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1. Introduction

Let $(M, g)$ be a Riemannian manifold with $\dim M=n\geq 3,$ $\Delta_{g}$ the Lap-
lacian of $g,$ $S_{g}$ the scalar curvature of $g$ and $L_{g}$ the conformal Laplacian of $g$ ,
i.e. $L_{g}:=-a_{n}\Delta_{g}+S_{g}$ with $a_{n}=4(n-1)/(n-2)$ . Let $u$ be a positive smooth
function on $M$, and define a conformal metric by $\tilde{g}:=u^{4/(n-2)}g$ . Then its scalar
curvature is given by $S_{\overline{g}}=u^{-q}L_{g}u$ , where $q=(n+2)/(n-2)=4/(n-2)+1$ .
Hence, a smooth function $f$ on $M$ can be realized as the scalar curvature of
some metric which is pointwise conformal to $g$ if and only if there is a smooth
solution $u$ of the equation

$\left\{\begin{array}{l}L_{g}u=fu^{q}\\u>0\end{array}\right.$ on $M$ .

Throughout this paper, we refer to this equation as “the equation $(f, M)$ .
Now, we are interested in the structure of the moduli space of (complete)

conformal metrics on $M$ with scalar curvature $f$ In this work, we study the
equation $(f, M)$ in the case when $(M, g)$ is a subdomain of a compact Rie-
mannian manifold $(\overline{M},\overline{g})$ . More precisely, we consider mainly the case when
$\lambda_{1}(L_{\overline{g}})>0,$ $(M, g)$ is the complement $\overline{M}\backslash \Sigma$ of a compact submanifold $\Sigma$ , and $f$

is nonpositive.
Under this assumption, Mazzeo [12] proved that, when $ d=\dim\Sigma\leq$

$(n-2)/2$ and $f\equiv 0$ on $M$, “the full solution space of scalar flat complete
conformal metrics on $M$ is parametrized by the space of strictly positive
measures on $\Sigma$ . This fact means that $\Sigma$ is the Martin boundary of the
Laplacian with respect to a scalar flat complete conformal metric on $M$.

When $f$ has a compact support, any conformal metric $u^{q-1}g$ on $M$ with
scalar curvature $f$ is bounded above by some scalar flat conformal metric $\varphi^{q-1}g$
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on $M$. Moreover, if $\lim_{x\rightarrow\Sigma}u(x)=+\infty$ , then such $\varphi$ can be chosen to satisfy
$\lim_{x\rightarrow\Sigma}(u(x)/\varphi(x))=1$ . (We describe this in Section 6. See also [9, Section 4].)

Also when $suppf$ is not compact, if $f$ satisfies a certain condition, then there
are infinitely many conformal metrics on $M$ with scalar curvature $f$ each of
which behaves asymptotically to a scalar flat conformal metric on $M$ (see [6],
[10], [7]). However, in this case, the space of (complete) conformal metrics with
scalar curvature $f$ is more complicated in general. For example if $S_{g}\geq 0,$ $f$ is
negative outside a compact set and the equation $(f, M)$ possesses a positive
subsolution, then there is a maximal solution of the equation $(f, M)$ which does
not behave asymptotically to any solution of the equation $(0, M)$ , where we call
a solution $U$ of the equation $(f, M)$ is maximal if and only if $U\geq u$ holds for
any solution $u$ of $(f, M)$ (see [11], [3], [14], [4], [5], [9]).

In Section 2, we prove the following uniqueness theorem for solutions of the
maximal order.

THEOREM 1. Let $(M, g)$ be an open Riemannian manifold $(n=\dim M\geq 3)$ .
Let $f$ be a nonpositive smooth function on $M,$ $U$ the maximal solution of the
equation $(f, M)$ , and $u$ a solution of the equation $(f, M)$ . If $u\sim U$ on $M$, then
$u\equiv U$ on $M$.

Here and throughout this paper, we use the notation $f_{0}\sim f$
’ to mean that

the condition $C_{1}f\leq f_{0}\leq C_{2}f$ holds for some positive constants $C_{1}$ and $C_{2}$ . We
also denote the distance function to a submanifold $\Sigma$ (resp. a point p) by $r_{\Sigma}$

(resp. $r_{p}$ ).

Next, in Section 3, we prove the following lower estimate for solutions of
the equation $(f, M)$ whose order is higher than that of the standard solutions
$\gamma oe:=\gamma\int_{\Sigma}G(\cdot,y)d\sigma_{y}$ of $(0, M)$ , where $\gamma$ is a positive number, $G$ is the Green
function of $L_{\overline{g}}$ and $ d\sigma$ is the volume element of $\Sigma$ .

THEOREM 2. Let $(\overline{M},\overline{g})$ be a compact Riemannian manifold $(n=$

$\dim\overline{M}\geq 3)$ with $\lambda_{1}(L_{\overline{g}})>0,$
$\Sigma$ a compact submamfold $(d=\dim\Sigma<n-2)$ , and

$(M, g);=(\overline{M}\backslash \Sigma,\overline{g}|_{\overline{M}\backslash \Sigma})$ . Let $f$ be a nonpositive smooth function on M. Suppose $f$

satisfies $f\sim-\gamma_{\Sigma}^{l}$ near $\Sigma$ for a nonnegative number $l>2-4d/(n-2)$ , and
suppose $u$ is a solution of the equation $(f, M)$ such that $ u(x)/r_{\Sigma}(x)^{d-n+2}\rightarrow+\infty$ as
$ x\rightarrow\Sigma$ . Then $u$ satisfies the estimate $u\geq Cr_{\Sigma}^{-(l+2)/(q-1)}$ for some positive constant
$C$, and the metric $u^{q-1}g$ is complete. In particular, $u$ is the maximal solution of
the equation $(f, M)$ .
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Remark here that $(r_{\Sigma}(x)^{d-n+2})^{q-1}$ is the order of the ratio of the scalar
flat conformal metric $G_{\Sigma}^{q-1}g$ to the original metric $g$ (see the proof of Theo-
rem 2).

The assertions of Theorems 1 $and/or2$ are known in some cases (see [11],
[14], [4], [1], [13] for $d=n-1;[5]$ for $(M, g)=$ ($R^{n},$ go); [2], [12], [7] for 1 with
$f\sim-1)$ . However, our proof of Theorem 1 is quite simple, although we are
concemed with more general situation. By virtue of the weakness of the
assumption of Theorem 1, we can show, in Theorem 2, the uniqueness of
solutions satisfying $\lim_{x\rightarrow\Sigma}(u(x)/r_{\Sigma}(x)^{d-n+2})=+\infty$ from only the rough estimate
$u\geq Cr_{\Sigma}^{-(l+2)/(q-1)}$ .

