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A CHARACTERIZATION OF ALMOST-EINSTEIN
REAL HYPERSURFACES OF QUATERNIONIC
PROJECTIVE SPACE

By

Juan de Dios PEREZ

Abstract. Almost-Einstein real hypersurfaces of quaternionic
projective space, as defined in [3], can be characterized by a
condition involving their curvature and Ricci tensors.

1. Introduction

Let M be a connected real hypersurface of a quaternionic projective space
OP™, m > 3, with metric g of constant quaternionic sectional curvature 4. let &
be the unit local normal vector field on M and {J;,J2,J3} a local basis of the
quaternionic structure of QP™, [2]. Then U; = —J;¢, i =1,2,3, are tangent to
M. Let us denote by D' = Span{U,, U,, U3} and by D its orthogonal com-
plement in TM.

Let A be the Weingarten endomorphism of M and S its Ricci tensor. M is
said to be almost-Einstein, [3], if

3
(1.1) SX=aX+b)» g(AX,U)U,
: i=1
for any X € TM, where a and b are constant. In we studied such real
hypersurfaces obtaining

THEOREM A. Let M be an almost-Einstein real hypersurface of QP™, m > 2.
Then it is an open subset of one of the following:

1) a geodesic hypersphere.

i) @ tube of radius r over QP O0<k<m-—1, 0<r<mn/2 and
cot?(r) = (4k + 2)/(4m — 4k — 2).

iii) a tube of radius r over CP™, 0 <r < n/4 and cot*(2r) =1/(m —1).
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Among the real hypersurfaces appearing in A, only the geodesic:
hyperspheres of radius r, 0 < r < n/2 and cot?(r) = 1/(2m) are Einstein.

Recently, in we studied real hypersurfaces of QP™, m > 2, such that
o(R(X,Y)SZ) =0, for any X,Y,Z tangent to M, where o denotes the cyclic
sum and R the curvature tensor of M. Concretely we obtained

THEOREM B. A4 real hypersurface M of QP™, m>2, satisfies
6(R(X,Y)SZ) =0, for any X,Y,Z tangent to M if and only if it is Einstein.

In the present paper we propose to study a weaker condition than the one
appearing in [Theorem B. Concretely we shall consider real hypersurfaces M of
QP™ m > 3, satisfying

(1.2) 6(R(X,Y)SZ)=0 forany X,Y,ZeD

It is easy to see, bearing in mind the first identity of Bianchi, that all almost-
Einstein real hypersurfaces of QP™ satisfy [1.2). Our purpose is to obtain the
converse. That is, we shall prove the following

THEOREM. A real hypersurface M of QP™, m > 3, satisfies (1.2) if and only
if it is almost-Einstein.

2. Preliminaries

Let X be a vector field tangent to M. We write J;.X = @, X + fi(X)¢,
i=1,2,3, where ®;X denotes the tangential component of J;X and f;(X) =
g(X,U;). From this, [3], we have

(21) g(q),X, Y) + g(X, (D,Y) = 0, q)iUi = 0, (DjUk = ‘—(Dk(]j = Ut

for any X,Y tangent to M, i=1,2,3, (j,k,t) being a cyclic permutation of
(1, 2, 3). We also obtain

(2.2) D0 X = —0;D;X = D X

for any X € D, where (i,j, k) is a cyclic permutation of (1, 2, 3).
From the expression of the curvature tensor of QP™, [2], the equation of
Gauss is given by

23) RX,V)Z=g(Y,2)X —4(X,2)Y + 3 (@Y, Z)0.X — g(@:X, Z)®,¥
i=1

+29(X, ;YD Z} +g(AY,Z)AX — g(AX,Z)AY
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for any X, Y,Z tangent to M. This implies that the Ricci tensor of M has the
following expression:

3
(2.4) SX =(@dm+7)X -3 ) _ fi(X)U;+ HX
i=1

for any X tangent to M, where H = (trace A)4 — A2.

3. Proof of the

Along this paragraph M will denote a real hypersurface of QP™, m > 3,

satisfying [1.2).
From and the first identity of Bianchi, is equivalent to have

6(R(X,Y)HZ)=0 for any X,Y,Z € D.

Let {E,...,Esm-4a} be a local orthonormal frame of D at any point of M.
The following computations are made locally on a neighbourhood of any point
of M.

If from (2.3) we develop 6(R(X,Y)HZ) =0 and take Z=E;, Y = O E,
j=1,...,4m — 4, we have

3.1)  —(9(E;, HE)) + g(®1 Ej, HO, E;)) D1 X — (9(D3E), HE))
+ g(D2E;, HO, E))) D2 X + (9(D2Ej, HE;) — g(P3Ej, HD E;)) D3 X
+ 20 HX + (9(®1 X, HE)) — g(HX, ®\,E)))E; + (9(HX, E;)
+g(@1 X, HD, E))) D\ E; + (29(HX, ®3E)) + g(®2X, HD, E))
— 9(®3X, HE;)) D2 E; + (9(P2X, HE)) + g(03 X, HO, E)
— 2g(HX, D,E;)) D3 E; — 29(X, E;) D1 HE;
— 29(X, D:E;)) D, HE; + 2g(X, 1 E;) D3 HE;
+2g(®1 X, E}) D HD, E; + 29(®, X, E))D, HD, E
+2g(®3 X, E) O3 HO E; = 0

for any X € D.
Now we prepare the following Lemmas

LemMa 1. g(HX,®;X) =0 for any XeD, i=1,2,3.
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Proor. We take the scalar product of (3.1) and X and take summation on
j. Then we obtain

(3.2) (8m — 16)g(®1HX,X) =0

for any X e D. As m > 3, (3.2) implies g(HX,®;X) = 0.

