ON THE EXISTENCE OF POSTPROJECTIVE COMPONENTS IN THE AUSLANDER-REITEN QUIVER OF AN ALGEBRA

By

P. DRÄXLER and J. A. de la PEÑA

Let k be an algebraically closed field and A be a basic finite-dimensional kalgebra of the form A = kQ/I, where Q is a quiver (= finite oriented graph) and I is an admissible ideal of the path algebra kQ, see [3]. In this work we assume that Q has no oriented cycles.

Let mod_A denote the category of finite dimensional left A-modules. For each indecomposable non-projective A-module X, the Auslander-Reiten translate $\tau_A X$ is an indecomposable non-injective module. The Auslander-Reiten quiver Γ_A has as vertices representatives of the isoclasses of the finite dimensional indecomposable A-modules, there are as many arrows from X to Y as $\dim_k \operatorname{rad}_A(X,Y)/\operatorname{rad}_A^2(X,Y)$. In this paper we do not distinguish between a module and its corresponding isoclass. A connected component \mathcal{P} of Γ_A is *postprojective* if \mathcal{P} has no oriented cycles and each module X in \mathcal{P} has only finitely many predecessors in the path order of \mathcal{P} . Several important classes of algebras have postprojective components: hereditary algebras [3, 6], algebras satisfying the separation condition [1, 2], tilted algebras [8].

The aim of this work is to find necessary and sufficient conditions for the existence of postprojective components in Γ_A . In section 1 we give an algorithmic procedure to decide the existence of postprojective components. In section 2 we consider a one-point extension algebra A = B[M] such that all indecomposable direct summands of M belong to postprojective components of Γ_B , then we give conditions that assure that the projective A-module P with rad P = M lies in a postprojective component of Γ_A . In section 3 we consider some special cases. We recall that once identified a postprojective component \mathcal{P} of Γ_A , the modules on \mathcal{P} may be constructed using the *knitting procedure* [3]. In [5], an algorithmic procedure which makes essential use of the knitting procedure is given to construct all the postprojective components of Γ_A .

Received October 24, 1994.

Revised June 6, 1995.

The research for this paper started during a stay of the first named author at UNAM, México in March 93 and it was completed during a stay of the second author at Bielefeld in May 94. Both authors thank their Institutions, DAAD (Germany) and CONACYT and DGAPA, UNAM (Mexico) for support.

1. Existence of postprojective components.

1.1. Let A = kQ/I be a finite dimensional k-algebra such that the quiver Q has no oriented cycles. We may consider A as a k-category with objects the set of vertices Q_0 of Q and morphisms from $x, y \in Q_0$ the space $A(x, y) = e_y A e_x$, where e_x denotes the trivial path at the vertex x. For two vertices $x, y \in Q_0$ we write $y \le x$ if there is a path from y to x in Q.

Let $x \in Q_0$, we denote by A^x the full subcategory of A whose vertices are those $y \in Q_0$ with $y \leq x$. Observe that the quiver Q^x of A^x is a convex (= path closed) subquiver of Q. The indecomposable projective A-module $P_x = Ae_x$ has radical rad P_x which is an A^x -module. We denote by rad $P_x = \bigoplus_{i=1}^n R_i^x$ the indecomposable decomposition of rad P_x .

1.2. A path in mod_A is a sequence (X_0, \dots, X_s) of (isomorphisms classes of) indecomposable A-modules $X_i, 0 \le i \le s$, such that there is a map $0 \ne f_i \in$ $\text{Hom}_A(X_i, X_{i+1})$ which is not an isomorphism, $0 \le i \le s-1$. In this case we write $X_0 \le X_s$ and we say that X_0 is a predecessor of X_s . If s = 1 and $X_0 = X_s$ we say that the path (X_0, \dots, X_s) is a cycle.

Following [4] we say that a module M is *directing* in mod_A provided there do not exist indecomposable direct summands M_1 and M_2 of M and an indecomposable non-projective module X such that $M_1 \le \tau X$ and $X \le M_2$. It is shown in [4] that an indecomposable module X is directing if and only if there are no cycles (X_0, \dots, X_s) with $X_0 = X = X_s$. The following result will be important in our work.

THEOREM [4, 7]. Let $x \in Q_0$. Then P_x is directing in mod_A if and only if rad P_x is directing in mod_A .

Moreover, if x is a source, then P_x is directing in mod_A if and only if rad P_x is directing in mod_{A^x} .