These theorems enable us, in Section 4, to generalize the structure theorem
on the Euclidean space ($R^{n},$ go) (which is conformal to $S^{n}\backslash \{p\}$ with the standard
metric) proved by Cheng-Ni [5] to the following

THEOREM 3. Let $(\overline{M},\overline{g})$ be a compact Riemannian mamfold $(n=$

$\dim\overline{M}\geq 3)$ with $\lambda_{1}(L_{\overline{g}})>0,$ $p$ a point in $\overline{M}$ , and $(M, g):=$ $(\overline{M}\backslash \{p\}$ ,
$\overline{g}|_{\overline{M}\backslash \{p\}})$ . Set $G_{p}(x):=G(p, x)$ , where $G$ is the Green function of $L_{\overline{g}}$ . Let $f$ be a
nonpositive smooth function on M. If $f$ satisfies $f\sim-r_{p}^{l}$ near $p$ for a number
$l>2$ , then, for any $\gamma\in(0, +\infty$ ], the equation $(f, M)$ possesses a unique solution $u_{\gamma}$

such that $ u_{\gamma}(x)/G_{p}(x)\rightarrow\gamma$ as $x\rightarrow p$ and the metric $u_{\gamma}^{q-1}g$ is complete. Conversely,
any solution $u$ of the equation $(f, M)$ coincides with $u_{\gamma}$ for some $\gamma$ . Namely, the
space of complete conformal metrics on $M$ with scalar curvature $f$ is parametrized
by $(0, \dashv\infty$ ].

Now, the following question arises naturally. “For any $(M, g)=$

$(\overline{M}\backslash \Sigma,\overline{g}|_{\overline{M}\backslash \Sigma})$ and $f$, does any solution $u$ of the equation $(f, M)$ satisfying
$\lim_{x\rightarrow\Sigma}u(x)=+\infty$ coincide with either the maximal solution $U$ or a solution
asymptotic to some solution of $(0, M)$? In Section 5, we show that the answer
to this question is “No” in general. The simplest case we can observe this is the
case when $\Sigma$ is a finite number (larger than 1) of points. We can also constmct
solutions of the equation $(-1, M)$ which do not behave like any solution of the
equation $(0, M)$ near a subset of $\Sigma$ even when $\Sigma$ is connected. These obser-
vations teach us that the space of solutions of the equation $(f, M)$ has some
more complicated stmcture in general.

The author wish to thank Professor N. Nakauchi for his interest in this
work and helpful advice.
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2. The uniqueness of solutions of the maximal order

In this section, we prove Theorem 1. For this purpose and to use later, we
recall here the following well-known formula without a proof.

METHOD OF SUPERSOLUTIONS AND SUBSOLUTIONS. Let $(M, g)$ be a Rie-
mannian manifold $(n=\dim M\geq 3)$ , and $f$ a smooth function on M. If there exist
a supersolution $u_{+}$ and a subsolution $u_{-}$ of the equation $(f, M)$ such that
$0<u_{-}\leq u+$ , then the equation $(f, M)$ possesses a smooth solution $u$ satisfying
$ u_{-}\leq u\leq u+\cdot$

PROOF OF THEOREM 1. Set $\beta:=\sup_{M}(U/u)$ . Then, by the assumption
$u\sim U$, we have $\beta<+\infty$ .

Suppose $u\not\equiv U$ . Then $\beta>1$ and, by the strong maximal principle, it holds
that $u<U$ . It is easy to see that $\gamma:=\{(\beta^{q}-1)/(\beta-1)^{q}\}^{1/(q-1)}>\beta/(\beta-1)$ .
Set

$v_{+}:=\gamma(\beta-1)u$ , $v_{-}$ $:=\gamma(U-u)$ .

Then clearly $v\pm>0$ and

$v_{+}-v_{-}=\gamma(\beta u-U)\geq 0$ .

Moreover, we get

$v_{+}^{-q}L_{g}v+=\{\gamma(\beta-1)\}^{1-q}u^{-q}L_{g}u=\{\gamma(\beta-1)\}^{1-q}f\geq\beta^{1-q}f\geq f$

and

$v_{-}^{-q}L_{g}v_{-}=\gamma^{1-q}(U-u)^{-q}L_{g}(U-u)=\gamma^{1-q}(U-u)^{-q}f(U^{q}-u^{q})$

$=\frac{U^{q}-u^{q}}{\gamma^{q-1}(U-u)^{q}}f\leq\frac{\beta^{q}-1}{\gamma^{q-1}(\beta-1)^{q}}f=f$ ,

namely, $v+$ (resp. $v_{-}$ ) is a supersolution (resp. subsolution) of the equation
$(f, M)$ , where we use the inequality

$\frac{t^{q}-1}{(t-1)^{q}}\geq\frac{\beta^{q}-1}{(\beta-1)^{q}}$ for $ t\in(1, \beta$].

Therefore, by the method of supersolutions and subsolutions, the equation $(f, M)$

possesses a solution $v$ satisfying $v_{+}\geq v\geq v_{-}$ .
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Now, by the definition of $\beta$, there exists a sequence $\{x_{i}\}_{i\in N}$ of points in $M$

such that $\lim_{i\rightarrow\dashv\infty}(U(x_{i})/u(x_{j}))=\beta$ . Hence we get

$\frac{v(x_{i})}{u(x_{i})}\geq\frac{v_{-}(x_{i})}{u(x_{i})}=\gamma(\frac{U(x_{i})}{u(x_{i})}-1)\rightarrow\gamma(\beta-1)>\beta$ as $ j\rightarrow+\infty$

from which it follows that, for any $i$ large enough,

$\frac{v(x_{i})}{u(x_{i})}>\beta\geq\frac{U(x_{i})}{u(x_{i})}$ ,

namely, $v(x_{i})>U(x_{j})$ . This contradicts the assumption that $U$ is maximal.
Therefore we have $u\equiv U.$ q.e. $d$ .

Now, by the proofs of [9, Theorem II, III and IV], we know the order of
the maximal solution $U$ of the equation $(f, M)$ in various cases. Combining this
and Theorem 1, we immediately get the following corollaries.

COROLLARY 2.1. Let $(M, g)$ be a complete, noncompact, simply connected
Riemannian manifold $(n=\dim M\geq 3)$ with nonpositive curvature whose Ricci
curvature $Ric_{g}$ satisfies $Ric_{g}/(n-1)\geq-A^{2}/(r_{p}^{2}+\epsilon^{2})$ for positive numbers $A$ and
$\epsilon$ such that $A^{2}\leq(n-2)/n$ . Let $f$ be a nonpositive smooth function on $M$ sat-
isfying $f\sim-r_{p}^{-l}$ near infinity for some point $p\in M$ and a number $l>2,$ $u$ a
solution of the equation $(f, M)$ . If $u$ satisfies $u\geq Cr_{p}^{(l-2)/(q-1)}$ for a positive
constant $C$, then $u$ is the maximal solution of the equation $(f, M)$ .

