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GLOBAL SOLVABILITY FOR THE GENERALIZED
DEGENERATE KIRCHHOFF EQUATION WITH
REAL-ANALYTIC DATA IN R"

By

Fumihiko HIROSAWA

1. Introduction

Kirchhoff equation was proposed by Kirchhoff in 1883 to describe the
transversal oscillations of a stretched string and it is expressed as follows

!
du(t, x) — (82 +%J |Oxu(t, x)|2dx) d2u(t,x) = 0, (1.1)
0

where £t >0,/ > 0, ¢ > 0 and x € [0,/]. In 1940 S. Bernstein proved the global
solvability for analytic initial data and local solvability for C™-class initial data to
the following initial boundary value problem:

2

o2u(t,x) — (a +b J

|0xu(t, x)|2dx) 2u(t,x) =0 (¢>0,x € [0,2x]),
0

u(t,x) =0 (¢=0,x=0,2n),

u(0,x) = up(x), u(0,x) =u(x), (1.2)
where a > 0 and b > 0. In 1971, T. Nishida proved Bernstein’s result in case
of a=0. Equation (1.2) can be regarded as the following more generalized
equation: '

2 2 _ x
62u(t,x) — M(L IV u(t, %)| dx) Awi(t,x) =0 (t>0,xeQ), -

u(0, x) = up(x), 0u(0,x) = uy(x), xeQ < R”,
with boundary condition

u(t,x) =¢ on[0,00) x 0Q. (1.4)
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In case of (1.2), Q =[0,27], ¢ =0 and M(n) = a+ by. In 1975, S. 1. PohoZaev
[P] proved the existence and uniqueness of time global real-analytic solution for
the problem (1.3)-(1.4) under the assumption of n > 1 and M(n) e C'(]0, 00))
where Q is bounded and ¢ = 0.* On the other hand, in case that Q = R" Y.
Yamada [Yd] proved the existence and uniqueness of global solution of (1.3) in
1980. In 1984, K. Nishihara showed the global existence of the quasi-
analytic solution in case that M(y) is locally Lipschitz continuous and non-
degenerate. In that year, A. Arosio and S. Spagnolo proved the existence of
time global 2z-periodic solution for real-analytic data in case that Q = [0,2x]"
under some assumptions for M(y) € C°. In 1992, P. D’Ancona and S. Spagnolo
relaxed the assumptions in [AS] to any M(n) e C°. Moreover, the equation
(1.3)-(1.4) can be generalized as

{ 07u(t, x) + M((Au(t,-), u(t, -))q)Au(t,x) = f(t,x) (1>0,xeQ), (15)
u(0,x) = up(x), ou(0,x) = u1(x), xeQ < R",
with boundary condition

u(t,x) = ¢ on[0,00) x 0Q. (1.6)

Here A4 is a degenerate elliptic operator of second order defined as Au(z,x) =
ZZ_]’:] ij(aij(x)Dx.-u(ta x)), Dx, = ((1/v/—1)(8/0x;)). Suppose that [aij(x)]i,j=1,...,n
is a real-analytic symmetric matrix which satisfies that

n
a(x,&) =Y a(x)&& 20 (1.7)
i,j=1
and there are ¢p > 0 and p, > 0 such that
|D%ay(x)| < copg !, i j=1,...,n, (1.8)

for xe R", o = (a1,...,%,) € N", (Au,u) is an inner product of Au(x) and u(x) in
L2(Q) and M(n) satisfies
M(n) € C°([0,00)) and M(n) = 0. (1.9)

If a;(x) =6, and f(z,x) =0, then equation (1.5) coincides with equation (1.3),
where J;; is Kronecker’s delta. In 1994 K. Kajitani and K. Yamaguti proved
the existence and uniqueness of time global real-analytic solution for (1.5) in case

*In fact he proved the existence and uniqueness of time global solution to more general problem on
some suitable Hilbert space.



Global solvability for the generalized 485

that Q = R", up(x), u1(x) € L2(R") N C2(R"), M(n) € C([0,0)), M(n) =0, and
aij(x) = 0 are C®(R") functions, respectively, where C“(R") is the set of real
analytic functions in R". In 1995 K. Yamaguti extended the result of
for quasi-analytic data under the assumption of M(n) > 0.

Our main theorem in this paper is an extention of the result of in case
of M(n) e C°. At first we introduce some definitions in order to state our main
theorem.