1.3. We state our main result which provides an algorithmic criterion for the existence of postprojective components.

THEOREM. Let A = kQ/I be a finite dimensional k-algebra such that Q has no

oriented cycles. Then Γ_A has a postprojective component if and only if for each vertex $x \in Q_0$ one of the following conditions is satisfied:

(1x) there is a postprojective component \mathcal{P} of Γ_{A^x} such that $R_i^x \notin \mathcal{P}$ for every $1 \le i \le n_x$;

(2x) for each $1 \le i \le n_x$ the set of predecessors $\{Y \in \Gamma_{A^x} : Y \le R_i^x\}$ of R_i^x in mod_{A^x} is finite and formed by directing modules. Moreover, if x is a source, then rad P_x is directing in mod_{A^x} .

We prove the theorem in (1.5) after some preparation. In (1.8) we give some examples.

1.4. LEMMA. Assume that all $x \in Q_0$ the condition (2x) is satisfied, then Γ_A has a postprojective component.

PROOF: We claim that for every $x \in Q_0$ the following condition is satisfied:

(3x): for each $1 \le i \le n_x$, the set of predecessors $\{X \in \Gamma_A : X \le R_i^x\}$ of R_i^x in mod_A is finite and formed by directing modules.

Indeed, let X be a predecessor of R_i^x in Γ_A and assume that X is not an A^x -module. We may assume that x is minimal with this property in the path order of Q. Then there exists a vertex $y \le x$ in Q such that $X(y) \ne 0$. Therefore in mod_A we get

$$P_{y} \leq X \leq R_{i}^{x} \leq P_{x} \leq P_{y}.$$

Since (2y) is satisfied, then by (1.2) y is not a source in Q. Let z be a proper predecessor of y in Q. Therefore, P_y is a non-directing predecessor of some R_j^z . By (2z), P_y is not an A^z -module, contradicting the minimality of x.

Then we are in position to repeat the argument given in [2, theorem (2.5)] to prove the existence of a postprojective component. For the sake of completeness we sketch the argument. We construct inductively full subquivers C_n of Γ_A satisfying:

i) C_n is finite, connected, contains no oriented cycle and is closed under predecessors.

ii) $\tau_A^{-1}C_n \cup C_n \subset C_{n+1}$.

Then $\bigcup C_n$ forms the wanted postprojective component.

Set $C_0 = \{S\}$ where S is a simple projective A-module. Assume C_n to be defined and let M_1, \dots, M_t be the modules in C_n with $\tau_A^{-1}M_i \notin C_n$. We may assume that $M_i \leq M_j$ implies $i \leq j$. If t = 0, set $C_{n+1} = C_n$. Otherwise we define full subquivers $D_i(0 \leq i \leq t)$ of Γ_A satisfying $D_0 = C_n, D_i \cup \{\tau_A^{-1}M_{i+1}\} \subset D_{i+1}$ and condition (i) imposed on D_i . Then $D_{n+1} = C_t$ will satisfy conditions (i) and (ii).

Indeed, assume D_i is well defined. Take the almost split sequence $0 \to M_{i+1} \to X \to \tau_A^{-1}M_{i+1} \to 0$ and define D_{i+1} as the full subquiver of Γ_A with vertices D_i and all predecessors of $\tau_A^{-1}M_{i+1}$. It is enough to show that for each indecomposable direct summand Y of X, the set of predecessors $\{Z \in \Gamma_A : Z \leq Y\}$ is finite and formed by directing modules. If Y is not projective, then $\tau_A Y \in C_n$ whence Y belongs to D_i and we are done. If $Y = P_y$ is projective, then (3y) is satisfied. By (1.2), we get the result. \Box

1.5. PROOF OF THE THEOREM. Let \mathcal{P} be a postprojective component of Γ_A . Let $x \in Q_0$. If the projective module P_x belongs to \mathcal{P} , then (2x) is satisfied. Assume that $P_x \notin \mathcal{P}$. We show that \mathcal{P} is formed by A^x -modules. Let $X \in \mathcal{P}$ and assume $X(y) \neq 0$ for some $y \leq x$ in Q. Then $P_x \leq P_y \leq X$ in mod_A, which implies $P_x \in \mathcal{P}$, a contradiction. Hence \mathcal{P} is a postprojective component in Γ_{A^x} and $R_i^x \notin \mathcal{P}$ for $1 \leq i \leq n_x$, that is (1x) is satisfied.

Conversely, assume that for each $x \in Q_0$, one of the conditions (1x) or (2x) is satisfied. If for every $x \in Q_0$, (2x) is satisfied then (1.4) implies the result.