COROLLARY 2.2. Let $(M, g)$ be a complete, noncompact, simply connected
Riemannian manifold $(n=\dim M\geq 3)$ whose sectional curvature $K_{g}$ and Ricci
curvature $Ric_{g}$ satisfy $K_{g}\leq-B^{2}$ and $Ric_{g}/(n-1)\geq-\Lambda^{2}$ for positive numbers $\Lambda$

and $B$ such that $(A/B)^{2}\leq(n-1)^{2}/n(n-2)$ . Let $f$ be a nonpositive smooth
function on $M$ satisfying $f\sim-e^{-lr_{p}}$ near infinity for some point $p\in M$ and a
nonnegative number $l,$ $u$ a solution of the equation $(f, M)$ . If $u$ satisfies
$u\geq Ce^{lr_{p}/(q-1)}$ for a positive constant $C$, then $u$ is the maximal solution of the
equation $(f, M)$ .

COROLLARY 2.3. Let $(\overline{M},\overline{g})$ be a compact Riemannian manifold $(n=$

$\dim\overline{M}\geq 3)$ with $\lambda_{1}(L_{\overline{g}})\geq 0,$
$\Sigma$ a compact submanifold $(d=\dim\Sigma)$ of $\overline{M}$, and

$(M, g):=(\overline{M}\backslash \Sigma,\overline{g}|_{\overline{M}\backslash \Sigma})$ . Let $f$ be a nonpositive smooth function on $M$ satisfying
$f\sim-r^{\int_{\Sigma}}$ near $\Sigma$ for a nonnegative number $l>2-4d/(n-2),$ $u$ a solution of the
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equation $(f, M)$ . If $u$ satisfies $u\geq Cr_{\Sigma}^{-(l+2)/(q-1)}$ for a positive constant $C$, then $u$

is the maximal solution of the equation $(f, M)$ .

3. A lower estimate for solutions of high order

In this section, we prove Theorem 2. First, we prepare a key lemma. Its
proof is quite similar to that of [9, Theorem V], but some more delicate. In
common with Loewner-Nirenberg [11, Theorem 4], we make use of a family of
(sub-)solutions. However, our lemma applies to more complicated cases.

LEMMA 3.1. Let $(M, g)$ be an open Riemannian manifold $(n=\dim M\geq 3)$ ,
$\{\Omega_{i}\}_{i\in N}$ a sequence of relatively compact domains of $M$ which satisfies
$\Omega_{i}$ cc $\Omega_{i+1}$ and $\bigcup_{i\in N}\Omega_{j}=M$ . Let $f$ be a nonpositive smooth function on $M,$ $\varphi a$

solution of the equation $(0, M)$ , and $u_{1}$ a solution of the equation $(f, M)$ satis-
fying $ u_{1}\leq\varphi$ on $M$ and $\lim_{i\rightarrow+\infty}\{\inf_{M\backslash \Omega_{j}}(u_{1}/\varphi)\}=1$ . Suppose $u_{+}$ is a super-
solution of the equation $(f, M)$ satisfying $\lim_{i\rightarrow+\infty}\{\inf_{M\backslash \Omega_{l}}(u_{+}/\varphi)\}=+\infty$ . Then it
holds that

$ u_{+}\geq(q-1)q^{-q/(q-1)}(1-\frac{u_{1}}{\varphi})^{-1/(q-1)}\varphi$ where $ u_{1}\geq\frac{q-1}{q}\varphi$ .

PROOF. Put $ w_{1};=1-u_{1}/\varphi$ . Then $w_{1}$ is nonnegative, $\lim_{i\rightarrow+\infty}(\sup_{M\backslash \Omega_{i}}w_{1})$

$=0$ and $u_{1}=\varphi(1-w_{1})$ .
Let $\gamma$ be the supremum of $\gamma_{0}\prime s$ such that, for any number $\mu\in[1, \gamma_{0}]$ , the

equation $(f, M)$ possesses a solution $u_{\mu}$ satisfying $\mu\varphi(1-\mu^{q-1}w_{1})\leq u_{\mu}\leq\mu\varphi$ .
Clearly $\gamma\geq 1$ .

Suppose $\gamma<+\infty$ . Then, for any $\mu\in[1, \gamma$), the equation $(f, M)$ possesses a
solution $u_{\mu}$ as above. Since $f$ is nonpositive, it follows from [9, Lemma 2.2] that
$\{u_{\mu}\}_{1\leq\mu<\gamma}$ is monotonically increasing and bounded above by $\gamma\varphi$ . Therefore, if
we set $u_{\gamma}$

$:=\lim_{\mu\rightarrow\gamma}u_{\mu}$ , then $u_{\gamma}$ is a solution of the equation $(f, M)$ with the same
properties as above.

Put $w_{\gamma}$
$:=\gamma-u_{\gamma}/\varphi$ . Then it is clear that $w_{\gamma}$ is nonnegative, $\max_{M}w_{\gamma}<\gamma$ , and

$w_{\gamma}\leq\gamma^{q}w_{1}$ . Choose a positive number $\delta$ satisfying $1<\delta<\gamma/\max_{M}w_{\gamma}$ , and, for
any $\epsilon\in(1, \delta^{1/(q-1)}$ ], set $u_{\epsilon\gamma-}:=\epsilon\varphi(\gamma-\epsilon^{q-1}w_{\gamma})$ . Then we get

$L_{g}u_{\epsilon\gamma-}=\epsilon^{q}L_{g}u_{\gamma}=\epsilon^{q}fu_{\gamma}^{q}=fu_{\epsilon\gamma-}^{q}(\frac{\gamma-w_{\gamma}}{\gamma-\epsilon^{q-1_{\mathcal{W}_{\gamma}}}})^{q}\leq fu_{\epsilon\gamma-}^{q}$ on $M$ ,

namely, $u_{\epsilon\gamma-}$ is a subsolution of the equation $(f, M)$ . On the other hand, if we set
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$ u_{\epsilon\gamma+}:=\epsilon\gamma\varphi$ , then we have

$L_{g}u_{\epsilon\gamma+}=0\geq fu_{\epsilon\gamma+}^{q}$ on $M$ ,

namely, $u_{\epsilon\gamma+}$ is a supersolution of the equation $(f, M)$ . Since $u_{\epsilon\gamma+}\geq u_{\epsilon\gamma-}>0$ , by
the method of supersolutions and subsolutions, the equation $(f, M)$ possesses a
solution $u_{\epsilon\gamma}$ satisfying $u_{\epsilon\gamma+}\geq u_{\epsilon\gamma}\geq u_{\epsilon\gamma-}$ . It is clear that

$\epsilon\gamma\varphi\geq u_{\epsilon\gamma}\geq\epsilon\varphi(\gamma-\epsilon^{q-1}w_{\gamma})\geq\epsilon\varphi(\gamma-\epsilon^{q-1}\gamma^{q}w_{1})=\epsilon\gamma\varphi\{1-(\epsilon\gamma)^{q-1}w_{1}\}$ .

