0), and it follows that
M(C,0)[d"'] = M(C,0)[G™'], where G is the set of grouplike elements of
M(C,0). If (C,0) is a YB-coalgebra, M(C, 0)[d~!] has a braiding.

2. YB-coalgebras and quadratic bialgebras

From now on we work over an algebraically closed field k¥ whose charac-
teristic, chk, is not 2. Indices of Kronecker’s dij, Xjj, etc. are considered modulo 2.

In this section we define some YB-coalgebras and examine quadratic
bialgebras associated with them.

Set C = M,(k)*, the dual coalgebra of the 2 x 2-matrix algebra M, (k), and
let {X;j},<;,<, be the comatrix basis of C, namely it spans C and satisfies
AXy) = Zi_ X ® Xiy,  &(Xy) = 6.

For any coalgebra D and YjeD, 1 <i, j<2, if the linear map C — D,
Xij— Yy, is an injective coalgebra map, we denote the image by

Yn Ti
spany(Yyj) = spany (an Yn) :

Let A= +1. Now for any aek* =k — {0}, we define linear maps O(a)»
t%l) = rgf)) :C® C — k as follows (see [D, Example 2.8] for t™):

%) Xu X X Xp Tgi; Xu X2 X Xp
X1 0 0 0 0 X1 o 0 0 1
X2 0 a 1 0 X1z 0 0 0 0
X21 0 1 o 0 X21 0 0 0 0
X22 0 0 0 0 ; sz_ A 0 0 o .

PROPOSITION 2.1. a(y), r& (x € k™) are YB-forms on C.

PrOOF. We show that O« = o is a YB-form.
We can write 6(X; i1, Xjmi1) = 6;0ma®s.
For X, Xi, and X,,, observe that

z:a,b,ca'(/‘,im le)o'(Xaja Xuc)a(Xbm, Xcv)
= U(Xi,i+l ’ XLI+1)‘7(X:'+1,j, Xu,u+1)0'(Xl+l,m, Xu+1,u)

0it nyOit1u o0
= 00 1mOupa " om0 %
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and
2;a,b,ca'()(lb, Xuc)a'(aXia, Xcv)a(Xaj, Xbm)

= G(XI,H-I ) Xu,u+l)a(Xi,i+la Xu+1,v)a(1‘,i+l,j’ X1+1,m)
— 5u05ij51maalua5i,u+l o0 .

Thus Condition (5) is satisfied.
The inverse is given by

-1
O'(a) == O'(a—l).
Therefore o, is a YB-form for o e k*.

It is easy to check that 183 is also a YB-form on C. O

Therefore (C,0(,)) and (C, f&) are YB-coalgebras for all o€ k™.

REMARK 2.2. {G(a),TE;)) |o, B € k*}, {rg)),r&)) |a, B € k*} form subgroups of
the unit group of Mz(k)®2.

Next we examine the defining relations of the quadratic bialgebras associated
with them.

PROPOSITION 2.3.
i) The ideal I,, where = 6y, IS generated by the following:
{X121 - X222,X122 - X221’Xj,j+1Xii - °‘Xi+l,i+1Xj+l,j} if of = 1,
(X2 — X5, X% — X3, XyXim(i+j+1+m=1)} f & #1.
ii) The ideal I, where 1 = rgg, is generated by the following:
(X1 X2 — X X11, X12X21 — AXo1 X2, Xo Xin — aXuXip, Xo5 Xy — Ao Xy X5}
if 02 =4,
(X1 X2 — X X11, X12X21 — AXo1 X2, Xy Xim(i +J + 1+ m = 1)}
if o # A
Proor. i) For Xjj, Xjm, observe that
36(Xia, X1p) Xaj Xom = 0(Xii+1, X141) Xiz1,j X1 1m

= o Xi11,j X1+1,m;
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zleAXiaa'(lYaja Xbm) = Xl,m+l/Yi,j+la(A,j+l,j7 Xm+l,m)

= XI,m+11Yi,j+l“6jm-
Thus the subset
{2 X Xim — Xpprmi1 Xixt, jr16® |1 S 4, j, 1, m < 2)
generates the ideal I,. The above polynomials are written as follows:

ozX,%-—XiZH’jHa ifi=1j=m,
XXy — X1y, j11 X1, jr1 if i#1,j=m,
o Xi; Xy — i+Lm+1Xix1,j+1 ifi=1j#m,
XyXim = Xioymr Xisjor - i Lj#m (e, I=i+,m=j+1)

ii) This is similarly shown as i). O

REMARK 2.4. i) For the bialgebra M (C, d(-1)), see the quantum conformal
group in [Man].

i) M(C, 7&)1)) are the quantum matrix bialgebras M,(2).

iii) M(C, ‘L'E\_/)_—l)) is Takeuchi’s two-parameter bialgebra M, 4(2)
for « = v-1, p=—v/~1 ([T1}, [D)).

Define B = M(C,0(y,) for o # 1 and B» = M(C, 18) for o? = A. We write
BV = B(). These definitions, ignoring choice of a, are reasonable by Prop-
osition 2.3.