Assume that for $x \in Q_0$, (2x) is not satisfied. Choose a minimal such x in the path order in Q. By hypothesis (1x) is satisfied, that is, there is a postprojective component \mathcal{P} of Γ_{A^x} such that $R_i^x \notin \mathcal{P}$ for every $1 \le i \le n_x$. We shall prove that \mathcal{P} is a component of Γ_A . For this purpose it is enough to show that x is a source in Q.

Assume $y \le x$ is a source in Q and $y \ne x$. The minimality of x implies that (2y) is satisfied. We will show that (2x) is also satisfied which yields the wanted contradiction. Indeed, let X be a predecessor of R_i^x in mod_A . Then $X \le R_i^x \le P_x \le P_y$, implies that X is a predecessor of R_j^y for some $1 \le j \le n_y$. Moreover, since P_y is directing in mod_A , then X is an A^y -module. Thus $\{X \in \Gamma_A : X \le R_i^x\}$ is finite and formed by directing modules. Our theorem is proved.

1.6. COROLLARY. Let A = kQ/I be as above and assume Q is connected. Then all indecomposable projective modules belong to a postprojective component if and only if for every $x \in Q_0$ the condition (2x) is satisfied.

PROOF. The "only if" direction is clear. For the converse, assume that for every $x \in Q_0$, the condition (2x) is satisfied. By the theorem there is a postprojective component \mathcal{P} of Γ_A . Clearly we may assume that Q is connected (otherwise we take a postprojective component for each maximal connected full subcategory of A). Let x_0 be a sink in Q such that the projective $P_{x_0} \in \mathcal{P}$. Let $x \in Q_0$ and fix a walk $x_0 \xrightarrow{\alpha_1} x_1 \xrightarrow{\dots} x_s = x$ in Q (that is, each α_i is an arrow in Q with some orientation). By induction, we may assume that $P_{x_{x-1}} \in \mathcal{P}$. If $x_{s-1} \xrightarrow{\alpha_s} x_s$, then P_x is a predecessor of $P_{x_{s-1}}$ and $P_x \in \mathcal{P}$. Thus, assume that $x_s \xrightarrow{\alpha_s} x_{s-1}$. Then there is a morphism $f: P_{x_{s-1}} \rightarrow \operatorname{rad} P_x$. Since (2x) is satisfied, then fis a linear combination of compositions of finitely many irreductible maps. Hence $R_i^x \in \mathcal{P}$ for some $1 \le i \le n_x$. Thus $P_x \in \mathcal{P}$ and we are done. \Box

1.7. EXAMPLES. Consider the algebra A = kQ/I given by the quiver

and the ideal $I = \langle \alpha_1 \beta_1 - \alpha_2 \beta_2 \rangle$. The quiver Γ_A has no postprojective component but for every proper full convex subcategory *B* of *A*, the quiver Γ_B has a postprojective component. Consider for example *A* as the one-point extension A = B[M] where $B = A/Ae_7$ and $M = \operatorname{rad} P_7$. Then *B* is an hereditary algebra and $M = M_1 \oplus P_6$ where P_6 is a postprojective *B*-module and M_1 is a regular *B*module. Therefore *M* is not directing and both conditions (1x) and (2x) are not satisfied for x = 7.

It is also interesting to consider A = C[N] where $C = A/Ae_2$ and $N = \operatorname{rad} P_2$. Then Γ_C has a postprojective component \mathcal{P} and $N = P_1$ is an indecomposable module in \mathcal{P} . In this case the projective C-module P_7 belongs to \mathcal{P} . In section 2 we will consider more carefully this kind of situation.

Finally, we observe that in our example for every convex subcategory B of A (including B = A), the Auslander-Reiten quiver Γ_B has a preinjective component.

1.8. Let A = kQ/I be an algebra as above. Let $x \in Q_0$ and consider the connected components $Q_1^x, \dots, Q_{s_x}^x$ of the quiver Q^x associated with the algebra A^x . Recall that the vertex x is said to be *separating* if for each $1 \le j \le s_x$ the quiver Q_j^x contains the support of at most one $R_i^x (1 \le i \le n_x)$; thus $s_x \ge n_x$. The algebra A satisfies the *separation condition* if all $x \in Q_0$ are separating, see [1, 2]. Observe that with A also A^x satisfies the separation condition.

COROLLARY [2]. If A satisfies the separation condition, then Γ_A has a postprojective component.

PROOF. Let $x \in Q_0$. Consider $A^x = A_1^x \coprod A_{n_x}^x$ where A_j^x is the full convex subalgebra of A with connected quiver Q_j^x . Since also A_j^x satisfies the separation condition, by induction hypothesis, the Auslander-Reiten quiver of A_j^x has a postprojective component \mathcal{P}_j . For each $1 \le i \le n_x$, we may assume that R_i^x is an A_i^x -module.