DerFINITION 1.1. For s€ R and p > 0, we define the function space H; by
Hj = {u(x) € LY(R"); (¢)'e”Va(¢) € LF(R™)}, (1.10)

where & = (&1,...,&), (&) = (1+& +-- +¢&1'2, and 4(£) stands for Fourier
transform of u. If we introduce the inner product (-,-) H; of H; such that

(1,0) g, = (e204(),e00()),, (1.11)

then H, is a Hilbert space, where (:,-); is an inner product of H* which is the
normal Sobolev space (See [Ku]). For p < 0 we define H as the dual space of H=.

DEFINITION 1.2, For p € R, define the operator e”?) from H into H* as
follows:

e?Ply(x) = J e P Og(8)dE, (1.12)
R’l

¢

for ue H;, where x = (x1,...,%s), x-{=x1{1 +--- + xu{, and dé = (2m)~"d¢.
Note that (e#®))~' = ¢=#?) is a mapping from H* into HS.

Hilbert space HS and the operator e”?) were introduced in and [KY].
In this paper we define the new space Hj;s. as a weighted subspace of Hj.

DEerFINITION 1.3. For s,p,6 € R and k > 0, we define H,, as

son = {u(x) € &5 (D) {(x)re”Pu(x)} € LL(RM)}, (1.13)

where (x), = (k% +x?+---+x2)}/? and &' is the dual space of the Schwartz
space & of rapidly decreasing functions in R”. And we define the inner product
("')H‘, of H;, as follows:

PAK ’

(0, 0)gs, = ((xe?Pu(), (Yee?Pho(-)); (1.14)
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The principal method of the proof of this theorem is based on [Ka] and
[KY] In this paper we introduce the new space H; which is a weighted
subspace of H, for 6 > 0, and we consider the global solvabhty for the equation
in it. For positive real numbers p and x and for non-negative real numbers s
and o, the function spaces H, and H;, are included the intersection of L*(R™)
and C®(R"). Our main theorem in this paper is the global existence of the real-
analytic solution which has initial condition in Hj;,

MAIN THEOREM. Assume that (1.7), (1.8) and (1.9) are valid. Let 0 <
P21 < po/v/n, >0, k >0 and put p(t) = p,e™" for y > 0. Then there exists y > 0
such that for any wuge H sk U1 E H o and for any f(1,x) satisfying
(x)2e?OD)f (1, x) € C°([0, 00); H‘) the Cauchy problem (1.5) with Q = R" has a
solution u(t,x) that satisfies (x)%e”Phy(z x) e ﬂj=0 C?7([0, 00); H/).

2. Preliminaries

In this section we introduce some propositions and lemmas to prove the
following lemmas and our main theorem.

PROPOSITION 2.1. Assume that a(x,&) € S? is non-negative. Then there are
positive constants Cy and C, such that

R(Op(a)u,u); = —Ci|ull (2.1)

and

> {l0p(aw)ully_; + 10p(a@)ull(} < C{2C1|lull; + R(Op(a)u,u),}  (2.2)

o] =1

for ue H**? where S™ is the symbol-class of pseudo-differential operator of order
m (See [Kul), Op(a) is the pseudo-differential operator defined as

Oplaju= | alx, 000

for u(x) € &, where || -|, is a norm of H>.

s

For a proof of this proposition, refer to [FP].

PROPOSITION 2.2. (i) Let a(x,&) € C*(R}; x R} ) be a ‘double order’ symbol
in the ‘double order symbol space’ SG™™:

SG™™ = {a(x, &) € C(R; x RE); a@z)(x,) = O™ (x)™ ¥} (23)
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for (m;,m;) € R x R where a((z,))(x, &) = 62‘D£a(x, &), and if we a(x,&) define the
operator Op(a) by

(Op(@)(x D)f(x) = | e Calx OF O, [, (2.4

4

then Op(a) is the bounded linear operator from HJ\ . into HJ ™. . for each
51,52 € R.

(i) If s> s and 6 > &', then the embedding H s —H : 5 . 18 compact.

(i) Let c(x,&) be the symbol of the product Op(a)Op(b) of a € SG""?) and
be SG™™) | then c(x,&) has the asymptotic expansion:

c(x, &)~ > % a® (x, )by (x, ). (2.5)

o
This proposition is introduced in [S].

