ON THE EXISTENCE OF POSTPROJECTIVE COMPONENTS IN THE AUSLANDER-REITEN QUIVER OF AN ALGEBRA

By
P. DrÄXler and J. A. de la PEÑA

Let k be an algebraically closed field and A be a basic finite-dimensional k algebra of the form $A=k Q / I$, where Q is a quiver (= finite oriented graph) and I is an admissible ideal of the path algebra $k Q$, see [3]. In this work we assume that Q has no oriented cycles.

Let $\bmod _{A}$ denote the category of finite dimensional left A-modules. For each indecomposable non-projective A-module X, the Auslander-Reiten translate $\tau_{A} X$ is an indecomposable non-injective module. The Auslander-Reiten quiver Γ_{A} has as vertices representatives of the isoclasses of the finite dimensional indecomposable A-modules, there are as many arrows from X to Y as $\operatorname{dim}_{k} \operatorname{rad}_{A}(X, Y) / \operatorname{rad}_{A}^{2}(X, Y)$. In this paper we do not distinguish between a module and its corresponding isoclass. A connected component \mathscr{P} of Γ_{A} is postprojective if \mathscr{P} has no oriented cycles and each module X in \mathscr{P} has only finitely many predecessors in the path order of \mathscr{P}. Several important classes of algebras have postprojective components: hereditary algebras [3, 6], algebras satisfying the separation condition [1, 2], tilted algebras [8].

The aim of this work is to find necessary and sufficient conditions for the existence of postprojective components in Γ_{A}. In section 1 we give an algorithmic procedure to decide the existence of postprojective components. In section 2 we consider a one-point extension algebra $A=B[M]$ such that all indecomposable direct summands of M belong to postprojective components of Γ_{B}, then we give conditions that assure that the projective A-module P with rad $P=M$ lies in a postprojective component of Γ_{A}. In section 3 we consider some special cases. We recall that once identified a postprojective component \mathscr{P} of Γ_{A}, the modules on \mathscr{P} may be constructed using the knitting procedure [3]. In [5], an algorithmic procedure which makes essential use of the knitting procedure is given to construct all the postprojective components of Γ_{A}.

[^0]The research for this paper started during a stay of the first named author at UNAM, México in March 93 and it was completed during a stay of the second author at Bielefeld in May 94. Both authors thank their Institutions, DAAD (Germany) and CONACYT and DGAPA, UNAM (Mexico) for support.

1. Existence of postprojective components.

1.1. Let $A=k Q / I$ be a finite dimensional k-algebra such that the quiver Q has no oriented cycles. We may consider A as a k-category with objects the set of vertices Q_{0} of Q and morphisms from $x, y \in Q_{0}$ the space $A(x, y)=e_{y} A e_{x}$, where e_{x} denotes the trivial path at the vertex x. For two vertices $x, y \in Q_{0}$ we write $y \leq x$ if there is a path from y to x in Q.

Let $x \in Q_{0}$, we denote by A^{x} the full subcategory of A whose vertices are those $y \in Q_{0}$ with $y \not \leq x$. Observe that the quiver Q^{x} of A^{x} is a convex (= path closed) subquiver of Q. The indecomposable projective A-module $P_{x}=A e_{x}$ has radical rad P_{x} which is an A^{x}-module. We denote by rad $P_{x}=\oplus_{i=1}^{n} R_{i}^{x}$ the indecomposable decomposition of $\operatorname{rad} P_{x}$.
1.2. A path in $\bmod _{A}$ is a sequence $\left(X_{0}, \cdots, X_{s}\right)$ of (isomorphisms classes of) indecomposable A-modules $X_{i}, 0 \leq i \leq s$, such that there is a map $0 \neq f_{i} \in$ $\operatorname{Hom}_{A}\left(X_{i}, X_{i+1}\right)$ which is not an isomorphism, $0 \leq i \leq s-1$. In this case we write $X_{0} \leq X_{s}$ and we say that X_{0} is a predecessor of X_{s}. If $s=1$ and $X_{0}=X_{s}$ we say that the path $\left(X_{0}, \cdots, X_{s}\right)$ is a cycle.

Following [4] we say that a module M is directing in $\bmod _{A}$ provided there do not exist indecomposable direct summands M_{1} and M_{2} of M and an indecomposable non-projective module X such that $M_{1} \leq \tau X$ and $X \leq M_{2}$. It is shown in [4] that an indecomposable module X is directing if and only if there are no cycles (X_{0}, \cdots, X_{s}) with $X_{0}=X=X_{s}$. The following result will be important in our work.