If $R_i^x \notin \mathcal{P}_i$ for some *i*, then $R_j^x \notin \mathcal{P}_i$ for every $1 \le j \le n_x$. In this case (1x) is satisfied. Otherwise, $R_i^x \in \mathcal{P}_i$ for all $1 \le i \le n_x$. Then clearly (2x) is satisfied. Hence (1.3) implies the result.

2. One-point extensions using postprojective modules.

2.1. Let A = kQ/I be a finite dimensional k-algebra such that Q has no oriented cycles. Let a be a source in Q and consider the quotient $B = A/Ae_a$. For the B-module $M = \operatorname{rad} P_a$, we have A = B[M]. Let \mathcal{P} be a postprojective component of Γ_B and assume that all indecomposable direct summands of M belong to \mathcal{P} . In this section we consider the problem of when P_a belongs to a postprojective component of Γ_A .

We recall that for two A-modules X, Y we have $\operatorname{rad}_{A}^{\infty}(X,Y) = \bigcap_{m\geq 0} \operatorname{rad}_{A}^{m}(X,Y)$. We say that an irreducible map $h: X \to Y$ in \mathcal{P} is *M*-finite if $h \notin \operatorname{rad}_{A}^{\infty}(X,Y)$. An indecomposable *B*-module $X \in \mathcal{P}$ is *M*-finite if there is a walk $M_{i} = X_{0} \xrightarrow{\alpha_{1}} \cdots \xrightarrow{\alpha_{s}} X_{s} = X$ in \mathcal{P} (where M_{i} is an indecomposable direct summand of *M*) such that each α_{i} is *M*-finite, $1 \leq i \leq s$. Of course, if a map or a module is not *M*-finite we say that it is *M*-infinite.

The following characterization is useful.

LEMMA. Let $h: X \to Y$ be a map in modA with X and Y indecomposable modules. Then $h \in \operatorname{rad}_A^{\infty}(X,Y)$ if and only if there are infinitely many A-modules $L_n, n \in N$, without common direct summands and morphisms $f_n: X \to L_n, g_n:$ $L_n \to Y$ with $g_n f_n = h$.

PROOF. Assume that $h \in \operatorname{rad}^{\infty}(X,Y)$. We construct the modules L_n inductively. For n = 1, we set $L_1 = X$. Assume we have already constructed L_1, \dots, L_n as in the statement. Let m be the maximal of $\dim_k C$ for C an indecomposable direct summand of some $L_i, 1 \le i \le n$. By the Harada-Sai Lemma, there is a number N(m) such that for every chain $C_1 \to C_2 \to \dots \to C_s$ of non isomorphisms between indecomposable modules with $\dim_k C_i \le m+1$, if $s \ge N(m)$, then the composition of the chain is zero. Since $h \in \operatorname{rad}_A^{N(m)}(X,Y)$, then h may be

462

written as a linear combination $h = \sum_{i=1}^{r} h_i$, where h_i is composition of N(m) nonisomorphisms between indecomposable modules. Therefore each h_i factorizes through some indecomposable module Z_i with $\dim_k Z_i \ge m+1$, $1 \le i \le r$. We can define $L_{n+1} = \bigoplus_{i=1}^{r} Z_i$.

For the converse, define inductively the finite set of indecomposable modules $X^{(n)}$ in the following way. The set $X^{(1)}$ is formed by those indecomposable modules which are direct summands of the module Z, where $X \to Z$ is a source map in the category modA. If $X^{(n)}$ is defined, then $X^{(n+1)}$ is formed by those modules in $Z^{(1)}$ for Z in $X^{(n)}$. For any n, choose an m such that the module L_m has no direct summands in $X^{(n)}$. Consider the factorization $h = g_m f_m$ with $f_m : X \to L_m, g_m : L_m \to Z$. Using the properties of source maps, we get that f_m lies in $\operatorname{rad}^n_A(X, L_m)$. Hence $h \in \operatorname{rad}^\infty_A(X, Z)$.

2.2. Consider the directed vector space category $\operatorname{Hom}_A(M, \mathcal{P})$, see [3, 6]. Denote by $|X| = \operatorname{Hom}_A(M, X), X \in \mathcal{P}$. Then the full subcategory of $\operatorname{Hom}_A(M, \mathcal{P})$ whose objects are those $|X| \neq 0$ with $X \in \mathcal{P}$, form a poset \mathcal{P}_M . Indeed, $|X| \leq |Y|$ in \mathcal{P}_M implies that $X \leq Y$ in \mathcal{P} .