Lemma 2.3. (i) Let ue Hj, = H,, then for p >0,

| D%ul|; < IIuIIH;P"'“'WI! (2.6)
and
|D3u(x)| < Cnl|u||H;p‘('“'+"+‘s')(Ifxl +n+ |s|)! (2.7)

for xe R" and o€ N".
(ii) Let u(x) be a function in H* and s € R. If u(x) satisfies

1D%ul| 0 < copy ™! (2.8)

for every multi-index ae N", then u(x) e HJ for p < p1//n.
For a proof of this lemma, refer to [KY]

LEMMA 2.4. Let 6>0, ¢ >0 and e€(0,1], then (x).°
Sfunction satisfying

is a real-analytic
ID%(x) %] < (871)PI(1 + &)°Jrf!x) 2, (2.9)
for x e R". Moreover if 0 <6 <1, then
1D2(x) ) < 41 |ar] () 01 (2.10)
for xe R".
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For a proof, refer to [Ka].
Let a(x) be a real-analytic function in R" satisfies that there are ¢y > 0 and

po > 0 such that
|D%a(x)| < copy ™ |al! (2.11)

for any x € R" and any multi-index « € N". Define the multiplier a- as (a - u)(x) =
a(x)u(x). Let us define a(p;x, D)u(x) = e?Pla.e=»Py(x) for u(x) € L*(R") and
denote by a(p;x, &) its symbol.

PROPOSITION 2.5. (i) a(p;x, D) is a pseudo-differential operator of order 0
and its symbol has the following expansion:

a(p; x,&) = a(x) + par(x, &) + paz(p; x, &) + r(p; x, &), (2.12)
where
a1(x,8) = — ,2 D,,a(x)2, (&), (2.13)
and a, and r respectively satisfy
la2(3) (93 %, )| < Cugpy (&)™, (2.14)
175 (03 %, &)] < Cagpy (&) (2.15)

for x,£ e R", |p| < py/v/n and a,f e N".
(i) If p=p(t) € CO([0,T)) for T >0, then a(p(2); x,£) € C°([0, T; S°).

For a proof of (i), refer to [KY] and for (ii) refer to [Ka].

COROLLARY 2.6. Define the opeartior Ap by
Apu(x) = e? P (4e~7Py(x)) (2.16)
for A=5"7"_.Di(a;(x)D;). Then Ax and (x ‘sAA x) 7 are pseudo-differential
i,j=1*~J\*y x x

operators of order 2 and their symbols have the following expansions respectively;

a(An)(x,8) = Y (a(x) + par(x,€) + p*ar (05 %, &) + ni(p; %, O))&&,  (2.17)

i,j=1

SANI)5,€) = S ax) + pan(3,) + el %, €) + oo, )
i,j=1
(2.18)
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where o(P)(x,&) denotes the symbol of a pseudo-differential operator P(x,D),
ay =ay, and a; = ay, are defined in \Proposition 2.5, and both ry =ry,, and
ro=ry, belong to S~'. Moreover, for p(r)e C°([0,T]), o(Aa)(t,x,&) and
o((x)2 Ap(x) °) (2, x, &) belong to CO([0, T); S?).

ProoF. It is obvious by [Proposition 2.2] and [Proposition 2.5,

LemMa 2.7. If u(x) € H,;, for 6 >0, then u(x) is a real-analytic function

whose radius of convergence is p,, where p; < min{x/8,p,} and 0 < p, < p.

ProOF. Note that (x)iu(x) € Hy if u(x) e Hy;,.

ID&u(x)| = |D({x)° (x)qu(x))|

=DM LI EHEREN

!
o <a o

o K\ —le=e|
<G Z(“/)l“'l”“‘“’“(g) vl

o' <a

< Copyal,, (2.19)

where p; < min{x/8,p,}, 0 < p, < p and we used Lemma 2.3, Lemma 2.4/ and
the estimate;

o —lod| —la—a -
Z( ’)'“'“la—a’ﬂm' Iy < M ay, (2.20)
ea\ & m—mn

for 0<772<771 O

3. Existence of solutions for the linear problem

In this section, we consider the local existence for the following linear
Cauchy problem:

0u(t, x) + m(t)Au(t, x) = f (2, x), (3.1)
u(0,x) = up(x), 0:u(0,x) =ui(x), '

where m(f) is a non-negative continuous function in [0,0).
At first we introduce a proposition to prove the existence of the linear
problem (3.1).

Let P(?) = [p;i(t,x, D)), j_;,. 4 be a matrix consisting of pseudo-differential

J=1,.
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operators whose symbols p;i(t, x, &) all belong to the class C°([0, T]; S'). Let us
consider the following linear Cauchy problem:

d
el = F t
{ SU) = POU@) +F(o), 1e(0,T), 62
U(0) = Uy,
where U(f) = '(Uy(¢),...,Ug(2)) is an unknown vector valued function, F(¢) =
"(Fi(2),...,F4(t)) and Up =*(Uop, ..., Ups) are known vector valued functions.

Then the following proposition is concluded.

