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C*-EMBEDDING AND C-EMBEDDING ON
PRODUCT SPACES

By
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1. Introduction

Throughout this paper by a space we mean a topological space. Let X be
a space and A its subspace. Then A is said to be C*-embedded (resp. C-
embedded) in X if every bounded real-valued (resp. real-valued) continuous
function on A can be extended to a continuous function over X. For an infinite
cardinal number y, 4 is said to be P’-embedded in X if for every locally finite
cozero-set cover % of A with Card % < y there exists a locally finite cozero-set
cover ¥~ of X such that ¥ NA (={VNA|Ve¥}) < (=refines)¥; A is P-
embedded in X if A is P’-embedded in X for every y. P’- and P-embeddings
were originally introduced by Shapiro [16]. For the case y = ¥y it is known that
PY_embedding coincides with C-embedding. And a well-known fact is that
collectionwise normal spaces are those spaces in which every closed subset is P-
embedded. For basic facts of these embeddings the reader is referred to Alo and
Shapiro and Hoshina 3]

As for normality of product spaces we have known the following results due
to Morita and Rudin and Starbird [15], respectively, that a Hausdorff space
X is y-paracompact normal iff X x Y is normal for any compact Hausdorff
space Y of weight w(Y) < y, and that for a normal space X and a non-discrete
metric space Y, X x Y is normal iff X x Y is countably paracompact. Being
motivated by the first result Morita and Hoshina and Przymusinski [12]
independently proved that for a compact Hausdorff space Y with w(Y) =7y, 4
is P’-embedded in X iff 4 x Y is C*-embedded in X x Y. On the other hand,
corresponding to the second result above, the following problem was posed in
Przymusinski (see Hoshina [3]) but still remains open: for a non-discrete
metric space Y is it true that 4 x Y is C*-embedded in X x Y iff A x Y is C-
embedded in X x Y? Recently Ohta proved this equivalence when Y = k%,
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the product of countably many copies of the discrete space with Card x > N
under an additional assumption on A4; in particular, in case x = Ny, that is, Y is
space of irrationals, he showed the problems is affirmative.

In this paper we study to obtain further such equivalences when X and Y
belong to other classes of spaces. Indeed, it is known so far that in case either Y
is non-discrete compact Hausdorff, or 4 is C-embedded in X and Y is locally
compact paracompact Hausdorff, then in X x Y C*-embedding of A x Y
implies its C-embedding (see [3]). But, any other case of X and Y for which
similar results hold seems to be unknown. In this paper first we prove the
following theorem. As a corollary to this result, in case Y is non-discrete o-
locally compact metrizable we have a partial answer to the Przymusinski’s
problem, which seems to be interesting when compared with the Ohta’s result
above. Here, Y is g-locally compact if Y is a union of countably many locally
compact closed subspaces.

THEOREM 1.1. Let A be a C-embedded subspace of a space X and Y a o-
locally compact paracompact Hausdorff space. Then A x Y is C*-embedded in
X XY iff AxY is C-embedded in X x Y.

Using [Theorem 1.1, in [Theorem 2.4 we show further the corresponding
result for the case of P-embedding. In the next two theorems we discuss for the
case X is a P-space and Y is a X-space or a g-space. It may be emphasized that
these results seem to give a new possibility to discuss various embeddings such
as C*-, C- or P-embedding on products for known classes of generalized metric
spaces.

THEOREM 1.2. Let X be a normal P-space and A be C-embedded in X. Let Y
be a paracompact Hausdorff X-space. Then A x Y is C*-embedded in X x Y iff
A XY is C-embedded in X x Y.

In case Y is a o-space, enables us futher to prove the following
theorem which shows the equivalence of C*-embedding and P-embedding of
AXY in X xY.

THEOREM 1.3. Let X be a normal P-space and A be P-embedded in X. Let Y
be a paracompact Hausdorff o-space. Then A X Y is C*-embedded in X x Y iff
A X Y is P-embedded in X x Y.
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P-spaces, X-spaces and o-spaces are due to Morita [5]. Nagami and
Okuyama [11], respectively. Our results are motivated by the results obtained in
Nagami [8], [9] and Chiba [2] which show equivalences between normality and
either countable paracompactness or collectionwise normality on product spaces.