Theorem [4, 7]. Let $x \in Q_{0}$. Then P_{x} is directing in $\bmod _{A}$ if and only if rad P_{x} is directing in $\bmod _{A}$.

Moreover, if x is a source, then P_{x} is directing in $\bmod _{A}$ if and only if rad P_{x} is directing in $\bmod _{A^{r}}$.
1.3. We state our main result which provides an algorithmic criterion for the existence of postprojective components.

ThEOREM. Let $A=k Q / I$ be a finite dimensional k-algebra such that Q has no
oriented cycles. Then Γ_{A} has a postprojective component if and only if for each vertex $x \in Q_{0}$ one of the following conditions is satisfied:
$(1 \mathrm{x})$ there is a postprojective component \mathscr{P} of $\Gamma_{A^{x}}$ such that $R_{i}^{x} \notin \mathscr{P}$ for every $1 \leq i \leq n_{x}$;
(2x) for each $1 \leq i \leq n_{x}$ the set of predecessors $\left\{Y \in \Gamma_{A^{x}}: Y \leq R_{i}^{x}\right\}$ of R_{i}^{x} in $\bmod _{A^{*}}$ is finite and formed by directing modules. Moreover, if x is a source, then $\operatorname{rad} P_{x}$ is directing in $\bmod _{A^{x}}$.

We prove the theorem in (1.5) after some preparation. In (1.8) we give some examples.
1.4. Lemma. Assume that all $x \in Q_{0}$ the condition (2 x) is satisfied, then Γ_{A} has a postprojective component.

Proof: We claim that for every $x \in Q_{0}$ the following condition is satisfied:
(3x): for each $1 \leq i \leq n_{x}$, the set of predecessors $\left\{X \in \Gamma_{A}: X \leq R_{i}^{x}\right\}$ of R_{i}^{x} in $\bmod _{A}$ is finite and formed by directing modules.

Indeed, let X be a predecessor of R_{i}^{x} in Γ_{A} and assume that X is not an A^{x} module. We may assume that x is minimal with this property in the path order of Q. Then there exists a vertex $y \leq x$ in Q such that $X(y) \neq 0$. Therefore in $\bmod _{A}$ we get

$$
P_{y} \leq X \leq R_{i}^{x} \leq P_{x} \leq P_{y} .
$$

Since $(2 y)$ is satisfied, then by (1.2) y is not a source in Q. Let z be a proper predecessor of y in Q. Therefore, P_{y} is a non-directing predecessor of some R_{j}^{z}. By (2z), P_{y} is not an A^{z}-module, contradicting the minimality of x.

Then we are in position to repeat the argument given in [2, theorem (2.5)] to prove the existence of a postprojective component. For the sake of completeness we sketch the argument. We construct inductively full subquivers C_{n} of Γ_{A} satisfying:
i) $\quad C_{n}$ is finite, connected, contains no oriented cycle and is closed under predecessors.
ii) $\tau_{A}^{-1} C_{n} \cup C_{n} \subset C_{n+1}$.

Then $\cup C_{n}$ forms the wanted postprojective component.
Set ${ }^{n} C_{0}=\{S\}$ where S is a simple projective A-module. Assume C_{n} to be defined and let M_{1}, \cdots, M_{t} be the modules in C_{n} with $\tau_{A}^{-1} M_{i} \notin C_{n}$. We may assume that $M_{i} \leq M_{j}$ implies $i \leq j$. If $t=0$, set $C_{n+1}=C_{n}$. Otherwise we define full subquivers $D_{i}(0 \leq i \leq t)$ of Γ_{A} satisfying $D_{0}=C_{n}, D_{i} \cup\left\{\tau_{A}^{-1} M_{i+1}\right\} \subset D_{i+1}$ and condition (i) imposed on D_{i}. Then $D_{n+1}=C_{t}$ will satisfy conditions (i) and (ii).