This contradicts the definition of $\gamma$ since $\delta^{1/(q-1)}\gamma>\gamma$ .
Hence we conclude that $\gamma=\dashv\triangleleft\infty$ . Namely, for any $\mu\geq 1$ , the equation

$(f, M)$ possesses a solution $u_{\mu}$ satisfying $\mu\varphi(1-\mu^{q-1}w_{1})\leq u_{\mu}\leq\mu\varphi$ .
Now, by [9, Lemma 2.2] again, it holds that $u_{+}\geq u_{\mu}$ for any $\mu\geq 1$ .

Therefore we have

$ u_{+}\geq\sup_{\mu\geq 1}\{\mu(1-\mu^{q-1}w_{1})\}\varphi$ .

By using the equality

$\sup_{t\geq 1}\{t(1-t^{q-1}a)\}=(q-1)q^{-q/(q-1)}a^{-1/(q-1)}$ for $a\in(0,\frac{1}{q}]$ ,

we get our assertion. q.e. $d$ .

PROOF OF THEOREM 2. Let $G(x,y)$ be the Green function of $L_{\overline{g}}$ , and set
$c_{\Sigma}(x):=\int_{\Sigma}G(x,y)d\sigma_{y}$ , where $ d\sigma$ is the volume element of $\Sigma$ with respect to the
induced metric. Clearly $L_{g}G_{\Sigma}\equiv 0$ on $M$ and, by [10, Proposition 2], there exist
positive constants $C_{1}$ and $C_{2}$ such that

$C_{1}r_{\Sigma}^{d-n+2}\leq oe\leq C_{2}r_{\Sigma}^{d-n+2}$ .

In the case when $2-4d/(n-2)<l<n-(n+2)d/(n-2)$ , by [10, Theorem
2 (a) and its Remark] (see also Delanoe [6, Theorem 5]), the equation $(f, M)$

possesses a solution $u_{1}$ satisfying

$ C_{3}G_{\Sigma}(1-C_{4}r_{\Sigma}^{\alpha})\leq u_{1}\leq C_{3}G\Sigma$

for some positive constants $C_{3},$ $C_{4}$ and $\alpha:=l-2+4d/(n-2)$ . In [10], we
assumed $d\leq(n-2)/2$ for this fact. However, if we do not assert the com-
pleteness of the metric $u_{1}^{q-1}g$ , then the same consequence as above holds also
when $(n-2)/2<d<n-2$ . Apply Lemma 3.1 to this $u_{1}$ and $\varphi=C_{3}\oplus$ . Then,
since $w_{1}=1-u_{1}/\varphi\leq C_{4}r_{\Sigma}^{\alpha}$ , any supersolution $u+of$ the equation $(f, M)$ such
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that $ u_{+}(x)/c_{\Sigma}(x)\rightarrow+\infty$ as $ x\rightarrow\Sigma$ satisfies the estimate

$u+\geq(q-1)q^{-q/(q-1)}(C_{4}r_{\Sigma}^{\alpha})^{-1/(q-1)}C_{3}C_{1}r_{\Sigma}^{d-n+2}$

$=C_{5}r_{\Sigma}^{-\{l-2+4d/(n-2)\}(n-2)/4+d-n+2}$

$=C_{5^{\gamma_{\Sigma}^{-(l+2)(n-2)/4}}}$

$=C_{5^{\gamma_{\Sigma}^{-(l+2)/(q-1)}}}$ ,

where $C_{5}:=(q-1)q^{-q/(q-1)}C_{4}^{-1/(q-1)}C_{3}C_{1}$ . In particular, we have $ u\geq$

$C_{5}r_{\Sigma}^{-(l+2)/(q-1)}$ near $\Sigma$ . Remark that the assumption $l\geq 0$ is not used here.
In the case when $l\geq n-(n+2)d/(n-2)$ , put $u_{+}:=u^{\theta}G_{\Sigma}^{1-\theta}$ , where $\theta$ is a

positive number chosen to satisfy

$\theta<\frac{n-2}{l-2+\frac{-d4d}{n-2}}(\leq 1)$
.

By direct computation, we get

$L_{g}u_{+}=\theta fu^{\theta+q-1}G_{\Sigma}^{1-\theta}+a_{n}\theta(1-\theta)u^{\theta-2}G_{\Sigma}^{-\theta-1}|oe\nabla_{g}u-u\nabla_{g}oe|^{2}$

$\geq\theta fu^{\theta+q-1}G_{\Sigma}^{1-\theta}$

and hence

$u_{+}^{-q}L_{g^{\mathcal{U}}+}\geq\theta f($$o_{e}^{u})^{(1-\theta)(q-1)}$

Since we assume

$-C_{6}r_{\Sigma}^{l}\leq f\leq-c_{7}$’ near $\Sigma$

for some positive constants $C_{6}$ and $C_{7}$ , by the proof of [9, Theorem IV], there is a
positive constant $C_{8}$ such that

$u\leq C_{8^{\gamma_{\Sigma}^{-(l+2)/(q-1)}}}$ .

Therefore we get

$\theta f($
$o_{e}^{u})^{(1-\theta)(q-1)}\geq\theta(-c_{6}f_{\Sigma})(\frac{C_{8}r_{\Sigma}^{-(l+2)/(q-1)}}{C_{1}r_{\Sigma}^{d-n+2}}I^{(1-\theta)(q-1)}$

$=-C_{9}r_{\Sigma^{\theta}}^{l}$ near $\Sigma$ ,
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where $C_{9}:=\theta C_{6}(C_{1}^{-1}C_{8})^{(1-\theta)(q-1)}$ and

$l_{\theta}$ $:=2-\frac{4d}{n-2}+\theta(l-2+\frac{4d}{n-2})$ .

Note here that, by the assumption on $\theta$ , $2-4d/(n-2)<l_{\theta}<$

$n-(n+2)d/(n-2)$ holds. Let $f_{0}$ be a nonpositive smooth function on $M$ such
that $f_{0}\leq\theta f(u/oe)^{(1-\theta)(q-1)}$ on $M$ and $f_{0}\equiv-C_{9}r_{\Sigma^{\theta}}^{l}$ near $\Sigma$ . Then $u+$ is a
supersolution of the equation $(f_{0}, M)$ . Clearly $ u_{+}(x)/G\Sigma(x)=(u(x)/c_{\Sigma}(x))^{\theta}\rightarrow$

$+\infty$ as $ x\rightarrow\Sigma$ . Hence we can use the estimate given in the case when
$2-4d/(n-2)<l<n-(n+2)d/(n-2)$ with $l=l_{\theta}$ and $u+=u^{\theta}G_{\Sigma}^{1-\theta}$ , and get

$u^{\theta}G_{\Sigma}^{1-\theta}\geq C_{5^{\gamma_{\Sigma}^{-(l_{\theta}+2)/(q-1)}}}$ .