2. Proof of

Throughout this paper N denotes the set of positive integers.

Let 4 be a subspace of a space X. Then it is well-known that 4 is C-
embedded in X iff 4 is C*-embedded in X and is completely separated from any
zero-set Z of X which is disjoint from 4. This fact will be frequently used in
this paper. Moreover, for later use let us recall two lemmas below.

LemmA 2.1 (see [3]). Let B be a compact subset of a Tychonoff space Y.
Then for any space X, X X B is P-embedded in X x Y.

(1) & (4) of the following lemma was mentioned in the introduction.

LEMMA 2.2 (Morita and Hoshina [7], Przymusinski [12]). For a subspace A
of a space X the following statements are equivalent.

(1) A is P’-embedded in X

(2) AX Y is P’-embedded in X x Y for every compact Hausdorff space Y
with w(Y) <y

(3) AX Y is C-embedded in X x Y for every compact Hausdorff space Y
with w(Y) <y

(4) AX Y is C*-embedded in X x Y for some compact Hausdorff space Y
with w(Y) =y

Let us now prove [Theorem 1.1.

ProOF OF THEOREM 1.1. We only prove the “only if”’ part since the *if”
part is clear. Suppose 4 is C-embedded in X and 4 x Y is C*-embedded in
X x Y. To prove C-embedding of 4 x ¥ in X x Y, let Z be zero-set of X x Y
disjoint from 4 x Y. We shall show that 4 x ¥ and Z are completely separated
in X xY.

Since Y is g-locally compact and paracompact, ¥ admits a ag-locally finite
cover € = U ;en €i consists of compact subsets, where €; is locally finite. Let
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%: = {Ciu|/A€e A;}. For each C;; € 4;, put
Go=XxCu)N(X xY-2Z).

Then G;; is a cozero-set of X x C; containing A x C;;. Hence, since Cj, is
compact, it is easy to see that we can take a cozero-set H;; of X so that

A X Ci,q. < Hij_ X CM c GM.
Since A4 is C-embedded in X, there exists a cozero-set L;; of X such that
AnLuZQ and X—HMCL,';V.

On the other hand, since Y is paracompact and €; is locally finite, there
exists a locally finite collection {Ujp|i€eA;} of cozero-sets of Y such that
Ci, < Uy for each AeA;. Hence it follows that {L;; x U;|AeA;} is a locally
finite cozero-set collection of X x Y which satisfies for each e A;

(A X Y) N (LM X U,‘,{) = Q and L,‘,{ x Uy o (X X Ci}.) Nz
Let us now put
K ={J{Li x UnlAeA;ie N}.

Since {L;; x U;|A€A;ie N} is o-locally finite, K is a cozero-set of X x Y, and
we have

(AxY)NK= and K> Z.

Hence X x Y — K is a zero-set of X x Y containing 4 x Y and disjoint from Z.
Thus 4 x Y and Z are completely separated in X x Y. This completes the proof
of the theorem. O

COROLLARY 2.3. Let A be a subspace of a space X and Y a non-discrete o-
locally compact metrizable space. Then A x Y is C*-embedded in X x Y iff
A x Y is C-embedded in X x Y.

PROOF. Suppose that 4 x Y is C*-embedded in X x Y. Y being non-
discrete metrizable, it is essentially proved in [3] that 4 is C-embedded in X.
For completeness we give its proof. Y contains a convergent sequence
{yn|n € N} of distinct points having yo as its limit. Let C = {yo} U {yn|n € N}.
Then C is compact, and by assumption and we see that 4 x C is
C*-embedded in X x Y, especially in X x C. Hence by A is C-
embedded in X. The corollary now follows from [Theorem 1.1. O
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REMARK. Let 4 be a C-embedded subset of a space X. It is known that
if Y is locally compact metrizable, then 4 x Y is C-embedded in X x Y (see
[3]). In case Y is og-locally compact metrizable, then 4 x Y need not to be C*-
embedded in X x Y. Indeed, Przymusinski pointed out that there exists a
normal space X with the property that for a non-locally compact metric space
M (in particular, Q = the space of rational numbers) X contains a closed subset
A such that 4 x M is not C*-embedded in X x M.