On the other hand, we see by Proposition 1.1 that braidings &4, %'Ei) /i) are
induced on B, B, respectively, via the canonical surjections

2
M(C> a(:tl)) — B, M(C’ Tgi)ﬁ)) - B(}v)
Note that {X;;Xju|i+j+ !+ m =1} spans a coideal of T(C).
Therefore we have the following claim:

CLamm 2.5.
1) 04) : C® C — k extends to a braiding Ga) on B for every o ekX.

i) ‘L‘Ei; : C® C — k extends to a braiding %8; on BA for every ae€k>.

We examine the coalgebra structure of B.
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PROPOSITION 2.6.
i) B has the following set as a basis

r r
(X1 XpX11 X0 ..., X5 X X12Xo1 -+ [ 20,07 S n}.

ii) The grouplike elements but 1 in B are given by
XGEX5 (sz)

Then are central non-zero divisors.
iii) The simple subcoalgebras of B which are not spanned by grouplike elements
are of dimension 4. They are given by

t t

. - P — ~
4 2
XEXuXnXu- - Xp XnXaXp- -
t

t

Cy = spany (s=0,t21).

e N e e
XEXnX02Xo1 -+ X{i XnnXuXn -

iv) B is cosemisimple. The nth component C" (n Z 1) of B is decomposed as
the sum of simple subcoalgebras as follows:

C" = Tp=2s+t Csts lf n is odd s
T Bam2e4:Co + K(XT) £ XT2), if n is even.

Proor. i) It is verified in the same manner as Theorem 3.1.i) below.

i), iii), iv) It is easy to see that X% + X3 is grouplike for s = 1. By i) and
the defining relations of B, it is a central non-zero divisor. C is isomorphic to Cy
as coalgebras by

B
X1 XE XuXeXu -,

X X5 XXX ..,
Xo1 - XE3 X X12X21 - - -,
X XEXpXuXn ...
By i) we have that
B=k-1+3k(X% + X3)+ZCq

=k 1@ {@s21k(XE + X3} ® {®s20:21Cut}-

Thus ii), iii), iv) are done. O
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PROPOSITION 2.7.
i) BY has the following set as a basis

{X11 X5, X15X5 |u+v 2 0}
i) The grouplike elements but 1 in B® are given by
X1 X5 + VIXHXY (uz1).

They are non-zero divisors.

iii) The simple subcoalgebras of B® which are not spanned by grouplike
elements are all of dimension 4. They are given by
X4Xy XXy,

Duw = spany (Xz"l X, X4XY, ) (% 0)

iv) BW is cosemisimple. The nth component C* (n 2 1) of B? is decomposed
as the sum of simple subcoalgebras as Sollows:

n zn=u+v,u§ uDuv, ‘ lf nis Odd;
¢ = n/2 v nj2 /3n]2 /2 o n/2 o
2n=u+v,u§vDuv + k(Xll X22 i A Xlz le ), !f‘ nis even.

We omit the proof.

COROLLARY 2.8. Let (Cy) denote the sub-bialgebra generated by the simple
subcoalgebra C;, = B. Then as bialgebras,

B, if tisodd,

B2 {Cy) ~ {B(+), if t is even.

We omit the proof. See the proof of Theorem 3.5 below.
Define linear maps Oup = ,Ba(aﬂ_n), ‘L’Sé) = 'Btgi}r') for «, fe k>, A= +1. They
are also YB-forms on C. The YB-form o, extends to a braiding 6,4 on B, and

ti';,) extends to a braiding 'r'g’},) on BW,

PROPOSITION 2.9. i) Oug is symmetric iff o> =1 = f°. ti’;) is symmetric iff
=1, 2=
i) The set of braidings on B is {Gup|a,Bek*}, and that on BD s
(A
{Tiﬂ) Ia’ﬂ € kx}
PrROOF. i) We note that ‘Oup = Oug, ‘ri'}g) = t%ﬂ The statement follows from
these.
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ii) We show the statement with B. The statement with BY is similarly
verified.

We have obtained braidings G,s(a,f € k*) on B.

Let ¢ be a braiding. Note that the second component C? of B has a basis

{Xlzl,X122,X11X22,X22X11,X12X21,X21X12}-
So for Xjj, Xim, it follows that
26(Xia, Xi6) Xoj Xom = 6(Xijs Xim) Xjj Xmm + (X, j1, Xims1) X1, X my
X35 Xia0(Xajy Xom) = XuXuo(Xijy Xim) + X1 141 Xi,416(Xir1, j> X 1,m)-
These must be equal, so we obtain the following by Proposition 2.6.1):
o(Xij, Xim) Xjj Xmm = XuXiio(Xyj, Xim),
(X j+1, Xim+1) Xj1,j Xme1m = X1 101 X416 (Xix1,j> Xi1,m)-

The above equations imply that o|cgc is given as follows with some a, f, y € k:

o Xn X1z X Xz
X1 y 0 0 0
X12 0 o ﬂ 0
X2 0 ﬂ o 0
X2 0 0 0 Y

Moreover it follows by Condition (2) that
0 = 6(0, X12) = o(X11X12, X12)
= o(X11, X11)0(X12, X12) + o(X11, X12)0(X12, X22) = 70,
and
0 = (0, X12) = a(X11X21, X12)

= o(X11, X11)o(Xa1, X12) + o(X11, X12)o(Xa1, X22) = B

We have that y =0, «, f €k since o is invertible.
Therefore 6|cgc = Gap, SO O = Tup. O

We describe a Hopf closure of the bialgebra B.
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Set dy = X{; £ X%. These are central grouplike elements. For example,
observe that