Therefore we have

$u^{\theta}\geq C_{5}r_{\Sigma}^{-(l_{\theta}+2)/(q-1)}G_{\Sigma}^{\theta-1}$

$\geq C_{5^{\gamma_{\Sigma}^{-(l_{\theta}+2)/(q-1)}}}(C_{2}r_{\Sigma}^{d-n+2})^{\theta-1}$

$\geq C_{10}r_{\Sigma}^{-\theta(l+2)/(q-1)}$ ,

where $C_{10}:=C_{5}C_{2}^{\theta-1}$ , from which it follows that $u\geq C_{10}^{1/\theta}r_{\Sigma}^{-(l+2)/(q-1)}$ near $\Sigma$ .
Now, in both cases, because $u>0$ on $M$ , we get $u\geq Cr_{\Sigma}^{-(l+2)/(q-1)}$ on $M$.

Since $l$ is nonnegative, the metric $u^{q-1}g$ is complete and, by Corollary 2.3, we
conclude $u\equiv U.$ q.e. $d$ .

COROLLARY 3.2. Let $(M, g)$ and $f$ be as in Theorem 2. Suppose $f$ satisfies
$f\sim-r_{\Sigma}^{l}$ near $\Sigma$ for a nonnegative number $l>2-4d/(n-2)$ , and suppose $U$ is
the maximal solution of the equation $(f, M)$ and, for any $\gamma>0,$

$u_{\gamma}$ is a solution of
the equation $(f, M)$ satisfying $u_{\gamma}\leq\gamma G_{\Sigma}$ and $\lim_{x\rightarrow\Sigma}(u_{\gamma}(x)/G_{\Sigma}(x))=\gamma$ . Then it
holds that $\lim_{\gamma\rightarrow+\infty}u_{\gamma}\equiv U$ on $M$.

PROOF. By [9, Lemma 2.2], $\{u_{\gamma}\}_{\gamma>0}$ is monotonically increasing and
bounded above by $U$. Therefore, if we set $u:=\lim_{\gamma\rightarrow+\infty}u_{\gamma}$ , then $u$ is a smooth
solution of the equation $(f, M)$ . It is clear that $u$ satisfies
$\lim_{x\rightarrow\Sigma}(u(x)/r_{\Sigma}(x)^{d-n+2})=+\infty$ . Hence, by Theorem 2, we have $u\equiv U$ , namely,
$\lim_{\gamma\rightarrow+\infty}u_{\gamma}\equiv U$ on M. q.e. $d$ .

4. A structure theorem in the case $\Sigma$ is a point

The aim of this section is to prove Theorem 3 which describes the stmcture
of the scalar curvature equation $(f,\overline{M}\backslash \{p\})$ in the case when $f\sim-r_{p}^{l}$ near $p$ .
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When $\Sigma$ is a point, we can prove a Hamack type inequality for the solutions
of the equation $(f, M)$ by the same way as Cheng-Ni [5, Proposition 5.2]. This
and Corollary 3.2 imply Theorem 3.

LEMMA 4.1. Let $(\overline{M},\overline{g})$ be a compact Riemannian manifold $(n=$

$\dim\overline{M}\geq 3)$ with $S_{\overline{g}}>0,$ $p$ a point in $\overline{M}$, and $(M, g):=(\overline{M}\backslash \{p\},\overline{g}|_{\overline{M}\backslash \{p\}})$ .
Suppose $f$ satisfies $f\sim-r_{p}^{l}$ near $p$ for a number $l>2$ , and suppose $u$ is a solution
of the equation $(f, M)$ . Then there is a positive constant $C_{11}$ which is independent
of both $u$ and $r$ and satisfies

$\partial\max_{B_{r}[p)}u\leq C_{11}\min_{\partial B_{r}[p)}u$

for any positive number $r$ small enough.

PROOF. Set $d(x);=(S_{g}+|f|u^{q-1})/a_{n}$ . Then $(\Delta_{g}-d(x))u=0$ . Since we
assume $f\sim-r_{p}^{l}$ , by the proof of [9, Theorem IV], we have $u^{q-1}\leq C_{12}r_{p}^{-(l+2)}$ and
hence $0\leq d(x)\leq C_{13}r_{p}^{-2}$ , where $C_{12}$ and $C_{13}$ are positive constants independent
of $u$ . Now, apply the Hamack inequality [8, Theorem 8.20] to $(\Delta_{g}-d(x))u=0$

in a domain $\Omega=\overline{M}\backslash B_{4R}(p)$ for $R>0$ small enough. Then, for any $y\in\partial B_{8R}(p)$ ,
since $ B_{4R}(y)\subset\Omega$ , we get the estimate

$\sup_{B_{R}(y)}u\leq C_{14}\inf_{B_{R}\mathscr{O})}u$

for some positive constant $C_{14}$ depending only on $n,$ $g$ and $C_{13}$ , and independent
of $y$ and $R$ . We can cover $\partial B_{8R}(p)$ by a finite number (independent of $R$) of
$B_{R}(y)s$ , and our assertion is proved. q.e. $d$ .

PROOF OF THEOREM 3. We may assume $S_{\overline{g}}>0$ without loss of generality.
The existence follows from [9, Theorems IV and V] (see also [10, Theorem

2]). In particular, for any $\gamma\in(0, +\infty)$ , we also know the uniqueness of solutions
$u_{\gamma}$ of the equation $(f, M)$ satisfying $\lim_{x\rightarrow p}(u_{\gamma}(x)/G_{p}(x))=\gamma$ .

Suppose $u$ is a solution of the equation $(f, M)$ . If $u/r_{p}^{2-n}$ is bounded, then it
is clear that

$\Phi_{u}(x)$ $:=\int_{M}G(x,y)|f(y)|u(y)^{q}dy$

is a positive smooth function on $M$ and satisfies $L_{g}\Phi_{u}=|f|u^{q}$ . Note that
$|f|u^{q}\leq Cr_{p}^{l-n-2}$ for a positive constant $C$. Then we get, by standard calculation,
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that

$\Phi_{u}\leq\left\{\begin{array}{l}Cr_{p}^{l-n} if2<l<n\\C1og(r_{p^{-1}}) ifl=n\\C ifl>n\end{array}\right.$

near $p$ for a positive constant $C$. In particular, it holds that $\Phi_{u}(x)/G_{p}(x)\rightarrow 0$ as
$x\rightarrow p$ . Set $\varphi:=u+\Phi_{u}$ . Then $\varphi$ is a solution of the equation $(0, M)$ , and hence
there is a positive number $\gamma$ such that $\varphi\equiv\gamma G_{p}$ (see [9, Section 4]). Since
$ u(x)/G_{p}(x)=\gamma-\Phi_{u}(x)/G_{p}(x)\rightarrow\gamma$ as $x\rightarrow p$ , we have $u\equiv u_{\gamma}$ .