Indeed, assume D_{i} is well defined. Take the almost split sequence $0 \rightarrow M_{i+1}$ $\rightarrow X \rightarrow \tau_{A}^{-1} M_{i+1} \rightarrow 0$ and define D_{i+1} as the full subquiver of Γ_{A} with vertices D_{i} and all predecessors of $\tau_{A}^{-1} M_{i+1}$. It is enough to show that for each indecomposable direct summand Y of X, the set of predecessors $\left\{Z \in \Gamma_{A}: Z \leq Y\right\}$ is finite and formed by directing modules. If Y is not projective, then $\tau_{A} Y \in C_{n}$ whence Y belongs to D_{i} and we are done. If $Y=P_{y}$ is projective, then (3y) is satisfied. By (1.2), we get the result.
1.5. PRoof of the theorem. Let \mathscr{P} be a postprojective component of Γ_{A}. Let $x \in Q_{0}$. If the projective module P_{x} belongs to \mathscr{P}, then (2 x) is satisfied. Assume that $P_{x} \notin \mathscr{P}$. We show that \mathscr{P} is formed by A^{x}-modules. Let $X \in \mathscr{P}$ and assume $X(y) \neq 0$ for some $y \leq x$ in Q. Then $P_{x} \leq P_{y} \leq X$ in $\bmod _{A}$, which implies $P_{x} \in \mathscr{P}$, a contradiction. Hence \mathscr{P} is a postprojective component in $\Gamma_{A^{x}}$ and $R_{i}^{x} \notin \mathscr{P}$ for $1 \leq i \leq n_{x}$, that is (1 x) is satisfied.

Conversely, assume that for each $x \in Q_{0}$, one of the conditions (1 x) or (2 x) is satisfied. If for every $x \in Q_{0},(2 x)$ is satisfied then (1.4) implies the result.

Assume that for $x \in Q_{0},(2 \mathrm{x})$ is not satisfied. Choose a minimal such x in the path order in Q. By hypothesis (1 x) is satisfied, that is, there is a postprojective component \mathscr{P} of $\Gamma_{A^{*}}$ such that $R_{i}^{x} \notin \mathscr{P}$ for every $1 \leq i \leq n_{x}$. We shall prove that \mathscr{P} is a component of Γ_{A}. For this purpose it is enough to show that x is a source in Q.

Assume $y \leq x$ is a source in Q and $y \neq x$. The minimality of x implies that $(2 y)$ is satisfied. We will show that (2 x) is also satisfied which yields the wanted contradiction. Indeed, let X be a predecessor of R_{i}^{x} in $\bmod _{A}$. Then $X \leq R_{i}^{x} \leq P_{x} \leq P_{y}$, implies that X is a predecessor of R_{j}^{v} for some $1 \leq j \leq n_{y}$. Moreover, since P_{y} is directing in $\bmod _{A}$, then X is an A^{y}-module. Thus $\left\{X \in \Gamma_{A}: X \leq R_{i}^{x}\right\}$ is finite and formed by directing modules. Our theorem is proved.
1.6. Corollary. Let $A=k Q / I$ be as above and assume Q is connected. Then all indecomposable projective modules belong to a postprojective component if and only if for every $x \in Q_{0}$ the condition ($2 x$) is satisfied.

Proof. The "only if" direction is clear. For the converse, assume that for every $x \in Q_{0}$, the condition (2 x) is satisfied. By the theorem there is a postprojective component \mathscr{P} of Γ_{A}. Clearly we may assume that Q is connected (otherwise we take a postprojective component for each maximal connected full subcategory of A). Let x_{0} be a sink in Q such that the projective $P_{x_{0}} \in \mathscr{P}$. Let
$x \in Q_{0}$ and fix a walk $x_{0} \xrightarrow{\alpha_{1}} x_{1}-\cdots \xrightarrow{\alpha_{s}} x_{s}=x$ in Q (that is, each α_{i} is an arrow in Q with some orientation). By induction, we may assume that $P_{x_{s-1}} \in \mathscr{P}$. If $x_{s-1} \xrightarrow{\alpha_{s}} x_{s}$, then P_{x} is a predecessor of $P_{x_{x-1}}$ and $P_{x} \in \mathscr{P}$. Thus, assume that $x_{s} \xrightarrow{\alpha_{s}} x_{s-1}$. Then there is a morphism $f: P_{x_{s-1}} \rightarrow \operatorname{rad} P_{x}$. Since (2x) is satisfied, then f is a linear combination of compositions of finitely many irreductible maps. Hence $R_{i}^{x} \in \mathscr{P}$ for some $1 \leq i \leq n_{x}$. Thus $P_{x} \in \mathscr{P}$ and we are done.
1.7. Examples. Consider the algebra $A=k Q / I$ given by the quiver

and the ideal $I=\left\langle\alpha_{1} \beta_{1}-\alpha_{2} \beta_{2}\right\rangle$. The quiver Γ_{A} has no postprojective component but for every proper full convex subcategory B of A, the quiver Γ_{B} has a postprojective component. Consider for example A as the one-point extension $A=$ $B[M]$ where $B=A / A e_{7}$ and $M=\operatorname{rad} P_{7}$. Then B is an hereditary algebra and $M=M_{1} \oplus P_{6}$ where P_{6} is a postprojective B-module and M_{1} is a regular B module. Therefore M is not directing and both conditions (1x) and (2x) are not satisfied for $x=7$.