(Xn XIZ)(XII X21)=d (1 0>=(X11 X21)<X11 Xlz)
X X X2 X o 1 X2 X X X2 )’

(Xu XIZ)( X1 —X21> _4 (1 0)
X Xn/)\-Xin Xp “\0 1
_(Xn —le)(Xll Xlz)
X2 Xp X Xn/)

Using Proposition 1.6 and Proposition 2.6, we have the following.

and

PROPOSITION 2.10. The Hopf closure H of B is given by
H = Bld;']| = Bld_'] = BIG(B)™],

where G(B) is the set of grouplike elements in B. This Hopf algebra is braided and
cosemisimple, and includes B as a sub-bialgebra. Furthermore, H is involutory. In
fact, the antipode S is determined by

S(Xy) = Xyd,! = (-1)" Xd ",

3. Quotients of the bialgebra B

In this section we define and study a family of finite dimensional co-
semisimple bi(Hopf) algebras which are quotients of the bialgebra B over an
algebraically closed field k with chk # 2.

It will be shown that the family contains the “non-trivial’”’ cosemisimple Hopf
algebras of dimension 8 ([Mas2]) and of dimension 12 ([F) if chk # 3. See also
Gelaki’s Hopf algebras of dimension 4p, where p(23) is prime ([G].

We construct the family. It is easy to see by Proposition 2.6 that for L > 2,
N 21 and 4, v= +1, the following subsets

L L L L

™

{:Yszanz'ﬁ"—:Yququ ey XX Xoy s —13(12X21X12'ﬁ"},
{1 = (XY +vx)}

span coideals of B. Let J} and I}, be the ideals generated by these coideals
respectively, which are bi-ideals.
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We can form the bialgebra
ASY = B/IE+ 1Y
We write Aﬁf) = AS"LI’_I), etc. Let 7 be the following surjective bialgebra map:

E:B—)Agi), XinA_’,-,-=x,-j.

THEOREM 3.1.
i) A%) has the following set as a basis

t
{xfl X22X11X22 - . - ,xfz X21X12X21 * - * Il <sZ2N,0=t=s L— 1}.
. (vA)
Thus dimAy; = 4NL.
ii) Let G(A%J)) = G be the set of grouplike elements of Ag;,{). Then
L L

G = {x% + x5, X Tz - + Vixsoxaxn - |1 £s< N}

iii) The simple subcoalgebras of Ag,{) which are not spanned by grouplike
elements are given by

t t

.

— ~ ~ ~\
X3 XXX s X3S XXX
t t

.

X% X1 x12%21 + xB Xpxixn -t

Cse = spany

for 0£s<N-1,12tsL-1

1v) |G(A§\V,,{))| — 4N, and there are exactly N(L — 1) simple subcoalgebras of
dimension 4.

V) AS\‘}? is non-cocommutative and cosemisimple. It is non-commutative unless
(L,4) = (2,+1).

vi) A%) is an involutory Hopf algebra.
t

vii) Let A = Xx{, Xnxnxpn--"(1<s<2N,0=st=L- 1). Then A is a non-
zero two-sided integral.
viii) Ag,{) is semisimple if chk ¥ NL.

ProOF. i) Let B’ be the algebra k<X, Y)»/{X?— Y?*} and 4, v= £1. Let V
be the k-vector space with a basis {<{s,£) e V|s=21,0=t<L-1}.
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We define the following ideals of B’:

L L

Ji = (YXYX - -AXYXY ),

Y =(1-vXx?),

We prove i) step-by-step.
(Step 1) We define a right B’-module structure on V.
Define the actions of X and Y as follows:

(s, t+ 1), if tis odd, t<L -2,
A+ 1,L—1), t=L-1,
X : {s,t P
5,0 s+ 1,0, if tis even, =0,
<S+2,t—-1>, t;2,
(s+2,t—1), if ¢ is odd,
Y:(s,t)v—»{(s,t+l), if tis even, <L -2,
A+ 1,L—1), t=L-1.

It is easy to see X2 = Y? in Endi(V).
Thus we have a right B’-module structure on V.
(Step 2) We claim the subspace W spanned by

{<g(2N) +5,8> —Vi{s,)|1 S s < 2N, g 2 L0st<L-1}

is a submodule of V.
For example, when t=L — 1 is odd and s = 2N , observe the following:

X :<{q(2N) +2N,L — 1>~ Ag(2N) +2N +1,L - 1)
=A(g+1(2N)+1,L-1)
= W, L - 1) (mod W),
and
X :VIQN,L-1>—VAQ2N +1,L - 1)
=VIA1-(2N) +1,L — 1)
=vAv(l,L - 1) (mod W).

(Step 3) The action of B’ induces the B’ /J;}'-module structure on V.
We check it case-by-case.
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When L is even, for each 0 <2u < L — 2, observe the following:

L
—— L/2—~u-1
TX X :- (s, 2u) X (s, L—2)

XX s+ 1,L—1)
O% ais+ 1+ 4u, L — 1 — 2u),
s, 2u+ 15 O (s duy 1) s (s + 4u +3,0)

L/2—u—1
OO (s+du+3,L—2u—2).

L

st \m— u
XY T - (s, 20> S5 (s 4,00 s (s + du+ 1,1)

L/2—u—1
KN s+ du+1,L—2u—1),

L/2—u—1
s 2+ 1Y s, L— 1)
XY, As+3,L—2)

N0 Ads + 3+ 4u, L — 2 — 2u).