On the other hand, if $u/r_{p}^{2-n}$ is unbounded, then $\lim\sup_{x\rightarrow p}(u(x)/r_{p}(x)^{2-n})=$

$+\infty$ . Hence, there is a sequence $\{x_{i}\}_{i\in N}$ of points in $M$ such that $\lim_{i\rightarrow+\infty}x_{i}=p$

and $u(x_{i})/r_{p}(x_{i})^{2-n}\geq C_{15}i$ for any $i$, where $C_{15}:=C_{2}C_{11},$ $C_{2}$ is a positive
constant satisfying $G_{p}\leq C_{2}r_{p}^{2-n}$ , and $C_{11}$ is the constant given in Lemma 4.1. By
Lemma 4.1, it holds that $u(x)/G_{p}(x)\geq i$ on $\partial B_{r_{p}(x_{j})}(p)$ for any $i$ . Hence $u\geq u_{i}$ on
$\partial B_{r_{p}(x_{j})}(p)$ , where $u_{j}$ is the unique solution of the equation $(f, M)$ satisfying
$u_{i}\leq iG_{p}$ on $M$ and $\lim_{x\rightarrow p}(u_{i}(x)/G_{p}(x))=i$ . Therefore, by [9, Lemma 2.2],
$u\geq u_{i}$ in $M\backslash B_{r_{p}(x_{i})}(p)$ for any $i$, from which it follows that $u\geq\lim_{i\rightarrow+D}u_{i}$ on $M$ .
Now, by Corollary 3.2, $\lim_{i\rightarrow+\infty}u_{i}\equiv U$ . Since $U$ is the maximal solution, we get
$u\equiv U(\equiv u_{\infty})$ . This completes the proof. q.e. $d$ .

As a consequence of Theorem 3, we have the following symmetry argument.

COROLLARY 4.2. Let $(M, g)$ and $f$ be as in Theorem 3. If$f$ is invariant under
the action of some subgroup $\Gamma$ of Isom$(M, g)$ , then any solution $u$ of the equation
$(f, M)$ is also F-invariant.

PROOF. Since any two solutions of the equation $(f, M)$ with the same
asymptotic behavior coincide with each other, the assertion above is clear.

q.e. $d$ .

The most typical example of this corollary is as follows.

EXAMPLE 4.3. Let $\overline{g}$ be a (non-standard) rotationally symmetric metric on
$S^{n}$ with $\lambda_{1}(L_{\overline{g}})>0,$ $p$ a central point of the symmetry. Let $(M, g):=$

$(S^{n}\backslash \{p\},\overline{g}|_{S^{n}\backslash \{p\}})$ . If a nonpositive smooth function $f$ on $M$ satisfies $f\sim-r_{p}^{l}$ near
$p$ for a number $l>2$ , and is rotationally symmetric, then any solution $u$ of the
equation $(f, M)$ is also rotationally symmetric.
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5. Solutions with mixed singular behavior

In this section, we constmct examples of solutions which are not only
maximal but also asymptotic to no solutions of the equation $(0, M)$ . First, we
prepare the following

LEMMA 5.1. Let $(M, g)$ be a Riemannian manifold $(n=\dim M\geq 3)$ , and $f$ a
nonpositive smooth function on $M$.

(1) If $u_{1+}$ and $u_{2+}$ are supersolutions of the equation $(f, M)$ , then $u_{1+}+u_{2+}$

is also a supersolution of the equation $(f, M)$ .
(2) If $u_{1-}$ and $u_{2}$-are subsolutions of the equation $(f, M)$ , then $u_{1-}+u_{2-}$ is

a subsolution of the equation $(2^{1-q}f, M)$ .

PROOF. Note that the following inequality holds.

$2^{1-q}\leq\frac{s^{q}+t^{q}}{(s+t)^{q}}<1$ for $s,$ $t>0$ .

(1) Set $u_{+}:=u_{1+}+u_{2+}$ . Then we get

$L_{g}u_{+}=L_{g}u_{1+}+L_{g}u_{2+}\geq fu_{1+}^{q}+fu_{2+}^{q}=f\frac{u_{1+}^{q}+u_{2+}^{q}}{(u_{1+}+u_{2+})^{q}}u_{+}^{q}\geq fu_{+}^{q}$ ,

namely, $u+is$ a supersolution of the equation $(f, M)$ .
(2) Set $u_{-};=u_{1-}+u_{2-}$ . Then we get

$L_{g}u_{-}=L_{g}u_{1-}+L_{g}u_{2-}\leq fu_{1-}^{q}+fu_{2-}^{q}=f\frac{u_{1-}^{q}+u_{2-}^{q}}{(u_{1-}+u_{2-})^{q}}u^{\underline{q}}\leq 2^{1-q}fu_{-}^{q}$ ,

namely, $u_{-}$ is a subsolution of the equation $(2^{1-q}f, M)$ . q.e.d.

Now, we observe the case when $\Sigma$ consists of a finite number of points.

PROPOSITION 5.2. Let $(\overline{M},\overline{g})$ be a compact Riemannian manifold $(n=$

$\dim\overline{M}\geq 3)$ with $\lambda_{1}(L_{\overline{g}})>0,$
$\Sigma$ a set $\{p1, \ldots,pk\}$ of a finite number of points in

$\overline{M}$ , and $(M, g);=(\overline{M}\backslash \Sigma,\overline{g}|_{\overline{M}\backslash \Sigma})$ . Set $oe(x);=\Sigma_{i=1}^{k}G(p_{i}, x)$ , where $G$ is the Green
function of $L_{\overline{g}}$ . Let $f$ be a nonpositive smooth function on M. If $f$ satisfies
$-Cr_{\Sigma}^{l}\leq f<0$ near $\Sigma$ for a positive constant $C$ and a number $l>2$ , then, for any
$\gamma=(\gamma_{1}, \ldots, \gamma_{k})\in(0, +\infty]^{k}$ , the equation $(f, M)$ possesses a solution $u_{\gamma}$ such that
$u_{\gamma}(x)/c_{\Sigma}(x)\rightarrow\gamma_{i}$ as $x\rightarrow p_{i}$ for any $i=1,$

$\ldots,$
$k$ and the metric $u_{\gamma}^{q-1}g$ is complete.

Namely, there are complete conformal metrics on $M$ with scalar curvature $f$ which
are parametrized by $(0, \dashv\infty]^{k}$ .



Structure theorems of the scalar curvature equation 165

PROOF. When $\gamma\in(0, +\infty)^{k}$ or $\gamma=(+\infty, \ldots, +\infty)$ , the existence follows
from [9, Theorems IV and V].