It is also interesting to consider $A=C[N]$ where $C=A / A e_{2}$ and $N=\operatorname{rad} P_{2}$. Then Γ_{C} has a postprojective component \mathscr{P} and $N=P_{1}$ is an indecomposable module in \mathscr{P}. In this case the projective C-module P_{7} belongs to \mathscr{P}. In section 2 we will consider more carefully this kind of situation.

Finally, we observe that in our example for every convex subcategory B of A (including $B=A$), the Auslander-Reiten quiver Γ_{B} has a preinjective component.
1.8. Let $A=k Q / I$ be an algebra as above. Let $x \in Q_{0}$ and consider the connected components $Q_{1}^{x}, \cdots, Q_{s_{x}}^{x}$ of the quiver Q^{x} associated with the algebra A^{x}. Recall that the vertex x is said to be separating if for each $1 \leq j \leq s_{x}$ the quiver Q_{j}^{x} contains the support of at most one $R_{i}^{x}\left(1 \leq i \leq n_{x}\right)$; thus $s_{x} \geq n_{x}$. The algebra A satisfies the separation condition if all $x \in Q_{0}$ are separating, see [1, 2]. Observe that with A also A^{x} satisfies the separation condition.

COROLLARY [2]. If A satisfies the separation condition, then Γ_{A} has a postprojective component.

Proof. Let $x \in Q_{0}$. Consider $A^{x}=A_{1}^{x} \amalg \cdots \amalg A_{n_{1}}^{x}$ where A_{j}^{x} is the full convex subalgebra of A with connected quiver Q_{j}^{x}. Since also A_{j}^{x} satisfies the separation condition, by induction hypothesis, the Auslander-Reiten quiver of A_{j}^{x} has a postprojective component \mathscr{P}_{j}. For each $1 \leq i \leq n_{x}$, we may assume that R_{i}^{x} is an A_{i}^{x}-module.

If $R_{i}^{x} \notin \mathscr{P}_{i}$ for some i, then $R_{j}^{x} \notin \mathscr{P}_{i}$ for every $1 \leq j \leq n_{x}$. In this case (1 x) is satisfied. Otherwise, $R_{i}^{x} \in \mathscr{P}_{i}$ for all $1 \leq i \leq n_{x}$. Then clearly (2 x) is satisfied. Hence (1.3) implies the result.

2. One-point extensions using postprojective modules.

2.1. Let $A=k Q / I$ be a finite dimensional k-algebra such that Q has no oriented cycles. Let a be a source in Q and consider the quotient $B=A / A e_{a}$. For the B-module $M=\operatorname{rad} P_{a}$, we have $A=B[M]$. Let \mathscr{P} be a postprojective component of Γ_{B} and assume that all indecomposable direct summands of M belong to \mathscr{P}. In this section we consider the problem of when P_{a} belongs to a postprojective component of Γ_{A}.

We recall that for two A-modules X, Y we have $\operatorname{rad}_{A}^{\infty}(X, Y)=\bigcap_{m \geq 0} \operatorname{rad}_{A}^{m}(X, Y)$. We say that an irreducible map $h: X \rightarrow Y$ in \mathscr{P} is M-finite if $h \notin \operatorname{rad}_{A}^{\infty}(X, Y)$. An indecomposable B-module $X \in \mathscr{P}$ is M-finite if there is a walk $M_{i}=$ $X_{0} \xrightarrow{\alpha_{1}}-\cdots \xrightarrow{\alpha_{s}} X_{s}=X$ in \mathscr{P} (where M_{i} is an indecomposable direct summand of M) such that each α_{i} is M-finite, $1 \leq i \leq s$. Of course, if a map or a module is not M-finite we say that it is M-infinite.

The following characterization is useful.
Lemma. Let $h: X \rightarrow Y$ be a map in $\bmod A$ with X and Y indecomposable modules. Then $h \in \operatorname{rad}_{A}^{\infty}(X, Y)$ if and only if there are infinitely many A-modules $L_{n}, n \in N$, without common direct summands and morphisms $f_{n}: X \rightarrow L_{n}, g_{n}$: $L_{n} \rightarrow Y$ with $g_{n} f_{n}=h$.