For the case of P-embedding corresponding to we have the
following theorem. The result is motivated by a theorem of Chiba [2] that for a
collectionwise normal space X and a o-locally compact paracompact Hausdorff
space Y, X x Y is normal iff X x Y is collectionwise normal.

A collection {C;|AeA} of subsets of a space X is uniformly locally finite
if there exist a locally finite cozero-set collection {G;|[AeA} and a zero-set
collection {Z;|AeA} such that C) = Z;, = G, for each A€A.

THEOREM 2.4. Let A be a P-embedded subset of a space X and 'Y a a-locally
compact paracompact Hausdorff space. Then A x Y is C*-embedded in X x Y iff
A XY is P-embedded in X x Y.

Proor. It is sufficient to show the “only if”’ part. Let € = U ;en€i be as in
the proof of [Theorem 1.1. Let % be a locally finite cozero-set cover of 4 x Y.
Put

F,‘ - U{C,}.MEA,}

Since A is P-embedded in X, by Lemmas 2.1 and A x C;; is P-embedded in
X x Y. Since Y is paracompact Hausdorff, {C;;|A€ A;} is uniformly locally finite
in Y and so is also {4 x Cy|ieA;} in X x Y. For A,ueA; (AxCy)U
(Ax Cy)=A4x(CyUCy) is P-embedded in X x Y. Hence by Morita [6] (see
[3, Theorem 3.12]), 4 x F; is P-embedded in X x Y. Consequently there exists a
locally finite cozero-set cover ¥; of X x Y such that

ViN(AXF)<UNAXF)<u.
For any V e ¥}, select Uy € % so that
Vﬂ(AXE)CUV

Since 4 x Y is C*-embedded in X x Y, there exists a cozero-set Uy of X x Y
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such that Uy N(4 x Y) = Uy. Let us put
Wy=VNUy and W ={Wy|Ve¥;ieN}.
Then # is a o-locally finite collection of cozero-sets of X x Y such that
WNAxY)<¥ and AxY c{JW.

Since (J# is a cozero-set of X x Y containing 4 x Y, by there
exists a cozero-set H of X x Y such that

(AxY)NH= and (J#UH=XxY.
Let
w' =wU{H},
then #” is a o-locally finite cozero-sets cover of X x Y and
W' NAXY)<uU.
Thus, A x Y is P-embedded in X x Y, which completes the proof. O

3. Proofs of Theorems 1.2 and 1.3

Before proving these theorems, let us recall the definition of P-spaces and
basic facts of X-spaces and o-spaces. In the following we assume all spaces are
Hausdorff.

A space X is a P-space [5] if for any index set Q and for any collection
{G(,...,0m)|01,...,0, € Q;ne N} of open subsets of X such that

G(oy,...,0n) < G(a1, ..., 0, 0ne1) fOr a, ..., o, 0ne1 € Q,

there exists a collection {F(oy,...,0,)|0t1,...,0, € Q;ne N} of closed subsets of
X such that the conditions (i), (ii) below are satisfied:

(1) F(ap,...,o) = G(ay,...,0,) for aj,...,a, €Q,

(i) X = Y{G(u,...,m)ne N} =X = | J{F(u,...,a,)|n e N}.

Let Y be a X-space. Then by [8, Lemmal. 4], Y has a sequence, called a
2-net, {&x|n € N} of locally finite closed covers of Y which satisfies the following
conditions:

(iii) &, is written as {E(ay,...,%,)|o,...,a, € Q} with an index set Q,

(iv) E(an,...,0n) = (J{E(a1,. .., 0, 0nt1)|ons1 € Q} for ap,...,a, € Q,

(v) For every y e Y, C(y) is countably compact, and there exists a sequence
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ar, %, ..., € Q such that C(y) = ¥V with ¥V open implies C(y) < E(ay,...,a,) <
V for some n, where C(y) = (\{E|y€ E € é,,ne N}.