When some $\gamma_{i}\prime s$ are finite and the others are $+\infty$ , we may assume $\gamma_{j}<+\infty$

for $i\leq k^{\prime}$ and $\gamma_{i}=+\infty$ for $i\geq k^{\prime}+1$ without loss of generality. Set $\Sigma_{1}$ $:=$

$\{pt\cdots,p_{k^{\prime}}\}$ and $\Sigma_{2}$ $:=\{pk^{\prime}+1, \ldots,p_{k}\}$ .
Let $f_{1\pm}$ be nonpositive smooth functions on $\overline{M}\backslash \Sigma_{1}$ such that $f_{1+}\geq f\geq f_{1-}$

on $M$ and $f_{1\pm}\equiv f$ near $\Sigma_{1}$ , and $u_{1+}$ (resp. $u_{1-}$ ) the solution of the equation
$(f_{1+},\overline{M}\backslash \Sigma_{1})$ (resp. $(2^{q-1}f_{1-},\overline{M}\backslash \Sigma_{1})$ ) satisfying $\lim_{x\rightarrow p_{j}}(u_{1\pm}(x)/oe_{1}(x))=\gamma_{i}$ for
any $i=1,$

$\ldots,$

$k^{\prime}$ . Then, by the same way as in the proof of [9, Lemma 2.2], we
have $u_{1+}\geq u_{1-}$ .

Let $f_{2\pm}$ be nonpositive smooth functions on $\overline{M}\backslash \Sigma_{2}$ such that $f_{2+}\geq f\geq f_{2-}$

on $M$ and $f_{2\pm}\equiv f$ near $\Sigma_{2}$ , and $U_{2+}$ (resp. $U_{2-}$ ) the maximal solution of the
equation $(f_{2+},\overline{M}\backslash \Sigma_{2})$ (resp. $(2^{q-1}f_{2-},\overline{M}\backslash \Sigma_{2})$ ). Then, by [9, Proposition 2.3 (1)],

we have $U_{2+}\geq U_{2-}$ .
Note here that both $u_{1+}$ and $U_{2+}$ are supersolutions of the equation $(f, M)$ ,

and that both $u_{1}$-and $U_{2}$-are subsolutions of the equation $(2^{q-1}f, M)$ . Set
$u\pm:=u_{1\pm}+U_{2\pm}$ . Then clearly $u_{+}\geq u_{-}>0$ and, by Lemma 5.1, $u+(resp. u_{-})$ is
also a supersolution (resp. subsolution) of the equation $(f, M)$ . Therefore the
equation $(f, M)$ possesses a solution $u$ satisfying $u+\geq u\geq u_{-}$ . Now, since

$o_{e(x)}^{u_{\pm}(x)}=\frac{u_{1\pm}(x)}{G_{\Sigma_{1}}(x)}\times$ $\frac{e_{1}(x)}{G_{\Sigma_{1}}(o)+G\Sigma_{2}(x)}+\frac{U_{2\pm}(x)}{G_{\Sigma}(x)}$

$\rightarrow\gamma_{i}\times 1+0=\gamma_{i}$ as $x\rightarrow p_{j}$

for any $i=1,$
$\ldots,$

$k^{\prime}$ , and

$\frac{o_{-}(x)}{e(x)}=\frac{u_{1-}(x)}{G_{\Sigma}(x)}+$ $\frac{o_{2-}(x)}{e_{2}(x)}\times$ $o_{e_{1}(x)+oe_{2}(x)}^{G_{\Sigma_{2}}(x)}$

$\rightarrow 0+\infty\times 1=+\infty$ as $x\rightarrow p_{l}$

for any $i=k^{\prime}+1,$
$\ldots,$

$k$ , we have $u(x)/oe(x)\rightarrow\gamma_{i}$ as $x\rightarrow p_{i}$ for any $i=1,$ $\ldots$ , $k$ .
q.e. $d$ .

Since any solution of the equation $(0, M)$ coincides with $\Sigma_{i=1}^{k}\gamma_{j}G[p_{i}, x$) for
some $(\gamma_{1}, \ldots , \gamma_{k})\in[0, +\infty)^{k}\backslash \{(0, \ldots, 0)\}$ , if at least one of $\gamma_{i}\prime s$ is $+\infty$ , then the
solution $u_{\gamma}$ given in the proof above does not behave asymptotically to any
solution of the equation $(0, M)$ .

Next, we consider solutions of the equation $(f, M)$ which do not give
complete metrics.
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EXAMPLE 5.3. Let $(\overline{M},\overline{g})$ be a compact Riemannian manifold $(n=$

$\dim\overline{M}\geq 3)$ with $\lambda_{1}(L_{\overline{g}})>0$ , $\Sigma$ a compact submanifold $((n-2)/2<d=$
$\dim\Sigma<n-2)$ , and $(M, g):=(\overline{M}\backslash \Sigma,\overline{g}|_{\overline{M}\backslash \Sigma})$ . Let $f$ be a nonpositive smooth
function on $M$ satisfying $f\sim-1$ near $\Sigma$ . Let $\Sigma^{\prime}$ be a compact submanifold of
$\Sigma((n-2)/2<d^{\prime}=\dim\Sigma^{\prime}<d)$ . Then the equation $(f, M)$ possesses a solution $u$

such that

$\{^{\frac{u(,x)}{\frac u(x)G(x)oe^{\Sigma}}\rightarrow+\infty}(x)\rightarrow 1$ $asxasx\rightarrow\Sigma^{\prime}\backslash B_{\epsilon}(\Sigma^{\prime})\rightarrow\Sigma$

for any $\epsilon>0$ ,

where oe and $G_{\Sigma}/$ are as in the proof of Theorem 2.
Indeed, let $f_{\pm}$ be a nonpositive smooth function on $\overline{M}$ such that $f_{+}\geq f\geq f_{-}$

on $M$ and $f\pm<0$ near $\Sigma$ . Let $u_{1+}$ (resp. $u_{1-}$ ) be a solution of the equation
$(f_{+}, M)$ (resp. $(2^{q-1}f_{-},$ $M)$ ) satisfying $\lim_{x\rightarrow\Sigma}(u(x)/oe(x))=1$ which is given e.g.
by combining Delanoe [6, Theorem 5] and the proof of [9, Theorem V], and
$U_{2+}$ (resp. $U_{2-}$ ) the maximal solution of the equation $(f_{+},\overline{M}\backslash \Sigma^{\prime})$ (resp.
$(2^{q-1}f_{-},\overline{M}\backslash \Sigma^{\prime}))$ . Then, by the same consideration as in the proof of Proposition
5.2, we get a solution $u$ of the equation $(f, M)$ with the desired property.