PROPOSITION 3.1. Suppose that det(AI — p(t,x,&)) # 0 for ie C(R") with
RA > —co(l) for some positive constant ¢y, t€[0,T] and |&| > 1. Take an
arbitrary real number s. Then for any er(H‘“)d and for any F(t)e
C([0, T); (H*")?), there exists a unique solution U(t) € C'([0, T); (H*)*)N
CO(0, T); (H*+)%) of (3.2).

This proposition was introduced as Proposition 4.5 in [M]. For the proof of
the proposition, refer to [M].

Let v(t,x) = (x)ieA(‘)u(t, x) and transform the equation (3.1) of u(¢, x) to the
equation of v(z,x) such that

{ ()23 = A () 0(t, %) + m(D)(x)2An () 0(t, %) = 9(1, ), (33)
v(0, x) = vp(x), 0,0(0, x) = v1(x),

where A = A(t) = p(t)(D), Ar = A(2) = p,()(D), p(t) = pre™ for p; >0, y>0

and g(t,x) = (x)%eA9f(¢,x). Then the following lemma is concluded for the
Cauchy problem (3.3).

LEMMA 3.2. Assume that vy € H**2, v, € H**! and g(t,x) e C%([0, T); H*Y),
then there is y, > 0 and the Cauchy problem (3.3) has a unique solution v(t, x)

such that

v(t,x) € (2) C*([0,T]; H*Y)
Jj=0

Sfor all y = y,.

ProoF. Now let us put V(1) = ‘(Vi(r), Va(2)), Vo="(Vo1,Vo2), F(t) =
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'(0,9(2)) and

| (DY (D) (D) )
o= (—m(t)<x>2AA<x>;"<D>“ X)A)S ) G4

Where A, is defined by [2.16). Then we consider the following linear Cauchy
problem:

dt
V(0) = Vo.

d
{ —V(t)=POV(®)+F(), te(0,T], (35)

At first we show that the symbols of pseudo-differential operator P(z)
satisfies the conditions of [Proposition 3.1. Clearly a((D)(x),‘:A,(x)j(D)_l)-
(6,%,9), o((MPA)C)(t,x,¢) and  o((x)24a(x)°(D)7")(1,x,¢) belong to
C°([0, T];S!) by [Corollary 2.6

det(AI — a(P)(2, x,&))
= (A — o({D)X)2A(X) (D) ) (1, %, &) (2 — o ((X)eAs(x)) (8, %, €))
+ m(f)a((x)2A(x) (D) ) (1, %, €) (&)
= (A= P (&) — P/ (OP3(x, &) (A — p(1)(&) — P (DP3(x, &)
+m(£)(a(Aa) (1, %,) + (8, X, £)), (3.6)

where o(P) = [6(Py)]; ;=15 P (%, &) € S°(j = 1,2) and p} (¢, x,£) € ([0, T]; S*), and
they satisfy

a((DY(X)2AL(x) (D) ) (1, x, &) = P/ (D)(&) + 0/ ()P} (x, &) (3.7)
a((X)2A(x)2) (1, x, &) = p'(O)(E) + P/ (1)P(x, &) (3.8)
a((x)2Ap(x) (D)) (8, %, E)(E) = o(An) (2, %, &) + PA(2, X, &). (3.9)

Therefore we have
det(AI — a(P)(t, x,&))
=27 — P (OM2(E) + PY(%,€) + Py(%,€))
+ 0/ (02((&) + P (%, O)((&) +PY(x, &)
+m(1)(0(Aa)(8, X, &) + p3 (1, %, £)).- (3.10)
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Let det(Al — o(P)(t,x,£)) =0 and solve it in A, then we have

A=p'(6)(2(¢) + Y (x, &) + pY(x, &)

+ [/ (02 {=2(E) (P} (x, &) + P3(x, &) — 3p2(x, EO)PY(x, &) + PO (x, €)% + pS(x, £)*}

n
—4m(2) Y _{a(x) + p(Da1(x,&) + p(6) a2 (p(2); x, &) + ra(p(8); x, &) &
i,j=1
+pi(tx, &), (3.11)
where a, a;, a; and r; are defined in (2.18). Then the order of RA is as follows:

RA = —yp1e"0((&)) + {m(D)p1e " O(|€]) + O(1¢]'*)}. (3.12)

Hence, obviously there are y, > 0 and c¢o > 0 such that det(Af — a(P)(¢,x,&)) > 0
for any y satisfying y > y,, |£| » 1 and RA > —co(&). Therefore equation (3.5) has
a unique solution V(t) = (Vi(¢), V2(t)) satisfying