If a regular space Y is a o-space, then Y has a sequence, called a o-net,
{én|n € N} of locally finite closed covers of Y which satisfies (iii), (iv) above and
(v') below ([9, Theorem 1]):

(v') For each ye Y there exists a sequence aj,ap,...€ € such that ye
E(ay,...,a,) for each ne N and y € V with V open implies y € E(a),...,0,) <
V for some n.

A space Y is a strong Z-space if Y has Z-net {&,} such that C(y) is compact
for each y € Y. Nagami proved in [8, Theorem 4.10] that for a P-space X and a
strong X-space Y if X x Y is normal, then X x Y is countably paracompact,
and in [9, Theorem 5] that for a collectionwise normal P-space X and a
paracompact o-space Y if X x Y is normal, then X x Y is collectionwise
normal. Our Theorems [.2] and [.3 are motivated by these results.

Proor oF THEOREM 1.2. It is sufficient to show the “only if”’ part. Assume
A x Y is C*-embedded in X x Y. Let Z be a zero-set of X x Y disjoint from
A x Y. First we observe that

(1) AxY)NZ=g.

To see this, let y be any point of Y. Since 4 is C-embedded in X, 4 x {»y} is C-
embedded in X x Y, and (4 x {y})NZ = &. Hence there exists a zero-set Z' of
X x Y such that 4 x {y} =« Z’ and Z’'NZ = &, which implies (4 x {y})NZ =
. Hence we have (1).

Let {&x|n € N} be a Z-net. Note that C(y) is compact for any y € Y since Y
is paracompact. Define

H(ay,...,a,) = {J{P|Pis open in X; (P x E(a1,...,a,)) N Z = &}

for ay,...,a, € Q. Put

G(o,...,0,) = H(ay,...,0,) U(X — A4),
clearly G(oy,...,a,) is open in X. Since

H(ah'",an) CH(O(],...,O(,,,OC,,H),
we have

G(ot1y.-.,0,) = G(oty, ..., 0, dnt1)
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for any ay,...,0,, 0,41 €Q. Since X is a P-space, there exists a collection
{F(o,...,an)|a1,...,0, € Q;n e N} of closed subsets such that

F(ay,...,0,) = G(oy,...,0)
and
(2) X ={G(u,...,0n)ne N} =X = | J{F(a1,...,as)[n € N}.

Then F(ay,...,0,) — H(ay,...,a,) is closed and contained in X — A. Since X is
normal, there exists a cozero-set U(ay,...,a,) of X such that

F(ay,... o) — H(ay,...,00) < U, ..., 00) = X — 4.

On the other hand, since Y is paracompact, for each &,, there exits a locally
finite cozero-set cover &, = {L(a1,...,on)|a1,...,0, € Q} of Y such that

E(ay,...,00) < L(o,...,0).
Let us put
Wo=U{U(ar,...,an) X L(0t1,...,0)|ot1,..., 5 € Q}.

Since %, is locally finite, W, is a cozero-set of X x Y. Hence W = Une NWn
is a cozero-set of X xY, and we have (Adx Y)NW = because AN
U(ay,...,oa,) = .

Finally we shall show Z < W. To see this, pick (x,y) € Z. For y, there
exists a sequence ay,a,... € Q satisfying (v) above. First we prove that X =
U,cnG(a1, ..., a,). Pick ze X. We may assume z€ 4. Then by (1) we have
({z} x C(y))NZ = . Since C(y) is compact, there exist open sets O in X and
O’ in Y such that

{z} xC(y) cOxO' =X xY—Z.

By (v), there exists m € N such that C(y) < E(a,...,%,) = O'. Hence it follows
that we have ze H(a,...,%,). Therefore ze G(a,...,a,), which shows that
X = J{G(,...,a,)|n € N}. Consequently by (2) X = |J{F(ai,...,a)|ne N}.
Select ke N so that xe F(aj,...,a,). Then xe X — H(ay,...,ax) because
(x,y)€Z and ye E(n1,...,0r). So

xeF(ay,...,o0x) — H(ay,...,0x) = U(ay,...,0),

therefore (x,y) € Wi < W. Thus, we have Z < W. Now X x Y — W is a zero-set
of X x Y containing 4 x Y and is disjoint from Z. Hence 4 x Y and Z are
completely separated in X x Y, which completes the proof. O
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ProOF OF THEOREM 1.3. Let ¢ be a locally finite cozero-set cover of 4 x Y.
To prove our theorem it suffices to show that there exists a o-locally finite
cozero-set cover ¥ of X x Y such that #' N(4 x Y) < 9. Since ¥ is refined by
a o-discrete cozero-set cover of 4 x Y, we may assume ¥ itself is o-discrete.
Hence let ¥ = | ), y%:, where 4; = {G;|AeA;} is discrete. By assumption, for
any AeA;, ie N, there exists a cozero-set H;; of X x Y such that H;N
(4 xY)=Gj.