A subposet \mathcal{V} of \mathcal{P}_M is said to be of *finite type* if for each $|X| \in \mathcal{V}$, $\dim_k |X| \leq 1$ and \mathcal{V} does not contain as a full subposet one of the posets (1,1,1,1), (2,2,2), (1,3,3), (1,2,5) or (N, 4) of Kleiner's list.

If \mathcal{P}_M is representation-infinite there is a infinite family of triples $Y_{\lambda} = (V, Y, \gamma_{\lambda} : V \to \operatorname{Hom}_{B}(M, Y))$ where $V \in \operatorname{mod}_{k}, Y$ is a *B*-module whose indecomposable direct summands X have $|X| \in \mathcal{P}_M$ and γ_{λ} is linear, corresponding to indecomposable pairwise non-isomorphic A-modules. A module $X \in \mathcal{P}$ is said to be *M*-representation-infinite if there are infinitely many pairwise non-isomorphic indecomposable A-modules of the form $(V, Y, \gamma : V \to \operatorname{Hom}_{B}(M, Y))$ where $V \in \operatorname{mod}_{k}, Y$ is a *B*-module with X as a direct summand and γ is linear.

LEMMA. Let $h: X \to Y$ be an irreducible map in \mathcal{P} . Then h is M-infinite if and only if the following two conditions hold

- i) X is M-representation-infinite;
- ii) there is a morphism $0 \neq g \in \text{Hom}_B(M, X)$ with hg = 0.

PROOF. First assume that $h \in \operatorname{rad}_A^{\infty}(X, Y)$. Then there are infinitely many A-modules $L_n = (V_n, Z_n, \gamma_n : V_n \to \operatorname{Hom}_B(M, Z_n))$, $n \in N$ without common direct summands and morphisms $f_n : X \to L_n, g_n : L_n \to Y$ with $g_n f_n = h$. Fix $n \in N$ and let $Z_n = X^a \oplus Y^b \oplus Z'_n$ be such that X and Y are not summands of Z'_n . The following diagrams commute:

$$\begin{pmatrix} \lambda_i \\ h'_j \\ * \end{pmatrix} \xrightarrow{X & h & Y \\ Z_n = X^a \oplus Y^b \oplus Z'_n } \xrightarrow{Y_n & V_n \xrightarrow{\gamma_n} \operatorname{Hom}_B(M, Z_n) \\ \downarrow & \downarrow & \downarrow \\ M \to Hom (M, g_n) \\ 0 \longrightarrow \operatorname{Hom}_B(M, Y)$$

with $\lambda_i \in k, h_i'' \in \operatorname{Hom}_B(X, Y)$ $(1 \le i \le a), \mu_j \in k, h_j' \in \operatorname{Hom}_B(X, Y)$ $(1 \le j \le b)$. Without loss of generality we may assume that $V_n \ne 0$ and (0, X, 0), (0, Y, 0) are not direct summands of L_n . First we show that $\mu_j = 0$ $(1 \le j \le b)$. Otherwise there is some $0 \ne v \in V_n$ and $\gamma_n(v) = (v_i', v_j'', *)$ with $v_{j_0}'' \ne 0$ and $\operatorname{Hom}(M, \mu_{j_0})(v_{j_0}'') \ne 0$ for some j_0 , a contradiction. Since h is irreducible as a B-morphism, then $a > 0, \lambda_{i_0} \ne 0$ and h_{i_0}'' is a non-zero multiple of h for some $1 \le i_0 \le a$. This shows (i). Moreover, there is some $0 \ne \omega \in V_n$ with $\gamma_n(\omega) = (\omega_i', \omega_j'', *)$ and $0 \ne \omega_{i_0}' \in \operatorname{Hom}_B(M, X)$. Therefore $\omega_{i_0}' h_{i_0}'' = \operatorname{Hom}(M, h_{i_0}''(\omega_{i_0}')) = 0$ and condition (ii) holds.

For the converse, consider an infinite family $L_n = (V_n, Z_n, \gamma_n)$ of pairwise nonisomorphic indecomposable A-modules $(n \in N)$ such that X is a direct summand of Z_n . Let $Z_n = X \oplus Z'_n$ and $\sigma_n : X \to Z_n$ be the canonical inclusion. Assume first that $\dim_k |X| = 1$. Then for the A-morphism $g_n = (0, h\pi_n) : L_n \to Y$ where $\pi_n : Z_n \to X$ is the canonical projection, we get $g_n \sigma_n = h$. This may only happen if $h \in \operatorname{rad}_A^{\infty}(X, Y)$. Now, assume that $\dim_k |X| \ge 2$ and take $b \in \operatorname{Hom}_B(M, X)$ such that g, b are linearly independent. Then we may choose $Z_n = X \oplus X, V = k$ and $\gamma_n : k \to \operatorname{Hom}_B(M, X)^2$, $1 \mapsto (\lambda_n g, b)$ for some $\lambda_n \ne 0$. Again, if $g_n = (0, h\pi_n)$: $L_n \to Y$ where $\pi_n : X \oplus X \to X$ is the first canonical projection, we get $g_n \sigma_n = h$. We are done.