L L
e N, e N,
Thus it follows that YX ---X = AXY---Y in Endi(V).
When L is odd (so L =3), for each 2=2u=<L — 1, observe the following:

,__/L_\ (vx)E-Hr2 Y
YX - ¥ -G, 05 2 (s, L— 1) As+1,L—1),

(L-1)/2—u
s 2wy T (s L= 1) 5 As+1,L—1)
O acs+ 1+ 4u, L — 1 —2u).
u—1
(s, 2u — 10 I (s du— 4,1 X (s + 4u— 1,00

(L-1)/2-u
(¥x) (s+du—1,L—1—2up+> (s+4u—1,L—2u).
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L
XY - X ::-(5,00><{s+1,L -1,

(5,20 X (s + 4u,05 5 (s du+ 1,05

(L-1)/2-u
I (s+du+1,L—2u—15

(Xy)(L—l)/Z—u
—_

d8,2u— 1> L= s+ 1,L— 1)

u—1
KO, s +4u—3,L—2u+1> 5 ads+d4u—1,L — 20>,
L L
Thus we have that YX---Y =AXY---X in End(V).
In either case ¥V becomes a right B’ /J{-module by the action.
(Step 4) V/W is a B'/J} + I}-module of dimension 2NL.
Since V/W has the set {<s,1>|1 Ss<2N,0<t<L—1} as a basis, V/w
has dimension 2NL.
The action of X2 is given by X2 : (s,1>+> (s + 2, tD.
Thus for 1 Ss<2N, 0<t<L -1, it follows that
XN 2 s, s+ 2N, 1) = (1 - (2N) + 5, 1> = v(s, t> mod W.

So we have that 1 = vX?VN in End,(V/W).

Thus it is done.

(Step 5) We construct a right A}, -module M = (V/W) @ (V/W).
There are two algebra maps

my: B— B /J" + I,
XuX=x, Xp—Y=y,
Xiiy1—0,
and
Wi B B R,
Xp—X=x, Xp—Y=y,
Xii—0.
They induce algebra maps
7o : Ay — B'/JF + Y,
XX, xXp P, X 0,
m: Ayp — BTV + I,

X12 — X, xX21 ), x,-,-r—»O.
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Using these, we obtain the right A%}-module V /W = V, through 7o with a basis
{5,000 =48 1)|1 £s=<2N,0=t=L—- 1},

and the right A%)-module V /W =V, through m; with a basis
(s, ) =¢5,t)|1 <s<2N,0=t < L—1}

Let M be the right A?}?-module Vo @ V1. We note that M has dimension
4NL.

(Step 6) It follows that M =~ A%) as right A%)-modules.

Define an A%i) -module map ¢ : Ag\‘;,{) — M and a k-linear map ¢ : M — Ag\‘;i)

as follows:

¢A§:;?-*’M, ai—){<2N,0>0+V<2N,0>1}‘a,
t

VM- A%), {8, g > XT; X2 X11X22 " *
t

et —
{8, )1 > X5, X1 X12X21 + - -

It is easy to see that y is surjective and that goy is the identity map on M.
Therefore we have that M =~ A%) as Ag\v,,{)-modules, in particular dim A%} =
dimM = 4ANL.

This completes the proof of 1i).

ii) ~ v) These are easily verified by i). Since A%i) is generated by {x;}, it is
commutative iff (L,4) = (2,+1).

vi) There is an algebra map B — B?, X;;— Xji- (X121(2N_l) +X122(2N'1)), and
this induces an algebra map S,

B —_— BP
VA VA
Ag\IL) —— (A§VL))OP-
The anti-algebra map S is an antipode of A%), which is given by

2(2N-1 2(2N-1
S: x,-j |—>xj,~(x1§ ) + xlg ))
2 \—1
= xi(x}, +X1,) -

So A%v,i) is an involutory Hopf algebra.
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t
vii) The element A = Ex{, %X %%~ (1<s<2N,0<r<L—1) is non-
zero by 1i).
Recall that A is called a left (resp. right) integral if aA (resp. Aa) = e(a)A for
all ae 4D,
It is enough to check on the subset {x;}. Observe the following.

xle = x21A =0
= E(xlz)A = 8(X21 )A

t t
| m——— N —
xuA =Zxj] Xpxnuxzn - = Ex, Xpx11xm = A

= E(XH)A.

t
e
XA = Zxpxi, Xnx11x2 - -

t t
S . | fomm—— -1 e
= YsevenX]1X22 X22X11X22 + - - +Zs:0ddX]] X22X11 X22X11X22 - - -

=2
= $ +2 +3 o
= Zseven,i=0%11 %22 + Zseven,1=1X]] -~ + Zsieven,22X]1 > X22X11X22 - -
142 L1
— ] o N — e e
+ Lsodd, sL-3X]] X22X11X22 * - * +Zsi0dd (= L—2X]| X22X11X22 - - °

L2
2 f——/\g
+ Zgodd=L-1XT X2 X11X02 -

t
e e
= ZsevenX11X22 + ZsevenX]] + Lsiodd 0<r< 13X} X22X11X22 - - °

p L1
/——/h ,—/ﬁ
+ Zgeven2 st L-1X]) X22X11X22 - * +Zg:0dd X] X22X11X22 - -

L-2

P
+ Zs0dd X)) Xo2X11X02 - - -
=A
= 8(X22)A.