First we shall show the following fact:

(3) AxY <\ J{Hy|ieA;ie N}

Pick ye Y. Let U;; = {x € 4|(x,y) € H;;}. Then {U;|AeA;;ie N} is a o-discrete
cozero-set cover of A. Since 4 is P-embedded in X, there exists a locally finite
cozero-set cover {V;|AeA;;ie N} of X such that V;;NA < Uy for each AeA;
and ieN. Since {(Vy x Y)NHy|leA;;ie N} is a locally finite cozero-set
collection of X x ¥, U{(Viz x Y)NH;|AeA;; ieN} is a cozero-set of X x Y
and we have

Ax{y} = J{(Via x Y)NHylieA;;ie N}.

Since A x {y} is C-embedded in X x Y, there exists a zero-set Z of X x Y such
that

Ax{p}cZ < | J{(Vu x Y)NHy|AeA;ie N}
Hence
Ax {y} = U{(Via x Y)NHy|AeAy;ie N} = | J{Hu|AeAi;ie N}.

Therefore 4 x Y = | J{Hu|AeAsie N}.
Let & = {&,} be a g-net for Y. By the paracompactness of Y, there exists a
locally finite cozero-set cover

{K(a,...,0n)|a1,...,0, € Q}
of Y such that
E(o,...,a,) = K(og,...,0)
for each o,...,0, € Q. Let us put
Uia(at, .. .,0n) = | J{U|Uis open in X, U x E(a1,...,%,) < Hj;}

for ay,...,a, € Q. Then Uy(ay,...,a,) is open in X. Define
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Ui(oy - -y o) = U{Uu(ou, - . ., an)|A €A}

and
Uar, ... o) = | J{Ui(u,...,0)|i e N}.
For any ay,...,a,, 0,41 € Q, clearly
(4) U(,...,an) = Ulay, ..., 00, 0nep).
Let A and A’ be distinct elements of A;. For ay,...,0, € Q, we have
((Uin(ar, ..., 00) NA) N (Uppr (o, ..., o) NA)) x E(aty,...,o)
cHyN(AxY)NHyN(AxY)=G;NGy =(.

Hence

Uin(at,...,0n) N Uy (oa,...,0,) N A =&.
Therefore
(5) Ua(ay,...,a) N Uy (ot1,...,00) NA = .
Define

V(ar,...,0n) = U(oy,...,0,) U (X — 4).

Then V(aj,...,a,) is open in X and V(ai,...,0,) = V(ot1,..., 0, 0tns1) by (4).
Since X is a P-space and normal, there exist a zero-set D(a,...,a,) and a
cozero-set L(aj,...,a,) of X for aj,...,x, €Q, ne N such that

(6) D(ay,...,an) < L(ag,...,a0) = Loy, ... 00) = V(ot1,...,0%),
(7) X=U{V(u,...,0n)Jne N} =X = U{D(ay,...,0n)|n e N}.
Put

C(ay,...,00) = ANL(ay,...,0).
Then C(ay,..., ) < U(ay,..., ) = {J,.yUi(21,...,a,). Since X is countably
paracompact and normal, there exists a locally finite cozero-set collection

{Ni(a1,...,0,)|i € N} of X such that

(8) Ni(ay, ..., 0n) < U(ay, ..., o0,) = U).eA;(]M(al’ ceeyOlp)
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and

C(ar,...,an) < UieNNi(Oq,...,ot,,).