V1(2), Va(t) € CY([0, T); H*) N C°([0, T); H*HY) (3.13)
for Vo1, Voa € H*+. Now, if we let v(z) = (D)~'¥)(2), then v(¢) satisfies
v(t, x) € CY([0, T); H**) N C°([0, T); H*?) (3.14)
for v(0) = v € H*+2. Then we know that v(z,x) satisfying
64D)o(t, x) = (DY(x)IALx)20(t, %) + (D) Va (), (3.15)
and obviously V>(¢) is represented by v(z,x) such that
Va(t) = (2, x) — (X)2A(x) Po(t,x),  Va(0) = Vop € H*L. (3.16)
Then by (3.5), v(t,x) satisfies
(0@ = AP (x),c” + m(D)(x)edalx) P o(t, x) = g8, ). (3.17)

It shows that v(¢,x) is a solution of (3.3) satisfying

v(t, x) € ﬁ Cc*7([0, T); H*Y). O (3.18)
Jj=0

By obviously we have the following lemma.
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LemMA 3.3, Foruge H3'Z i€ HyY) and (x)2er0f (1, x) € CO([0, T]; H*HY),
there exists a positive constant y, and the Cauchy problem (3.1) has a unique

solution u(t,x) such that

(x)2e2Du(t, x) € (2] c?([o, T); H*Y). (3.19)
Jj=0

Sfor all y = y,.

4. A priori estimate of solution for the linear problem

Let 0 < T < oo, m(tf) be a non-negative function in C°([0,T]), p(z) a
positive function in C'([0, 7)) N C°([0, T]) such that p,(t) <0, ¢(¢f) a posi-
tive function in C!([0,7]) satisfying ¢/(f) <0 for ¢>0 and m,(f) =
j'OT x:(t — T)m(t)dt + &, where &(e) satisfies 0 < &< & and UoT 2:(t — T)m(t)dt —
m(f)| <e and px,(f) =& x(e7lf), x(f) e CP((0,1)) satisfying x(f) =0 and
jol x()dt=1 for 0 <t <T. Then we define E,(t) as follows:

E() =5 {16320~ A o012 + p0lIo(0)] 2y + me(1)(A(D)"o(a), (DYo(0)) }.
(4.1)

for the solution v(¢,x) of (3.3).

LEMMA 4.1. Assume that m(t) is a non-negative function in C°([0, T)),
o(t) = e ™, p(t) = pie™ and v(t,x) is a solution of (3.3) satisfying v(t,x) €
ﬂj2=0 C*7([0, T); H*Y), then there exist positive constants &, yy, ¢ and co such

that

t . 1 t t
R 1 e I 42)

for te[0,T) and for any y = y,, where

_¢ (0], _m@?  m@pf | mo)lpo)
‘-’(‘)‘5<""(’)’+me<r) Oz GO0l 0 +"’°)' “3)

ProOF. Note that m.(t) — m(f) in L'([0,7]) for arbitrary ¢ € [0, T].

Differentiating both sides in (4.1), we have
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2B () = 5 {51026~ MO0
+2 (Fowl12,)
+4 (30U, @) ).

(4.4) = R(()e0 = A2 ()20(1), ()20 — A ()0 (D),

+ R(eAL = A)(P0(2), (VB = A)()Pu(e)),

=R(g(1), (1e(0 = A () 0(0)),
— m(R((YeAn () 0(1), (VB — AN () o(D)),
+ R(A()e(0 = AN 0(0), (@ = A)()P0(8)),
+ R(p 2 ()2(8 = A 0(2), (108 — A)(Hu(2)),

< llg(e)ll,Ex(2)
— m(O)R(A] 2 C0g AN 200, 1AL 2028 = A )Po(D)),
— AL 200 = A) o) 17
+ Cilp | Es(2)?,

where p)(x,D) e Op(S°), and we used an equality; ||Pu||, < Cl|u||
positive constant C; provided P e Op(S™) and u € H* (See [Ku].

s+m

(45) = 2/ O,
+ o()R(UD)()2(0: — A) () 2u(2), (DYo(D)),

+ o) RUD) (VoA u(2), (D)o (2)),

(4.4)

(4.5)

(4.6)

(4.7)
(4.8)
(4.9)