Proof. Assume that $h \in \operatorname{rad}^{\infty}(X, Y)$. We construct the modules L_{n} inductively. For $n=1$, we set $L_{1}=X$. Assume we have already constructed L_{1}, \cdots, L_{n} as in the statement. Let m be the maximal of $\operatorname{dim}_{k} C$ for C an indecomposable direct summand of some $L_{i}, 1 \leq i \leq n$. By the Harada-Sai Lemma, there is a number $N(m)$ such that for every chain $C_{1} \rightarrow C_{2} \rightarrow \cdots \rightarrow C_{s}$ of non isomorphisms between indecomposable modules with $\operatorname{dim}_{k} C_{i} \leq m+1$, if $s \geq N(m)$, then the composition of the chain is zero. Since $h \in \operatorname{rad}_{A}^{N(m)}(X, Y)$, then h may be
written as a linear combination $h=\sum_{i=1}^{r} h_{i}$, where h_{i} is composition of $N(m)$ nonisomorphisms between indecomposable modules. Therefore each h_{i} factorizes through some indecomposable module Z_{i} with $\operatorname{dim}_{k} Z_{i} \geq m+1,1 \leq i \leq r$. We can define $L_{n+1}=\oplus_{i=1}^{r} Z_{i}$.

For the converse, define inductively the finite set of indecomposable modules $X^{(n)}$ in the following way. The set $X^{(1)}$ is formed by those indecomposable modules which are direct summands of the module Z, where $X \rightarrow Z$ is a source map in the category $\bmod A$. If $X^{(n)}$ is defined, then $X^{(n+1)}$ is formed by those modules in $Z^{(1)}$ for Z in $X^{(n)}$. For any n, choose an m such that the module L_{m} has no direct summands in $X^{(n)}$. Consider the factorization $h=g_{m} f_{m}$ with $f_{m}: X \rightarrow L_{m}, g_{m}: L_{m} \rightarrow Z$. Using the properties of source maps, we get that f_{m} lies in $\operatorname{rad}_{A}^{n}\left(X, L_{m}\right)$. Hence $h \in \operatorname{rad}_{A}^{\infty}(X, Z)$.
2.2. Consider the directed vector space category $\operatorname{Hom}_{A}(M, \mathscr{P})$, see $[3,6]$. Denote by $|X|=\operatorname{Hom}_{A}(M, X), X \in \mathscr{P}$. Then the full subcategory of $\operatorname{Hom}_{A}(M, \mathscr{P})$ whose objects are those $|X| \neq 0$ with $X \in \mathscr{P}$, form a poset \mathscr{P}_{M}. Indeed, $|X| \leq|Y|$ in \mathscr{P}_{M} implies that $X \leq Y$ in \mathscr{P}.

A subposet \mathscr{V} of \mathscr{P}_{M} is said to be of finite type if for each $|X| \in \mathscr{V}$, $\operatorname{dim}_{k}|X| \leq 1$ and \mathscr{V} does not contain as a full subposet one of the posets $(1,1,1,1)$, $(2,2,2),(1,3,3),(1,2,5)$ or $(N, 4)$ of Kleiner's list.

If \mathscr{P}_{M} is representation-infinite there is a infinite family of triples $Y_{\lambda}=\left(V, Y, \gamma_{\lambda}: V \rightarrow \operatorname{Hom}_{B}(M, Y)\right) \quad$ where $\quad V \in \bmod _{k}, Y$ is a B-module whose indecomposable direct summands X have $|X| \in \mathscr{P}_{M}$ and γ_{λ} is linear, corresponding to indecomposable pairwise non-isomorphic A-modules. A module $X \in \mathscr{P}$ is said to be M-representation-infinite if there are infinitely many pairwise nonisomorphic indecomposable A-modules of the form $\left(V, Y, \gamma: V \rightarrow \operatorname{Hom}_{B}(M, Y)\right)$ where $V \in \bmod _{k}, Y$ is a B-module with X as a direct summand and γ is linear.

Lemma. Let $h: X \rightarrow Y$ be an irreducible map in \mathscr{P}. Then h is M-infinite if and only if the following two conditions hold
i) X is M-representation-infinite;
ii) there is a morphism $0 \neq g \in \operatorname{Hom}_{B}(M, X)$ with $h g=0$.