Consequently by (5) and (8) we have that

{Ni(cxl, . .,Otn) NAN U,-,l(ocl, . .,OC,,)MEA,’}

is a discrete collection of X and that Ni(ay,...,a,) N Up(ag,...,0,)NA is a
cozero-set of A. Therefore

{(X = D(o1,...,04)) N A, Ni(og,...,00) N U(otz,...,0,) NA|A€A;,i € N}

is a locally finite cozero-set cover of 4. Since 4 is P-embedded in X, there exists
a locally finite cozero-set cover

W' (o, .., 0m) = {Wy(ou,...,0m), Wilar,...,an)|A€A;i€e N}
of X such that
Wy(o,...,00)NA = (X —D(ay,...,a,))NA

and
Wilo,...,0m)NA < Ni(og,...,0) N Uy --.,0,) N A.
Let us put
Wi(a, ... 0) = Wi(oa,. .., 0n) N Ni(ag,. .., o),
and

W ={(Wu(a1,...,0n) X K(a1,...,00)) N Hy|Ae Agsaq,...,00, € Q;i,ne N}.

Then # is a a-locally finite cozero-set collection of X x ¥, and # N(4 x Y) <
2

Next we shall show that 4 x Y = (J#". Pick (x,y)e 4 x Y. For this y,
there exists a sequence a,ay,... € Q which has the property (v/'). Then we have
X =U{V(a,...,0n)lne N}. To see this, pick ze X. If ze X — 4, it is clear.
Let ze A. Then by (3) shown above, there exists i€ N and AeA; such that
(z,y) € H;;. So there exists open sets O in X and O’ in Y such that

(z,y) € O x O' = Hy;.

By the property (v'), there exists m € N such that
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yeE(ay,...,ay) < O
Thus
ze O c Uy(o,...,om) < U(a1,...,0m) = V(og,...,0m).

Hence it follows that X = J{V (a1, ..., %)|n € N}. Therefore X = J{D(a1, ..., )|
ne N} by (7), so there exists k€N such that xe D(x,...,a). Since
W' (o1, ...,0u) covers X, there exist i € N and A€ A; such that x e W (a4, ..., o).
That is,

x € Ni(oy,...,o0) N Up(ar,...,ax) NA.

Hence xe Wi(ay,...,0,) and yeE(wu,...,0) < K(o,...,0). Since xe
Ui(ay,...,a), we have (x,y) € H;;. Consequently

(x,y) € (W',-A(ocl,. . ,ack) X K((xl, e ,ock)) ﬂHi;_.

Thus we have shown 4 x ¥ < | J#".
Since # is o-locally finite, | J#  is a cozero-set of X x Y, and

XxY-U#NAxY)=g.
By [Theorem 1.2, there exists a cozero-set W in X x Y such that
AxY)NW= and XxY-{J# cW.

Define newly % by # U {W}. Then the above shows that #" is the required o-
locally finite cozero-set cover of X x Y. This completes the proof. O

The following results, which are corollaries to Theorems and L3,
together with Theorems [.1 and are proved in the author’s master thesis at
Univ. Tsukuba (1995) (in Japanese).

COROLLARY 3.1. Let X be a normal P-space and A closed in X. Let Y be
a paracompact X-space. Then A x Y is C*-embedded in X x Y iff AxY is
C-embedded in X x Y.

COROLLARY 3.2. Let X be a collectionwise normal P-space and A closed in
X. Let Y be a paracompact o-space. Then A x Y is C*-embedded in X x Y iff
A XY is P-embedded in X x Y.

REMARK. A subset 4 of a space X is said to be z-embedded in X if every
zero-set in A is the intersection of 4 with a zero-set in X. Clearly C*-embedding
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implies z-embedding. We note that in all of our results except (Corollary 2.3
“C*-embedded” in the assumption can be weakened to ‘“‘z-embedded”.

For the normality of products, Yang posed a problem whether it is
true that for a collectionwise normal P-space X and a paracompact X-space Y
normality of X x Y implies collectionwise normality of X x Y. Likewise, in our
case the following question remains open.

QuesTioN. In Theorem 1.3 or [Corollary 3.2| can ‘““‘g-space’ be weakened
to “X-space”?

Added in proof. Recently the author showed that “g-space’ in
3.2 can be weakened to “X-space”, and solved the Yang’s problem above
affirmatively.
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