(4.10)

for some
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o)
< o0 Ey(1) (4.11)
2 IAL 020~ A2 (4.12)
2 2 (413)
+ p(O)plv()123)2 (4.14)
+ GE(1)?, (4.15)
(4.6) = 3 m,()(A(DY*0(2), (D)"6(2),
+ mo(OR(AN (DY = A(DYo(2), |A ()20 — A () 0(8)),
+ me(OR(AN VD) AD)Y*o(2), A (VoA 0(D)),
PLAG
0 E (1) (4.16)
+ me()R(A /(D) ADY v (2), AN ()28 — A () 0(D),  (4.17)
+ me(£)p,R((D) 2 A(DY* v (1), (D)1 P(1)) (4.18)
+ me(1)p,R((D) °A(D)*v(t), p30(2)),, (4.19)
where p9(x, D) € Op(S°®) and we used
({D) " A(D)’u,v), = (u, (D) *A(D)*v),
which is verified by the symmetry of [ay]; ;) -
(4.18) + (4.19) < my(1)p,R(A(D)* Do (s), (D) /2y (1)) (4.20)
C3mg(t)|p,|
Mo ROl 20
(4.8) + (4.17) < (1A 72 me(£)(D) ~* A(D)Y*v(2), | ALl *()2(8 — A ()P 0(D)),

— (1AL m(t) (YA ) 0(2), [AL ()20 = A) () 0(2)),-

(4.22)
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Then, using the equality:
me(t)(D) *A(D)* — m(t)(x)2AA (%)’
= m(1)(Aa — (X)2AA (X)) +m(2)(4 - 4n)
+m(t)((D) ~A(D)’ — A) + {me(£) — m(t) (D) °A(D)*,  (4.23)

we obtain the estimate;
1A~ {me(5)(D) *A(D)* — m()(-)2AA( ) (D)

< |ma(2) — m()|[[|Ad ~2(D) 4(D) v (1),
+m(D){[[|A] (D)~ A(D)° — A)o(2)l],
+ 1AL 72 (AA = (2N )00
+111Ad 72 (4 ~ An)o(2)]],}

< Calmy(2) = m(2)llo) ™ [0(0) 5432
+m(O) (1Al 2P (., DYo(2) | p ()| A a1 (-, DYo(8)]

+ p(O2|l|Ad " 2@z (p; -, DYv(t) ||, + Il A~V ?#(p; -, DY(D)],)

< (Calme(t) — m(8)| + Csm(Dp(0))) o] ™2 [10() 51372 (4.24)
+ Cam(8) o) ™ ||o(0)||11 (4.25)
+m(0)p(0) |, "2 |@1 (-, DYo(#)l,-1 2 (4.26)

Where Pl(x) 6) € Sl) &1 (x, é) = E;:j=] aléléj) &2(p) X, é) = z:j=1 a2§iéj and
Hp;x,8) = 320 o né&i&j, a1, ay and ry defined in (2.17). Besides, by
2.1, (4.26) is estimated in the following:

@ (-, D)v(t)|| 2 12 =

> @) (- D)D*(D)” U(t)

lo=1

< Cs ) llaw( DYo()ll;_12 + Collo()l|241)2
|a|=1

s—1/2

< CYR(a(-, D)o(t),0(8))41/2 + Callv(IZ1 2
< CGIR(A(D)Y ™ u(1), (D) ?u(t)) (4.27)

+ Cop(r) "' Ex(1)’, (4.28)
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where d(x, &) = a(A4)(x,&). Therefore (4.8) + (4.17) is estimated as below
(4.8) + (4.17) < 2{C}|mq(r) - m()]* + CEm()*p* Yo " oDl sss e (4:29)
+{4Cim()*p(1) ™" + Crom(1)’ 0’0~ " Yo, T Es(r)  (4.30)

+ Com(Y% o, RADY (o), (DY o) (431)
42 IIAI 209200 - Ao, (4.32)

Note that C; (j =1,...,10) are positive constants independent of ¢ and y. Hence
combing the preceding estimates, we have the following estimate for (4.1);

2E,(0)Es(1) < ||g(9)ll,E5(2) (4.33)
m@® ,_m@®®  m@)’p@)°  m1)lp, (1)
¥ ”(""(”' @ o0l T el T e “") E(1 (434
2 (2@ ma(0) = m(n)* | m(t’p(®)*) 2
+ (Ipt(t)l + ¢(t)pt(t) +v lpt(t)l + IPz(t)| ” (t)“s+3/2 (435)
+ 2 (me(D)py(£) + m()* () p,(2)| T R(A(DY* 20 (1), (D)0 (2)). (4.36)
Thus, if we let y > 0 and ¢ > 0 satisfying
M3\ 2
e<edT 2> max{ozltlgT{ge(tg }’p_% + Mozpf}, (4.37)

where My = maxo<;<7m(t), then the third and the fourth terms are non-
positive. O

LEMMA 4.2. Assume that m(t) is a non-negative function satisfying m(t) €
Co([0, T))NLI([0, T]) and v(t,x) € (i, C*7((0, T); H*¥). Then there are p(t)
and ¢(t) in CY([0,T)) with p,(t) € L'([0,T)), p(0) = p, and ¢ > 0 such that the
estimate (4.2) is established for (4.3).