Proof. First assume that $h \in \operatorname{rad}_{A}^{\infty}(X, Y)$. Then there are infinitely many A modules $L_{n}=\left(V_{n}, Z_{n}, \gamma_{n}: V_{n} \rightarrow \operatorname{Hom}_{B}\left(M, Z_{n}\right)\right), \quad n \in N$ without common direct summands and morphisms $f_{n}: X \rightarrow L_{n}, g_{n}: L_{n} \rightarrow Y$ with $g_{n} f_{n}=h$. Fix $n \in N$ and let $Z_{n}=X^{a} \oplus Y^{b} \oplus Z_{n}^{\prime}$ be such that X and Y are not summands of Z_{n}^{\prime}. The following diagrams commute:
with $\quad \lambda_{i} \in k, h_{i}^{\prime \prime} \in \operatorname{Hom}_{B}(X, Y)(1 \leq i \leq a), \mu_{j} \in k, h_{j}^{\prime} \in \operatorname{Hom}_{B}(X, Y)(1 \leq j \leq b)$. Without loss of generality we may assume that $V_{n} \neq 0$ and $(0, X, 0),(0, Y, 0)$ are not direct summands of L_{n}. First we show that $\mu_{j}=0(1 \leq j \leq b)$. Otherwise there is some $0 \neq v \in V_{n}$ and $\gamma_{n}(v)=\left(v_{i}^{\prime}, v_{j}^{\prime \prime}, *\right)$ with $v_{j_{0}}^{\prime \prime} \neq 0$ and $\operatorname{Hom}\left(M, \mu_{j_{0}}\right)\left(v_{j_{0}}^{\prime \prime}\right) \neq 0$ for some j_{0}, a contradiction. Since h is irreducible as a B-morphism, then $a>0, \lambda_{i_{0}} \neq 0$ and $h_{i_{0}}^{\prime \prime}$ is a non-zero multiple of h for some $1 \leq i_{0} \leq a$. This shows (i). Moreover, there is some $0 \neq \omega \in V_{n}$ with $\gamma_{n}(\omega)=\left(\omega_{i}^{\prime}, \omega_{j}^{\prime \prime}, *\right)$ and $0 \neq \omega_{i_{0}}^{\prime} \in \operatorname{Hom}_{B}(M, X)$. Therefore $\omega_{i_{0}}^{\prime} h_{i_{0}}^{\prime \prime}=\operatorname{Hom}\left(M, h_{i_{0}}^{\prime \prime}\left(\omega_{i_{0}}^{\prime}\right)\right)=0$ and condition (ii) holds.

For the converse, consider an infinite family $L_{n}=\left(V_{n}, Z_{n}, \gamma_{n}\right)$ of pairwise nonisomorphic indecomposable A-modules ($n \in N$) such that X is a direct summand of Z_{n}. Let $Z_{n}=X \oplus Z_{n}^{\prime}$ and $\sigma_{n}: X \rightarrow Z_{n}$ be the canonical inclusion. Assume first that $\operatorname{dim}_{k}|X|=1$. Then for the A-morphism $g_{n}=\left(0, h \pi_{n}\right): L_{n} \rightarrow Y$ where $\pi_{n}: Z_{n} \rightarrow X$ is the canonical projection, we get $g_{n} \sigma_{n}=h$. This may only happen if $h \in \operatorname{rad}_{A}^{\infty}(X, Y)$. Now, assume that $\operatorname{dim}_{k}|X| \geq 2$ and take $b \in \operatorname{Hom}_{B}(M, X)$ such that g, b are linearly independent. Then we may choose $Z_{n}=X \oplus X, V=k$ and $\gamma_{n}: k \rightarrow \operatorname{Hom}_{B}(M, X)^{2}, \quad 1 \mapsto\left(\lambda_{n} g, b\right)$ for some $\lambda_{n} \neq 0$. Again, if $g_{n}=\left(0, h \pi_{n}\right):$ $L_{n} \rightarrow Y$ where $\pi_{n}: X \oplus X \rightarrow X$ is the first canonical projection, we get $g_{n} \sigma_{n}=h$. We are done.
2.3. The main result in this section is the following:

THEOREM. Let $A=B[M]$ be a one-point extension algebra with $M=\operatorname{rad} P_{a}$ for a source a of Q. Assume that all indecomposable direct summands of M belong to a postprojective component \mathscr{P} of Γ_{B}.

If P_{a} belongs to a postprojective component of Γ_{A} then the following conditions hold:
a) M is directing;
b) for every irreducible map $h: X \rightarrow Y$ in \mathscr{P} such that Y is M-finite, then h is M-finite;
c) for every indecomposable projective B-module $P_{y} \in \mathscr{P}$ which is M-finite, the set of predecessors of P_{y} in Γ_{A} is finite and formed by directing modules.

Conversely, if conditions (a) and (c) hold, then P_{a} belongs to a postprojective component of Γ_{A}.