2.3. The main result in this section is the following:

THEOREM. Let A = B[M] be a one-point extension algebra with $M = \operatorname{rad} P_a$ for a source a of Q. Assume that all indecomposable direct summands of Mbelong to a postprojective component \mathcal{P} of Γ_B .

If P_a belongs to a postprojective component of Γ_A then the following conditions hold:

a) *M* is directing;

b) for every irreducible map $h: X \to Y$ in \mathcal{P} such that Y is M-finite, then h is M-finite;

c) for every indecomposable projective B-module $P_y \in \mathcal{P}$ which is M-finite, the set of predecessors of P_y in Γ_A is finite and formed by directing modules.

Conversely, if conditions (a) and (c) hold, then P_a belongs to a postprojective component of Γ_A .

PROOF. Assume first that \mathcal{P}' is a postprojective component of Γ_A containing P_a . Therefore *M* is directing.

Let $Y \in \mathcal{P}$ be *M*-finite, we show that $Y \in \mathcal{P}'$. Indeed, consider a chain of irreducible maps $M \xrightarrow{\alpha_1} X_1 \xrightarrow{\alpha_2} X_2 \xrightarrow{\dots \ \alpha_s} X_s = Y$ with α_i being *M*-finite. By induction we may assume that $X_{s-1} \in \mathcal{P}'$. If $X_s \xrightarrow{\alpha_s} X_{s-1}$, then clearly $X_s \in \mathcal{P}'$. If $X_{s-1} \xrightarrow{\alpha_s} X_s$ and $X_s \notin \mathcal{P}'$, then $\alpha_s \in \operatorname{rad}_A^{\infty}(X_{s-1}, X_s)$, which is a contradiction. Therefore $Y \in \mathcal{P}'$.

We show (b): let $h: X \to Y$ be an irreducible map in \mathcal{P} and assume Y to be *M*-finite. Then $Y \in \mathcal{P}'$ and also $X \in \mathcal{P}'$. Since \mathcal{P}' is postprojective, $h \notin \operatorname{rad}_A^{\infty}(X,Y)$. And (c): let $P_y \in \mathcal{P}$ be *M*-finite. Then $P_y \in \mathcal{P}'$ and therefore P_y has only finitely many predecessors in Γ_A , all of them directing.

For the converse we proceed as in (1.4) to construct a postprojective component \mathcal{P}' of Γ_A . Indeed, we define inductively full subquivers C_n of Γ_A satisfying: (i) C_n is finite, connected, contains no oriented cycle and is closed under predecessors and (ii) $\tau_A^{-1}C_n \cup C_n \subset C_{n+1}$.

Let S be a simple projective in \mathcal{P} , then set $C_0 = \{S\}$. Assume C_n is well defined and let X_1, \dots, X_t be those modules in C_n with $\tau_A^{-1}X_i \notin C_n$, numbered in such a way that i < j whenever $X_i \leq X_j$. Define $D_0 = C_n, D_{i+1}$ as the full subquiver of Γ_A consisting of D_i and the predecessors of $\tau_A^{-1}X_{i+1}$ and $C_{n+1} = D_t$. It is enough to show inductively that D_i satisfies condition (i) above. Consider the Auslander-Reiten sequence $0 \rightarrow X_{i+1} \rightarrow X \rightarrow \tau_A^{-1}X_{i+1} \rightarrow 0$ and assume that D_i satisfies (i). We shall prove that each indecomposable direct summand Y of X has only finitely many predecessors, all of them directing.