Thus A is a left integral. It is similarly shown that A is a right integral.
Therefore A is a non-zero two-sided integral.
viii) It follows that &(A) = 2NL # 0 iff chk ¥ NL. O
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REMARK 3.2. For the multiplication relations of A%}?, we note the following.

. x,zj is central.

N+l _ N+1 _
o 2N+l = x; and xfyi;j = VX i1

o XV +xt =1.
o (x5 + uxﬁ)_l = xf?”“) +,uxfg2N”s) forl<s<N,u= +1.
L L

Set hy, = x%l + x%z and g = ?11X2;C]1 --7+\/15612x2;}12 — for a fixed V/A. Cm
denotes the cyclic group of order m.

PROPOSITION 3.3. 1) The subgroup <{h.,h_) of G is central in A%I{), and the
order is 2N. As groups

Cy x Gy, if (N,v) = (even,+1);
Con, otherwise.

Ghosho> = {
ii) G < Z(Ag\‘,'?), the center of AS\V,I{), iff g eZ(A?,'?) iff (L,A) = (even,+1).

Proor. i) The order of <(h,,h_) is 2N by Theorem 3.1.
If (N,v)=

(even, +1), then <hy,h > = (hyd x O3V — X33,
(even, —1), then <h,h_> = <hy) =<ho),

(odd, +1), then <hy,h_) = <ho),

(odd,—1),  then <hy,h Y = <hyd.

i) Note that G = (hy,h_>U<hy, h_dg. So it follows that G = Z(A4yy) iff
g€ Z(A3)).
It is easy to see that

L
T _ e
. Xii - X11X22 * «* = X11X22 * * * *Xii,
g is central & . .
Xij+1 © X12X21 -+ * = X12X21 * * * "Xiji+1, fori=1,2. O

REMARK 3.4.
i) The dimension of a simple subcoalgebra of Ag\v,é) is either 1 or 22 =4.
ii) The simple subcoalgebra Co; generates A%I{) as an algebra.



18 Satoshi Suzuki

iii) For the YB-coalgebra (C, 048), C ~ Co = Ag;i), Xij+> xjj, i1s a coalgebra
gyp-map.

We identify C and Cy,.

iv) AS_) ( zAS—) , see Prop.3.12 below) is the “non-trivial” semisimple Hopf
algebra of dimension 8 ([Mas2]). The ideal decomposition is given as follows:

AEJ{—) = k(x11 + x2 + 33, + x11%2) @ k(x11 — X929 — X3, + X11%22)
@ k(x11 — x20 + X3, — x11%22) @ k(x11 + X920 — X3 — X11%22)

@ spani{x12, x21, X35, X12%21 }.

v) Since the subHopf algebra K = k{h,,h_) is normal, A%)K+ is a Hopf
ideal, where K* = Kereg. So A%) /A%)K+ = A4 is a Hopf algebra of dimension
2L. Tt is easy to see that the elements % = a, Xp =be A are grouplike and
generate 4 as an algebra. This means that A4 is a group-algebra. Moreover let
ab = c, then the order of ¢ is L. Then,

L L
_ Pt s e,
A=k{a,b|a*=1=0b%baba--- =abab--.)

=kla,cla® =1,cF = 1,aca™! = cH
=kDp, where Dy is the dihedral group of order 2L.
Thus we obtain a short exact sequence by means of [Masl, Definition 1.3]
1 - K A\ S kD, — 1.
vi) As bialgebras
B/J3 = B/(XuXn — XnX1, X12X21 — AX21 X12)
= k<X /(X ~ X3y, Xy — X531, XipXom (i+j+ 14+ m = 1),
X1 X2 — Xn X1y, X12X21 — AX71 X12)
= B(A)/(Xlzl - Xzzz,Xlzz - X221)'
Thus A%) is furthermore a quotient bialgebra of B®:
Ayy = BD /(X ~ X3, XDy — Xh, 1 — (XBY + X)),

We note that {X}, — X}, X, — X2} spans a coideal of B? and that {1—
(XT{' +vX{Y)} spans a coideal modulo the coideal spam{X? — X%, X% — X3 ).
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Recall that Cy denotes a simple subcoalgebra of dimension 4 of A%) for
0<s<N-1,1<t<L-1. Let (Cy) denote the subHopf algebra generated
by Cyu. It is easy to see that (Cy) is commutative iff either ¢ is even or
(L,A) = (2t,+1). So it follows that ¢ is odd if {Cy) is non-commutative.

We show that (Cy) is a member of the family {Agv,,{)} if ¢ is odd.

Set

GCD(L, t) =mg, GCD(N, 2s + t) = my,
L/mL = L07 N/mN = NOa t/mL = to, (2S + t)/mN = (S, t)Oa
2<Lo<L1<No<N).

THEOREM 3.5. Assume that t is odd and Cs < A%). Then

{Cqyy ~ A%:L as Hopf algebras.

ProOF. Let ¢ be odd, and fix 0<s<N—-1and 1 £¢t<L~-1. We note
that integers 2s+ ¢, to, (s,2)y, mr and my are also odd.
Set
t t
e e e
z1 = X8 XX - - X110, Z12 = X% %1221 - - - X12,
t t
prsmm— — P
2 = xﬁ X21 X120 X21, Z22 = Xzﬁ X22X11 *** X22 -

The map w: A%L — {Cyq, Xij+>zij, is a (well-defined) surjective Hopf
algebra map. This is easily verified.