Proof. Assume first that \mathscr{P}^{\prime} is a postprojective component of Γ_{A} containing P_{a}. Therefore M is directing.

Let $Y \in \mathscr{P}$ be M-finite, we show that $Y \in \mathscr{P}^{\prime}$. Indeed, consider a chain of irreducible maps $M \xrightarrow{\alpha_{1}} X_{1} \xrightarrow{\alpha_{2}} X_{2}-\cdots \xrightarrow{\alpha_{s}} X_{s}=Y$ with α_{i} being M-finite. By induction we may assume that $X_{s-1} \in \mathscr{P}^{\prime}$. If $X_{s} \xrightarrow{\alpha_{s}} X_{s-1}$, then clearly $X_{s} \in \mathscr{P}^{\prime}$. If $X_{s-1} \xrightarrow{\alpha_{s}} X_{s}$ and $X_{s} \notin \mathscr{P}^{\prime}$, then $\alpha_{s} \in \operatorname{rad}_{A}^{\infty}\left(X_{s-1}, X_{s}\right)$, which is a contradiction. Therefore $Y \in \mathscr{P}^{\prime}$.

We show (b): let $h: X \rightarrow Y$ be an irreducible map in \mathscr{P} and assume Y to be M-finite. Then $Y \in \mathscr{P}^{\prime}$ and also $X \in \mathscr{P}^{\prime}$. Since \mathscr{P}^{\prime} is postprojective, $h \notin \operatorname{rad}_{A}^{\infty}(X, Y)$. And (c): let $P_{y} \in \mathscr{P}$ be M-finite. Then $P_{y} \in \mathscr{P}^{\prime}$ and therefore P_{y} has only finitely many predecessors in Γ_{A}, all of them directing.

For the converse we proceed as in (1.4) to construct a postprojective component \mathscr{P}^{\prime} of Γ_{A}. Indeed, we define inductively full subquivers C_{n} of Γ_{A} satisfying: (i) C_{n} is finite, connected, contains no oriented cycle and is closed under predecessors and (ii) $\tau_{A}^{-1} C_{n} \cup C_{n} \subset C_{n+1}$.

Let S be a simple projective in \mathscr{P}, then set $C_{0}=\{S\}$. Assume C_{n} is well defined and let X_{1}, \cdots, X_{t} be those modules in C_{n} with $\tau_{A}^{-1} X_{i} \notin C_{n}$, numbered in such a way that $i<j$ whenever $X_{i} \leq X_{j}$. Define $D_{0}=C_{n}, D_{i+1}$ as the full subquiver of Γ_{A} consisting of D_{i} and the predecessors of $\tau_{A}^{-1} X_{i+1}$ and $C_{n+1}=D_{t}$. It is enough to show inductively that D_{i} satisfies condition (i) above. Consider the AuslanderReiten sequence $0 \rightarrow X_{i+1} \rightarrow X \rightarrow \tau_{A}^{-1} X_{i+1} \rightarrow 0$ and assume that D_{i} satisfies (i). We shall prove that each indecomposable direct summand Y of X has only finitely many predecessors, all of them directing.

We first show the following: let $\left(V, N, \gamma: V \rightarrow \operatorname{Hom}_{B}(M, N)\right)$ be an indecomposable module in D_{i}, then every indecomposable direct summand N^{\prime} of N belongs to \mathscr{P} and is M-finite. We proceed by induction on the path order in D_{i} (which satisfies (i)). As a first case, assume that $V=0$. If $N=P_{y}$ is projective, then every direct summand R_{i}^{y} of $\operatorname{rad} P_{y}$ belongs to \mathscr{P} and is M-finite. Therefore $N \in \mathscr{P}$. Moreover, since the canonical inclusion $R_{i}^{y} \rightarrow N$ is not in $\operatorname{rad}_{A}^{\infty}\left(R_{i}^{y}, N\right)$, then N is M-finite. If N is not projective, consider the Auslander-Reiten sequence $0 \rightarrow \tau_{B} N \xrightarrow{\sigma} E \rightarrow N \rightarrow 0$ in $\bmod _{B}$ and the corresponding sequence $0 \rightarrow \overline{\tau_{B} N} \rightarrow \bar{E} \rightarrow N \rightarrow 0$ in $\bmod _{A}$, where $\bar{E}=\left(\operatorname{Hom}_{B}\left(M, \tau_{B} N\right), E, \operatorname{Hom}_{B}(M, \sigma)\right)$. Since the indecomposable direct summands of \bar{E} belong to D_{i} by induction hypothesis we get that the indecomposable direct summands of E belong to \mathscr{P} and are M-finite. Hence $N \in \mathscr{P}$. Moreover, since N is in D_{i}, it has only finitely many predecessors and therefore any irreducible map $E_{i} \rightarrow N$ in \mathscr{P} is M-finite. For the second case, assume that $V \neq 0$ and take an indecomposable direct summand N^{\prime} of N. Hence $\operatorname{Hom}_{B}\left(M, N^{\prime}\right) \neq 0$. Suppose that N^{\prime} is not in \mathscr{P}, then $\operatorname{rad}_{B}^{\infty}\left(M, N^{\prime}\right) \neq 0$
and N^{\prime} has infinitely many predecessors. The same happens to (V, N, γ) which contains $\left(0, N^{\prime}, 0\right)$. A contradiction showing that $N^{\prime} \in \mathscr{P}$. In the same way N^{\prime} is M-finite.