We first show the following: let $(V, N, \gamma : V \to \operatorname{Hom}_{B}(M, N))$ be an indecomposable module in D_i , then every indecomposable direct summand N' of N belongs to \mathcal{P} and is *M*-finite. We proceed by induction on the path order in D_i (which satisfies (i)). As a first case, assume that V = 0. If $N = P_y$ is projective, then every direct summand R_i^{ν} of rad P_{ν} belongs to \mathcal{P} and is *M*-finite. Therefore $N \in \mathcal{P}$. Moreover, since the canonical inclusion $R_i^{\nu} \to N$ is not in $\operatorname{rad}_A^{\infty}(R_i^{\nu}, N)$, then N is M-finite. If N is not projective, consider the Auslander-Reiten sequence the corresponding sequence $0 \to \tau_{\scriptscriptstyle B} N \xrightarrow{\sigma} E \to N \to 0$ in mod_{R} and $0 \to \overline{\tau_B N} \to \overline{E} \to N \to 0 \quad \text{in} \mod_A, \text{ where } \quad \overline{E} = (\text{Hom}_B(M, \tau_B N), E, \text{Hom}_B(M, \sigma)).$ Since the indecomposable direct summands of \overline{E} belong to D_i by induction hypothesis we get that the indecomposable direct summands of E belong to \mathcal{P} and are *M*-finite. Hence $N \in \mathcal{P}$. Moreover, since N is in D_i , it has only finitely many predecessors and therefore any irreducible map $E_i \rightarrow N$ in \mathcal{P} is *M*-finite. For the second case, assume that $V \neq 0$ and take an indecomposable direct summand N' of N. Hence $\operatorname{Hom}_B(M, N') \neq 0$. Suppose that N' is not in \mathcal{P} , then $\operatorname{rad}_B^{\infty}(M, N') \neq 0$

and N' has infinitely many predecessors. The same happens to (V, N, γ) which contains (0, N', 0). A contradiction showing that $N' \in \mathcal{P}$. In the same way N' is *M*-finite.

Now we continue the main line of the proof. Let Y be an indecomposable direct summand of X. If Y is not projective, then Y belongs to D_i and we are done. Assume that Y is projective. Consider first the case $Y = P_a$. By (a), P_a is directing and therefore the predecessors of P_a in mod_A are B-modules and are predecessors of some direct summand M_i of $M = \operatorname{rad} P_a$ in mod_B. Since every M_i belongs to \mathcal{P} , then $Y = P_a$ has only finitely many (all directing) predecessors. Finally assume that $Y = P_y$ for some $y \neq a$. Let R_i^y be a direct summand of rad P_y belonging to D_i . By the claim shown above, $R_i^y \in \mathcal{P}$ and R_i^y is M-finite. Therefore $P_y \in \mathcal{P}$ and it is also M-finite. By hypothesis (c), $Y = P_y$ has only finitely many (all directing) predecessors in Γ_A . This finishes our proof.

2.4. We consider again the *example* (1.7). With the notation introduced there A = C[N] where $N = P_1$ is simple projective. We sketch part of the postprojective component \mathcal{P} of Γ_C where N lies.

The walk $\alpha_5^{-1}\alpha_4\alpha_3^{-1}\alpha_2\alpha_1$ from N to Y is formed by N-finite irreducible maps, therefore Y is N-finite. On the other hand, $\dim_k \operatorname{Hom}_C(N,X) = 2$ and $\dim_k \operatorname{Hom}_C(N,Y) = 1$, therefore by (2.2), h is not N-finite. By (2.3), P_2 does not belong to a postprojective component in Γ_A .

3. Some quadratic conditions.

3.1. In this section we consider again the situation of section 2 and we find

some necessary conditions for the existence of a postprojective component in Γ_A containing the projective module corresponding to the extension vertex. These conditions are expressed by the values of certain quadratic forms.

Let A = B[M] be a one-point extension of the algebra B by the module $M = \operatorname{rad} P_a$. Let $M = \bigoplus_{i=1}^{s} M_i$ be the indecomposable decomposition of M. Consider the Euler form associated with B:

$$\langle \underline{\dim} X, \underline{\dim} Y \rangle_B = \sum_{j=0}^{\infty} (-1)^j \dim_k \operatorname{Ext}_B^j(X, Y),$$

where $\underline{\dim}X$ is the element of the Grothendieck group $K_0(B)$ corresponding to X. See [3].

For different $i, j \in \{1, \dots, s\}$, we define the quadratic form

$$q_{ij}(\omega) = \langle \omega, \underline{\dim} M_i \rangle_B \langle \omega, \underline{\dim} M_j \rangle_B.$$

3.2. PROPOSITION. Let $\mathcal{P}_1, \dots, \mathcal{P}_m$ be the postprojective components of Γ_B and assume that $m \ge 1$. Suppose that Γ_A has a postprojective component, then there exists a component \mathcal{P}_i such that for every two different $i, j, \in \{1, \dots, s\}$ and every $X \in \mathcal{P}_i$ with projdim_B $X \le 1$, we have

$$q_{ii}(\underline{\dim}X) \ge 0$$

PROOF. First assume that for some $t \in \{1, \dots, m\}$, there is no M_i belonging to \mathcal{P}_t . Take $X \in \mathcal{P}_t$ with proj dim_B $X \le 1$, then

$$\langle \underline{\dim} X, \underline{\dim} M_i \rangle_B = \dim_k \operatorname{Hom}_B(X, M_i) - \dim_k \operatorname{Ext}_B^1(X, M_i)$$