We show that the map w is injective.

Recall and set that

_ (v4)
Go = G(Ay,1,)
Lo Ly
/_A——\ f—__\
= {x® + X%, X Kixnxn - VX xixnxiz - - |1 £ u £ No},
(v4)

(Cuv)() =Cy < ANoLo'
Then it follows that
A = kGo ® Z(Cu),-

Thus it is enough to show that w is injective on kGp and on 2(Cuv)o-
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It is easy to see that w is injective on kG,.
So we show that w is injective on Z(C,),.
First we examine w((Cyu),) for 0Su<Ny—1, 1 <v <Ly-1.
Let tv=¢qL+r, for some q, 0<r<L-—1.1Itis easy to see that r # 0, so it
follows that 1 <r, L-r<L-1.
v

Y v
For x¥ X1 xpX11 - € (Cus)g, Observe that

v
N e
(34 S xnx )
v

2 ,—h
= z{1Znznzy -

v
t

Y

e N, ° >
= (xF Fnxz - xn)*- (35 - xnix2 -+ x11) (63 - X013 ceeX) -

v

2 t ,—H
= x1§b+ )uxﬁ” X11X22X11 - - *

2
= x (2-"+’)“xlw
1 11
r
gL ———— £ ai
X11 - X11Xx22Xx11 - - -, 1f g 1s even,
L+r
—)L e — o
xﬁ ) * X11X22X11 " - 7, if g is odd
2{(2s+¢ )L} A o
xli( HoutsHa/AL) " X11X22X11 "+, if g is even,
L—r

xﬁ(Zs+t)u+su+((q—l)/2)L+r} XXX, if ¢ is odd

# 0.
Let

(

((2s+ t)u+sv+§LmodN,r), if g is even,

(2s+t)u+sv+—(qz;l)-L+rmodN,L—r), if g is odd,

l0<asN-11<b<L-1).

(a,b) = ¢ (

So we have that

v

0 # co(xf’l‘ X1x22x11 - -7) € @((Cuv)y) N Cap-
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Since C, is a simple subcoalgebra, it follows that

o((Cuw)o) = Cab < Ay -

Thus o is injective on (Cuy),.

Next assume that there are 0 <u, u' S No—1, 1 v, vV £ Lo — 1 such that
@((Cuwv)p) = @ ((Curvr)o)-

Let ' =¢q¢'L+7r, 1<r=L-1

It is easy to see that ¢ = ¢’ mod2 implies u =’ and v ="'

So let g be even and ¢’ odd. This implies that g+ ¢’ + 1 is even and that
L=r+r.

We have that t(v+v') = (¢ +¢' + 1)L, so it follows that Lo|v+ v’

It follows that Lo =v+ ', since 1 <v, v/ S Lo — 1.

So we have t= (¢+ ¢ + 1)m, and this means that ¢ is even. A contra-
diction.

Thus @((Cus)) = @((Cuv)g) iff u=1u', v="1', s0 @ is injective on Z(Cu)o-

Therefore we have the injectivity of w.

This completes the proof of the theorem. O

It is easy to see that the following lemma holds.

LEMMA 3.6. Assume that A, and A, are bialgebras over an algebraically
closed field. If the bialgebra Ay ® A is generated by a simple subcoalgebra as an
algebra, then so is A;, i =1,2. Moreover if any simple subcoalgebra of A1 ® A>
has dimension 1 or n?, then either Ay or Ay is pointed.

COROLLARY 3.7.
i) Assume that A%‘) is non-commutative, i.e. (L,A) # (2,+1), and Cy = Ag‘;i).
Then

(Cu> =AY iff tisodd, (L,t)=1and (N,2s+1) = 1.
ii) Assume simply that t is odd and Cy = Aﬁ:{). Then
(Co>=AVY  iff (L,H)=1,(N,2s+1)=1.
iii) Let N be 2"m, and m odd. Then
Ag,{) ~ Ag.’},)d ® kC,, as Hopf algebras.

) If Ag{% is non-commutative, then it is indecomposable as the tensor product
of its subHopf algebras.
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PROOF. i), ii) These follow from the dimensionality.

iii) Let N be 2"m and m odd. We may assume that m = 3. Now let
s=(m-1)/2, t=1, then it follows that 2s+t=m, Np= 2" Ly=L, and
(Cu) = AT

Let f =x}{*" + vx};". Then f is a central grouplike element with order m,
and Cy-f = Cyy, where s’ =2"+ (m—-1)/2< N — 1.

For such s, s’ and ¢, it follows that

m-—1

(2s' +¢,N) = (2{2" + T} +1, 2"m)

= (2" 4+ m, 2"m)
= 1.

Thus the simple subcoalgebra Cj, - f = Cy, generates Ag,{) as an algebra by ii).
Therefore we have that

AM),L ~ Ag:/,ll)‘ ® kC,y, as Hopf algebras.

2"m
iv) Let 2" = N. Applying Lemma 3.6 to A%) , We may assume
AN = <Cy) ®KF,

for some 0 <s<N-1,1<¢t<L-1, (abelian)subgroup F < G(A%)).