If we develop o(R(X,®;E;)HE;) =0, i = 2,3, we also obtain g(HX,®,X) =
g(HX,®3X) = 0, finishing the proof.

Let us denote by Q(X) = Span{X,®; X, D, X,®3X} for any X € TM.

LeMMA 2. g(X,HZ) =0 for any unit X,Z € D such that Q(X) L Q(Z).

Proor. Let us consider X,Y € D. From Lemma 1 and polarization we
have

(3.3) g(H®,X,Y) = g(®:;HX,Y) i=1,2,3

for any X, Y e D. Taking in Y=0;Z, i=1,2,3 we obtain

(3.4) g(HO:;X,0;Z) =g(HX,Z) i=1,2,3

Take the scalar product of (3.1) and Z and then summation on j. We have

(3.5)
gHD X, Z) + (4m — T)g(®1HX , Z) + (D2 X, HD3Z) — g(®3X, HD:Z) =0

for any unit X, Z € D such that Q(X) L Q(Z). If in (3.5) we exchange Z by ®,Z
and apply we obtain
(3.6) (4m —4)g(HX,Z) =0

Now as m > 3 the result follows.

'LeMMA 3. g(HX,X)=g(HY,Y) for any nonnull X,Y € D.

PrROOF. Let us take a unit X € D and consider the scalar product of (3.1)
and ®;X. After taking summation on j we have

(3.12) (8m—14)g(HX,X) +29(H® X, D1 X) + 2g(HD, X, D, X)
+2g(H®: X, D3X) — > {g(E;, HE)) + g(®1E;, HD,E})} = 0
J

If in (3.12) we change X by ®; X and substract we have
(3.13) (8m — 16)g(HX,X) = (8m — 16)g(HD1 X, D1 X)
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As m > 3, we obtain g(HX,X) = g(H®; X,®;X). Similarly we can obtain
(3.14) g(HX,X) =g(HD;X,®;X) i=1,2,3
Now from (3.12) and we get
(3.15) (4m — 4)g(HX, X) = > _ g(HE;, E))
J

and this finishes the proof.
LemMma 4. g(HU, X) =0, i=1,2,3, for any X € D.

ProoF. Let us take the scalar product of (3.1) and U; and sum on j. Thus
we have

(316) . g((DzX, HU2) -+ g((I>3X,HU3) =0

Similarly we can obtain

(3.17) g(®1X, HU,) + g(®3X, HU3) = 0
and

(3.18) g(®1X, HU) + g(®:X, HU,) = 0
From , and we get

(3.19) g(®,X,HU;) =0, i=1,2,3

and changing X by ®;X we obtain the result.

Now we have that any X e D is principal for H and has the same
eigenvalue. Moreover g(HD,D') = {0}. But HA = AH. Thus we can find an
orthonormal basis of TxM, for any x e M, such that it diagonalizes simul-
taneously both H and A. But from the above Lemmas we must have
g(AD, D) = {0}. Thus M, [1], must be congruent to an open subset of either
a geodesic hypersphere or a tube of radius r, 0 <r<m/2, over QP
ke{l,...,m—2} or a tube of radius r, 0 <r < n/4, over CP™.

All geodesic hyperspheres only have a principal curvature on D, [3]. Thus
from the first identity of Bianchi they satisfy [1.2).

A tube of radius r, 0 <r < /2, over QP ke{l,...,m—2}, has two
distinct principal curvatures on D, cot(r) with multiplicity 4(m —k — 1) and
—tan(r) with multiplicity 4k, and a unique principal curvature on D+, 2 cot(2r),
[3] Let us suppose that it satisfies [1.2). Thus from every vector
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field of D must have the same eigenvalue for H. Take X e D such
that AX =cot(r)X and ZeD such that AZ = —tan(r)Z. Then HX =
((4m — 4k — 2) cot’r — (4k +3))X and HZ = ((4k + 2) tan® r — (4m — 4k — 1)) Z.
This implies that cot?(r) = (4k + 2)/(4m — 4k — 2).

A similar argument applied to a tube of radius r, 0 < r < n/4, over CP™,
whose principal curvatures are cot(r) and —tan(r) on D both with multiplicity
2(m — 1) and 2 cot(2r) with multiplicity 1 and —2 tan(2r) with multiplicity 2 on
D' implies that is satisfied only if cot?(2r) = 1/(m — 1).

Thus we have proved that a real hypersurface of QP™, m > 3, satisfies (1.2
if and only if it is one appearing in Theorem A. This finishes the proof.
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