Since $M_i \notin \mathcal{P}_i$, then $\operatorname{Ext}_B^1(X, M_i) = 0$ and $\langle \underline{\dim} X, \underline{\dim} M_i \rangle_B \ge 0$. This shows that $q_{ii}(\underline{\dim} X) \ge 0$ for any two $i, j \in \{1, \dots, s\}$.

In the other case, choose t = 1. Take $i, j \in \{1, \dots, s\}$ different and $X \in \mathcal{P}_1$ with proj dim_B $X \le 1$. Assume that

$$\langle \underline{\dim} X, \underline{\dim} M_i \rangle_B < 0 < \langle \underline{\dim} X, \underline{\dim} M_j \rangle_B.$$

Since proj dim_B $X \le 1$, this implies that $\operatorname{Ext}_{B}^{1}(X, M_{i}) \ne 0 \ne \operatorname{Hom}_{B}(X, M_{j})$. The Auslander-Reitern formula gives $0 \ne D\operatorname{Ext}_{B}^{1}(X, M_{i}) \cong \operatorname{Hom}_{B}(M_{i}, \tau_{B}X)$ (see [3]). Therefore there is a path in $\Gamma_{B}, M_{i} \le \tau_{B}X \le X \le M_{j}$. By (1.2), P_{a} is not directing. Let \mathcal{P} be a postprojective component of Γ_{A} . Since each \mathcal{P}_{ℓ} for $1 \le \ell \le m$, contains a summand of M, then $\mathcal{P} \ne \mathcal{P}_{\ell}$. Therefore \mathcal{P} is not a component of Γ_{B} . Hence it contains a module $Y \in \mathcal{P}$ with $0 \ne Y(a) = \operatorname{Hom}_{A}(P_{a}, Y)$. This implies that $P_{a} \in \mathcal{P}$. But then P_{a} should be directing, a contradiction. We are done. \Box

3.3. We come back to our example (1.7) now considering A = B[M] where M

= rad P_7 . Thus $M = M_1 \oplus M_2$, where

 $\underline{\dim} M_1 = (1, 0, 0, 1, 1, 0, 0) \text{ and } \underline{\dim} M_2 = (0, 0, 0, 0, 0, 1, 0)$

in $K_0(B)$. There is a unique postprojective component \mathcal{P}_1 of Γ_B which has the shape

where $\underline{\dim} X = (6, 2, 2, 2, 3, 0, 1) \in K_0(B)$ and clearly proj $\dim_B X \le 1$. We have

$$\langle x, \underline{\dim}M_1 \rangle_B = x_1 - x_2 - x_3 - x_7$$
 and $\langle x, \underline{\dim}M_2 \rangle_B = x_6 - x_7$.

Hence $q_{12}(\underline{\dim}X) = -1$. The quiver Γ_A has no postprojective component (as we already knew).

References.

- Bautista, R., Larrión, F. and Salmerón, L.: On simply connected algebras. J. London Math. Soc.
 (2) 27 (1983), 212–220.
- [2] Bongartz, K.: A criterion for finite representation type. Math. Ann. 269 (1984), 1-12.
- [3] Gabriel, P. and Roiter, A. V.: Representation of finite-dimensional algebras. Algebra VIII Encyclopaedia of Math. Sc. Vol. 73 (1992).
- [4] Happel, D. and Ringel, C. M.: Directing projective modules. Archiv. Math. 60 (1993) 237–243.
- [5] Kasjan, S. and de la Peña, J. A.: Constructing the postprojective components of an algebra. J. Algebra. 179 (1996), 793-807.
- [6] Ringel, C. M.: Tame algebras and integral quadratic forms. Lecture Notes in Mathematics 1099, Springer, Berlin (1984).
- [7] Skowronski, A. and Wenderlich, M.: Artin algebras with directing indecomposable projectives. J. Algebra. 165 (1994), 507-530.
- [8] Strauss, H.: The perpendicular category of a partial tilting module. J. Algebra 144 (1991) 43-66.

468

P. Dräxler Fakultät Füf Mathematik Universität Bielefeld D-4800 Bielefeld Germany

José Antonio de la Peña Instituto de Matemáticas, UNAM México 04510, D.F. México