Since A%) is non-commutative, so is {Cy)>. This means that ¢ is odd. By
Theorem 3.5, (Cy) = AVY .

Comparing the dimensions, we have that |F| = mym;.

Counting the number of 4-dimensional simple subcolagebras, we have the
following:

N(L—-1)= No(Lo—1) - |F|
= No(Lo — 1)mymy
= N(L - mL).

Thus we have that m; = 1.

On the other hand, it follows that my =1 since 2s+ ¢ is odd and N is a
power of 2.

Thus we have that F = {1). O

Next we show that we can obtain all braidings on Ag}i) . See [GW], [G].

We identifiy C < Ag‘,'i) as in Remark 3.4. Note that any braiding on A%) is
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determined on C ® C. If a bilinear map 7 on C extends to a braiding on Ag\v,i), we

denote the braiding by 7.

Recall YB-forms ayg, r&';) on C.

CLamM 3.8. Let o be a braiding on Ag\‘,’i).

i) If L 23, o|lcgc coincides with o.p for some a,f € k* such that (oc/i)N =,
(@) = 2.

ii) If L=2, o'|cg¢ coincides with either oup for some a,f € k™ such that
BN =v, f )Y =1 or ‘c%) for some y,6 € k* such that & =y*, YN =1.

Proor. i) Assume that L = 3.
The subcoalgebra C - C of Ag,{) has a basis

{531, X35, X11%22, X22X11, X12X21, X21X12}
We have similarly as in Proposition 2.9,
0lcgc = Oap for some a, f € k™.
Moreover o satisfies the following:
0=o(1 — (47 +vxi3) xu1)
=1- V{Uaﬂ(xlz,xlz)aaﬁ(xlz,x21)}N
=1—v(aB)".

Thus it follows that (af)" =v.
Observe that when L is even,

L L
0 = o(X21X12 - - X12 —AX12%21 - - X21, X22)

= aL - lﬁL7

and that when L is odd,

L L
0 = o(X21X12 -+ X21 —AX12%21 - - X12, X21)

= ol — .

Thus in either case, it follows that «f = A8", or (L = 4.
il) Assume that L = 2.
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The subcoalgebra C - C of AM) has a basis
{x}1, %35, X122, X12%21 }.
As in the proof of Proposition 2.9, we have the following:
a(xij, xlm)xjjxmm = XleiiO'(xij, Xim),
a(x;, J+1 Xim+1 )xj+1, JXm+lm = X[14+1Xi+10 (xi+l, Js XI+1,m)-

Using these relations, we have the following with o, B, v, o€k,

o Xu X2 X Xn
X1 y 0 0 /)
X12 0 o ﬂ 0
X2 0 B o 0
X22 Ad 0 0 Y

Moreover o satisfies the following equations:
0 = a(x11x12, X12) = »a,
0 = a(x11x21, X12) = Y8,
0 = a(x11x12, X21) = 0B,
0 = a(x11x21, x21) = dax.

So it follows that either y=0=6 or a =0 = .

Thus g|cgc is either g,s or r( ) for a, B, y, 6 ekX.

If 6| cgc = 0up, then the relatlons on a, B follow similarly as in the proof of i).
Let o|cgc = 155 Observe that

= 0'("%1 22”‘22)
= TS) (%11, X22)% — 73 (x22, %22)?
— 52 _ y2

0=0o(1 - (xf) —vxiy),xn)
=1 —rg)(xu,xll)w
=1= y2N

Thus it follows that 6% = 32, 2N = 1. O
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CrLamM 3.9.
i) The YB-form a,s extends to a braiding on A(V'l) lf (rxﬁ) =v, (aff” W =
ii) The YB-form Tg;a) extends to a braiding on A Vif &t =92 PN =1

PrOOF. Recall that B has braidings {Gus|a,f€k™} and that B"% has
braidings {‘Cy‘s) ly,0 € K*}.
i) It is easy to see by Proposition 1.1 that Gy : B ® B — k induces a braiding

on A(A‘,',’E) iff
{ (@) =,
(@B )" =4

i) Recall that 402 = BW/(X2 — X3, X% — X3,1 — (X{' +vX)).
It follows that rﬁé) induces a braiding on B#)/ (X11 22,X12 X3%) iff
&% =92, and that T;(xs induces a braiding on A Viff ot =2, PN =1=6". O

ProposiTION 3.10.
i) The set of braidings on A( 1) s given as follows:

{&aﬂl(aﬂ) =Y, (aﬁ_ ) = )"}7 lf L _Z. 31
{6up, 7fM)K‘"ﬁ)N =, (txﬂ_l)2 =10 =y,yN=1}, if L=2.

ii) ASV) is, in fact, a braided Hopf algebra.
If chk ¥ NL, the number of braidings on AEVL) is

{2NL, if L23,

8N, if L=2.
iii) The number of symmetric braidings on A%E) is given as follows,
When L = 3,
N L (v, ) &
odd odd (%1,%1) 2
(£1,F1) 0
odd even (v,+1) 2
(v,-1) 0
even odd (+1,4) 2
(—1,4) 0
even even (+1,+1) 4
otherwise 0.
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When L =2,
N (v, ) ¢ i@

odd (v,+1) 2 4

(v,—1) 0 0

even (+1,+1) 4 4

(+1,-1) | 0 o

(-L,+1) | 0 4

(-1,-1) | 0 o0

Proor. i) This follows from Claim 3.8 and 3.9.
it) There is a surjective map

{(2,q) ek x k| P =v,¢? =2} = {(0,8) ek x k| (@)™ = v, (af™)! = 2},
(p,9)— (pg,pq™").