Proor. If we choose p(¢) and & > 0 suitably, we can prove that (4.35) and
(4.35) are non-positive. Indeed, put ¢(¢) and p(¢);

olt) = p%e-zc{,+f()'m(z)(1+1/,/m,(r))dr}, (4.38)

t t
p(2) = (ple-“ - c[ ;{}—)|me(z> - m(r>|dr)e“cﬁr me+1/ym(de - (4.39)
0
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then ¢(f) and p(¢) belong to C!([0,T)) with p,e L'([0,7]) and p(r) >0 for
sufficientry small ¢ > 0, and they satisfy

p(O) = b1

Im,(t) — m(2)| | m(Dp(t)® | m(D)p(t) (4.40)
”’(’)S‘c( Vo e e “”(’))

for te (0,T). Hence we obtain (4.2). O

LEMMA 4.3.  Assume that m(t), ¢(t) and p(t) satisfy the conditions of Lemma
4.1 and that u(t,x) is a solution of the Cauchy problem (3.1) satisfying (3.19),
then u(t,x) has the inequality as

(e ()P OPu(t) |2,y + () 2P0 u(r)[12) 2

' g(x)d 5 5
< cel 194 ()P Pl + ) e P

; jo II(-)ﬁe”(’)(D)f(f)Ilsdf), (4.41)

for te [0,T], where q(t), y and & are given by Proposition 4.1, and the positive
constant c is independent of y.

Proor. It is obvious by Lemma 4.1.

5. Local existence of solutions for the nonlinear problem

Let 0 <7< T). For T € (z,T1] we consider the Cauchy problem:

{ 02u(t, x) + M((Au(t),u(t))) Au(t,x) = f(t,x), t<t<T, (5.)

u(t,x) = up(x), Om(z,x)=u(x).

THEOREM 5.1. Assume that (1.4), (1.5) and (1.6) are valid. Let 0 < p; <
po//n. Then for any up(x) EH:::SZ,x’ ul(x)eH’fl’;},x and (x)2erOD)f (1 x) €
CO([0, T); H**Y) with p(t) = p;e~ "7, there exist T € (t, Ti] and yy > 0 such that

the Cauchy problem (5.1) has a solution satisfying

(x)2ePOPhy(x, 1) € (2‘\ C*([zr, T]; H*Y) (5.2)
j=0

for any y = y,.
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ProOOF. We may assume 7 = (0 without loss of generality. We shall prove
the existence of the solution of (5.1) by Schauder’s fixed point theorem. For
T >0 and se R, we introduce a space of functions;

X15, = {w(t, x); (x)2e?OPhyw(r x) e CO([0, T); H)YNCY(0, T); H*)}  (5.3)

equipped with its norm || - || xz, a8

1 1/2
Wllx: = sup $=(1{)2e”OPhw(@)|I2,; + [1(-)ee? P aw(0)|)?) (5:4)
Tox  g<i<T (2

for every we X7 5,. Let By 5 (R) be a convex subspace of X}j}{x such that

2
7.5,0(R) = {ueX;,*;,x; (x)2e?DPhu(t,x) e () C*((0, T H™), [lullxz < R},
j=0

(5.5)

for R> 1. We now define the two functions
m(t) = m(t;w) = M(n(t;w)), n(t;w) = (ayDw(1), Dyw(t)),  (5.6)
ij=1

for each we X;"’g’lx, where s’ < 5. Note that m(r) = M(n(s;w)) € C°([0, T']), and
if we B7 ¢ (R) for R >0, then for arbitrary fixed v > 0, there exists a positive
constant ¢ independent of w such that

J T (s w) — (e w)ldt < v, (5.7)
0

where m,(t;w) = fOT X:(t — T)m(7;w)dt + ¢ and y,(¢) is defined in section 4. Then
we define the mapping @ from we X ;Tol,x into ue X, }Jfol’x such that

d?u(t, x) + M(n(t; w)) Au(t, x) = £(t,x). (5.8)

We shall prove that ¥ is a compact mapping from BST" 0,x(R) into itself for s’ < s
and sufficiently small 7. By Lemma 3.3, u(¢,x) in [5.8) satisfies

2
(x)ee” Pt x) e () C*((0, T]; H*Y) (5.9)
j=0

for uo € H'3 ., w1 € H3*; . and every fixed we B},  (R). Then by Lemma 4.1,
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we have