In particular, if $u$ is asymptotic to a solution $\varphi$ of $(0, M)$ , then
$\varphi(x)/G_{\Sigma^{\prime}}(x)\rightarrow+\infty$ as $x\rightarrow\Sigma^{\prime}$ . Therefore, by the maximal principle, $\varphi\geq\gamma G_{\Sigma}/$ for
any $\gamma>0$ , namely $\varphi\equiv+\infty$ . Hence there are no such $\varphi$, namely, $u$ does
not behave asymptotically to any solution of the equation $(0, M)$ . This solution
is, of course, of essentially different type from the solutions constmcted by Finn-
McOwen [7, Section 6], since each of them is asymptotic to a solution
$\gamma oe+\gamma^{\prime}G_{\Sigma^{\prime}}$ of $(0, M)$ for some $\gamma$ and $\gamma^{\prime}$ .

Repeating the same process as the proof above, we can constmct solutions
with more complicated behavior. Consequently, for generic $(M, g)=$

$(\overline{M}\backslash \Sigma,\overline{g}|_{\overline{M}\backslash \Sigma})$ and $f$, the space of solutions of the equation $(f, M)$ has more
complicated structure than that of $(f,\overline{M}\backslash \{p\})$ .

6. The case $f$ has a compact support

In the last section of this paper, we consider the stmcture of the space of
solutions of the equation $(f, M)$ satisfying $\lim_{x\rightarrow\Sigma}u(x)=+\infty$ in the case when $f$

has a compact support. The following result are partially observed in [9, Section
4]. Here, we state it precisely with an outline of the proof.
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THEOREM 6.1. Let $(\overline{M},\overline{g})$ be a compact Riemannian manifo $ld$ $(n=$

$\dim\overline{M}\geq 3)$ with $\lambda_{1}(L_{\overline{g}})>0,$
$\Sigma$ a compact submamfold $(d=\dim\Sigma\leq n-2)$ , and

$(M, g);=(\overline{M}\backslash \Sigma,\overline{g}|_{\overline{M}\backslash \Sigma})$ . Let $f$ be a nonpositive smooth function on M. If the
support of $f$ is compact, then the space of solutions of the equation $(f, M)$

satisfying $\lim_{x\rightarrow\Sigma}u(x)=+\infty$ is parametrized naturally by that of $(0, M)$ .

PROOF. Denote the space of solutions of the equation $(f, M)$ (resp. $(0,$ $M)$ )

satisfying $\lim_{x\rightarrow\Sigma}u(x)=+\infty$ by $\mathscr{M}_{f}$ (resp. $\mathscr{M}_{0}$ ). For any $\varphi\in \mathscr{M}_{0}$ , if there exists a
solution $u\in \mathscr{M}_{f}$ satisfying $\lim_{x\rightarrow\Sigma}(u(x)/\varphi(x))=1$ , then write $\mathscr{F}_{f}(\varphi)=u$ . Now,
we show that the map $\mathscr{F}_{f}$ : $\mathscr{M}_{0}\rightarrow \mathscr{M}_{f}$ is well-defined and bijective.

Since $f\equiv 0$ near $\Sigma$ , it is clear that, for any $\varphi\in \mathscr{M}_{0}$ ,

$\Phi_{\varphi}(x)$ $:=\int_{\overline{M}}G(x,y)|f(y)|\varphi(y)^{q}dy$

is a positive smooth function on $\overline{M}$ and satisfies $L_{\overline{g}}\Phi_{\varphi}=|f|\varphi^{q}$ . Set
$\beta:=(2\sup_{M}(\Phi_{\varphi}/\varphi))^{-1}$ and define functions $u\pm onM$ by

$ u_{\gamma+}:=\gamma\varphi$ , $u_{\gamma-}$
$:=\gamma(\varphi-\beta\Phi_{\varphi})$ .

Then $u_{\gamma+}\geq u_{\gamma-}>0$ and it can be easily checked that, for any $0<\gamma\leq\beta^{1/(q-1)}$ ,
$u_{\gamma+}$ (resp. $u_{\gamma^{-}}$ ) is a supersolution (resp. subsolution) of the equation $(f, M)$ (see

the proof of [10, Theorem 2’]). Hence, by the method of supersolutions and
subsolutions, the equation $(f, M)$ possesses a solution $u_{\gamma}$ satisfying $ u_{\gamma+}\geq$

$u_{\gamma}\geq u_{\gamma-}$ . In particular, since $\varphi(x)\rightarrow+\prec r$ as $ x\rightarrow\Sigma$ and $\Phi_{\varphi}$ is bounded, $u_{\gamma}$ satisfies
$\lim_{x\rightarrow\Sigma}(u_{\gamma}(x)/\varphi(x))=\gamma$ . Now, by the same way as in the proof of [9, Theorem V]
(see also the proof of Lemma 3.1 of this paper), we can show that $\gamma$ can take an
arbitrarily positive value. Set $u:=u_{1}$ . Then $u$ is a solution of the equation $(f, M)$

satisfying $\lim_{x\rightarrow\Sigma}(u(x)/\varphi(x))=1$ . In particular, $u\in \mathscr{M}_{f}$ .
For any $\varphi\in \mathscr{M}_{0}$ , set $\hat{g}:=\varphi^{q-1}g$ . Then $u=\mathscr{F}_{f}(\varphi)$ satisfies $-a_{n}\Delta_{\hat{g}}(u/\varphi)=$

$f(u/\varphi)^{q}$ on $M$. Therefore, the uniqueness of $\mathscr{F}_{f}(\varphi)$ is established by the same
method as in Cheng-Ni [5, Theorem 3.1], and hence the map $\mathscr{F}_{f}$ is well-defined.
Moreover, if $\mathscr{F}_{f}(\tilde{\varphi})=\mathscr{F}_{f}(\varphi)$ for some $\tilde{\varphi}\in \mathscr{M}_{0}$ , then we get $\Delta_{\hat{g}}(\tilde{\varphi}/\varphi)=0$ on $M$

and $\lim_{x\rightarrow\Sigma}(\tilde{\varphi}(x)/\varphi(x))=1$ . Therefore the injectivity of $\mathscr{F}_{f}$ also follows from the
maximal principle, and we have only to show the surjectivity.

For any $u\in \mathscr{M}_{f}$ , set

$\Phi_{u}(x)$ $:=\int_{\overline{M}}G(x,y)|f(y)|u(y)^{q}dy$ .
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Then $\Phi_{u}$ is a positive smooth function on $\overline{M}$ and satisfies $L_{\overline{g}}\Phi_{u}=|f|u^{q}$ .
Set $\varphi:=u+\Phi_{u}$ . Then $\varphi$ is a solution of the equation $(0, M)$ satisfying
$\lim_{x\rightarrow\Sigma}(u(x)/\varphi(x))=1$ , namely, $\varphi\in \mathscr{M}_{0}$ and $\mathscr{F}_{f}(\varphi)=u$ . q.e.d.

Even if $d=n-1$ or $\Sigma$ is not a submanifold, the proof above is valid.
However both $\mathscr{M}_{0}$ and $\mathscr{M}_{f}$ are empty in the case when $d=n-1$ and some
other cases.
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