Set (p,q) ~ (P',q4') < (p,q) = +(p',¢'). It is an equivalence relation, which
induces the bijection

{2, )| P =v,¢ =2}/ ~ ~{(@,8)| (B)" = v, (aﬁ")L = )}.
Let chk ¥ NL. Then it follows that |[{G}| = 2N - 2L -1 = 2NL. For i®, since
=1 and & =2, it follows that |{#?}| =2N .2 = 4N
111) Recall that chk # 2. On A§VL), Gup 18 symmetric iff o> =1 =% and

(@B)" =v, (@) =4
On Aj(v;) 1:(1) is symmetric iff > =1, 6 =4 and N =1, 6* = 2. O

REMARK 3.11. The algebra map 6: A{Y — AlReor Xij— Xxj;, is a bijective
Hopf algebra map. Define <a,b) = G,4(8(a),b) for a,b eA(M)
The linear map ¢ , >:A(v'1) ® A L) — k is a non-trivial Hopf paring.

Using Proposition 3.10, we have the following indispensable proposition.

ProPOSITION 3.12. A7) ~ AV if and only if both (N1, Ly) = (N, L) and

(v2,42) = +(v1,41), (case Ny, L, odd);
Ay = Ay, (case Ny odd, L, even);
Vo =y, (case Ny even, L, odd);
(v2,42) = (v, 41), (case Ny, L, even).
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Proor. For a fixed v/—1, we can define a bialgebra map ¢: B — B,
& X X,
X vV —-1X1,
X21 — -V —1X21.
Let
AV if N, L are odd
NL ) ) )
0P Agv_;"l), if N is odd, L is even,
NE AP if N is even, L is odd,
NL
Ag\v,i), if N, L are even.
Then the following diagram commutes:
B . B
A o~ 7(vA
A%L) S RN A](\;}L)'

Thus by Proposition 3.10.iii), if N or L is odd, then the statement follows.
Assume that both N and L are even. Then

( (++) = by Prop. 3.10.iii), (v2,42) = (++).

(—+) = by Prop. 3.3.ii), G(A%:i‘l)) is central so A, = +1.
By Prop. 3.10.iii), v, = —1 so(v2, 42) = (—+)-

(Vl,l]) = 4

(+—) = by Prop. 3.3.ii), kG(AY ) N Z(4§'1)) = K s0 22 = 1.

By Prop. 3.3.i),v2 = +1 so(v2,42) = (+-)-

| (——) = it follows that(vy, 42) = (——)-

This completes the proof. O
REMARK 3.13 ([Mas2], [F]). The “non-trivial” 8-dimensional semisimple

Hopf algebra is given by

A§+2_) ~ Ag’_z_).

»
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Let chk # 3. The two “non-trivial” 12-dimensional semisimple Hopf algebras
are given by
Ag;ﬂ o~ AEE—) and Ag?;—) ~ Agy_;).
Recall that H is a Hopf closure of B and that A(Nvi) is a Hopf algebra which
is a quotient of B through #. So there is a Hopf algebra map #: H — A%) such
. . (vl) . ~
H is a right 47’ -comodule algebra via %. See [DT]. Then

PROPOSITION 3.14. H is a cleft A(NVI{) -comodule algebra. Namely there is an
invertible comodule map ¢ : Agi) — H.

t t

ProoF. Recall the basis {x3, - X22x11 - -5, Xjp xuX12-" [1Ss<2N, 05t <
L —1}. This can be written as follows:
2(s+1) 2(s+1)
( *11 *12 \
X% - X1 X3 - X2 X% - x12 x% - Xy
X% - xX11x2 X% - xax1 X% - X12%21 X% - Xa1%12
L-1 L-1 L-1 L-1
P Pr—N— P—— Pra—N—
X Enxn - XE T X3 - Xizxar - X3 - Sorxiz o
L L
’_/% 7 - ™~
\xﬁ “X11X22 - XL X3 - X12%21 - XLL1 )

for0<s<N-1.

We use it. Define, for example, a linear map ¢ : A%) — B — H by the small
letters to its capital letters, i.e., x;; to Xjj, etc. Then ¢ is a right A%)-comodule
map.

We define another linear map  : A,(Ji) — H as follows:

On the bottom row,

L L 1 \Z+L
,——/% "~
WY iXT - X1 X22 - - XLL H(XLL"'XZZXII‘Xlzf)(Z) ;
L i 1 2s+L
X3 - X12%1 - XLLiT — MXLL+1- - X X2 - XE) (d_) ,
+

and on the other rows,

¥==So4.
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Then we have Y = ¢!, so ¢ is invertible.
Therefore H is a cleft Agi)-comodule algebra. O

Added in Proof

The group G = G(Ag,{)) is abelian, and the type is given as follows. The case
that L is even:

G = Chy,hoy x <HHg)

{(CN x C3) x Gy, if (N,v)= (even, +1);

(Con) x Gy, otherwise.

The case that L is odd:

AT gy = Cay if v=—a";
WPy x Bty = Coy x Co, if v=AN.

Proposition 3.12 follows from this and Proposition 3.3.
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