L 1038 0p0(D) 3y 1112 5 0D 5y A2V )
3 (12POPU) 2, + 1) 26X 0(o) )
1 1/2
< e LD + 12 0P|

t t
< e { ce b () 2en Py + 126 Pl + [ 12220210

T
< clels @O+ (5.10)

where ¢’ is independent of T and R. Therefore for sufficiently large R, we can find
T(R) =T >0 such that

T
ey @Dd _ g (5.11)

On the other hand,.by [Proposition 2.2, we have obviously that the embedding
BsTya,x(R)c-»B‘T"o,x(R) is compact for s’ <s and d > 0. Hence the mapping ¥
defined is a compact mapping from B'}f,o,x(R) into itself. Then by Schauder’s
fixed point theorem, ¥ has a fixed point u(¢,x) in BST,,o,x- Further by Lemma 3.3,
the fixed point is a solution of (5.1) satisfying

2
(x)ee?OPu(t,x) e () C*([0,T]; HY) (5.12)
Jj=0
for ug EH;:,;,ZK and u; eH,f:;,lx. a

6. Global existence of solution for the non-linear problem

In this section we shall prove our main theorem. Now we introduce the
following energy:

E()* = %(Ilazu(t) +u()|* + lu()* + F(n(1)), (6.1)

where F(n) = [} M(A)dA and n(f) = (Au(t),u(t)). Then for the energy E(),
according to and the following energy estiamte is concluded.

PROPOSITION 6.1. Assume that M(n) is a non-negative continuous function in
[0,00) and f(t,x) € C°([0,T);L?). If u(t,x) is a solution of the Cauchy problem



Global solvability for the generalized 501

(1.3) in (0,T) such that u(t,x) € ﬂjz:o C?*7([0,T); H), then we have the energy
estimate:

E(1)’ + J eI M (n(0)n(v)dr < E(0)%e™ + %J S| @I (62)
0 0
for te[0,T).
Proof. Differenting [6.1), from the equation (1.3) we get,
2E'(1)E(t) = R(f(¢) + 0.u(t), ru(t) + u(t)) + R(0.u(t), u(t)) — M(n(2))n(t)
< IO +3E? ~ Mla()n() (63)
for te[0,T), which yields (6.2). O
COROLLARY 6.2. If (6.2) holds and T < oo, then M(n(t)) € L'([0, T]).

ProOF. From (6.2), it is evident that M (n(¢))n(¢) € L' ([0, T']). On the other
hand

t
|, Mtoyae = | Mln(e)de+ | M(r(e))ds
0 04N {5 (m)>1} 0,40 {rin(x) < 1}
t
< | MEnEd+ sup Moy (64)
0 0<y<l
for all te[0,T), which implies that M(n(z)) € L'([0, T]). O

Now we can prove our main theorem. Let A(¢,7) = pie™"(D) and T~ the
real number defined by

T = max{T > 0; there exist y > 0 and a solution u(¢, x) satisfying (1.3)

in (0, T) such that (x)%e*"u(z,x) e (2\ Cc%([0, T); Hj)}.
j=1
ensures 7* > 0. We shall claim 7* = oo. Suppose that T* < 0. Then
it follows from Proposition 6.2 that m(f) = M (Au(t),u(t)) belongs to L!([0, T*]).
Hence, Proposition 3.2 and the fact that m(t) e C°([0,T*))N L([0, T*]) yield
that o(z,x) = (x)2%e*Du(z,x) which satisfies with s =0,1 and T = T*,
where A(?) = p(¢)(D) and p(¢) is introduced in (4.39). Let us take y > 0 such that
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pre " <p(t) for te[0,T*). Then the definition of T* and imply
(x)°eAENy (1, x) € ﬂjz:O C2>7([0, T*); H’), where A(t,y) =pe” (D). Hence we
have the limits «(7*—-0)e H?> and Ju(T*—-0) which satisfy
(x)°eAMT*Ny(T* — 0) € H'. Therefore, applying with p, = pie’T", we
have a solution #(¢,x) of the Cauchy problem (5.1) in (T*,T), T > T* with
initial data #(7*) = u(T* —0) and 0,u(T*) = du(T* — 0), which satisfies

(Wexp(pse " TUDY(, ) € () CH(T*, T, BY) (63)
Jj=0

Then A(t,y) = p,e "T-T")(D) implies that

(WA, x) € () CH(T, T HY). (66)
j=0
Now let us define
(t,x), te(0,T%)
wlt,x) = {;(t,i), Ay (6.7)

Then w(t,x) has to satisfy (1.3) in (0,7) and

(x)0eA (1, x) € (2) C2([0, T); H). (6.8)
j=0

Jj=
This result contradicts the definition of 7*. Thus, we have proved that 7* = oo.
O
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