Now we continue the main line of the proof. Let Y be an indecomposable direct summand of X. If Y is not projective, then Y belongs to D_{i} and we are done. Assume that Y is projective. Consider first the case $Y=P_{a}$. By (a), P_{a} is directing and therefore the predecessors of P_{a} in $\bmod _{A}$ are B-modules and are predecessors of some direct summand M_{i} of $M=\operatorname{rad} P_{a}$ in $\bmod _{B}$. Since every M_{i} belongs to \mathscr{P}, then $Y=P_{a}$ has only finitely many (all directing) predecessors. Finally assume that $Y=P_{y}$ for some $y \neq a$. Let R_{i}^{y} be a direct summand of $\operatorname{rad} P_{y}$ belonging to D_{i}. By the claim shown above, $R_{i}^{y} \in \mathscr{P}$ and R_{i}^{y} is M-finite. Therefore $P_{y} \in \mathscr{P}$ and it is also M-finite. By hypothesis (c), $Y=P_{y}$ has only finitely many (all directing) predecessors in Γ_{A}. This finishes our proof.
2.4. We consider again the example (1.7). With the notation introduced there $A=\mathrm{C}[N]$ where $N=P_{1}$ is simple projective. We sketch part of the postprojective component \mathscr{P} of Γ_{C} where N lies.

The walk $\alpha_{5}^{-1} \alpha_{4} \alpha_{3}^{-1} \alpha_{2} \alpha_{1}$ from N to Y is formed by N-finite irreducible maps, therefore Y is N-finite. On the other hand, $\operatorname{dim}_{k} \operatorname{Hom}_{C}(N, X)=2$ and $\operatorname{dim}_{k} \operatorname{Hom}_{C}(N, Y)=1$, therefore by (2.2), h is not N-finite. By (2.3), P_{2} does not belong to a postprojective component in Γ_{A}.

3. Some quadratic conditions.

3.1. In this section we consider again the situation of section 2 and we find
some necessary conditions for the existence of a postprojective component in Γ_{A} containing the projective module corresponding to the extension vertex. These conditions are expressed by the values of certain quadratic forms.

Let $A=B[M]$ be a one-point extension of the algebra B by the module $M=\operatorname{rad} P_{a}$. Let $M=\oplus_{i=1}^{s} M_{i}$ be the indecomposable decomposition of M. Consider the Euler form associated with B :

$$
\langle\underline{\operatorname{dim}} X, \underline{\operatorname{dim}} Y\rangle_{B}=\sum_{j=0}^{\infty}(-1)^{j} \operatorname{dim}_{k} \operatorname{Ext}_{B}^{j}(X, Y),
$$

where $\underline{\operatorname{dim} X}$ is the element of the Grothendieck group $K_{0}(B)$ corresponding to X. See [3].

For different $i, j \in\{1, \cdots, s\}$, we define the quadratic form

$$
q_{i j}(\omega)=\left\langle\omega, \underline{\operatorname{dim}} M_{i}\right\rangle_{B}\left\langle\omega, \underline{\operatorname{dim}} M_{j}\right\rangle_{B} .
$$

3.2. Proposition. Let $\mathscr{P}_{1}, \cdots, \mathscr{P}_{m}$ be the postprojective components of Γ_{B} and assume that $m \geq 1$. Suppose that Γ_{A} has a postprojective component, then there exists a component \mathscr{P}_{t} such that for every two different $i, j, \in\{1, \cdots, s\}$ and every $X \in \mathscr{P}_{t}$ with projdim ${ }_{B} X \leq 1$, we have

$$
q_{i j}(\underline{\operatorname{dim} X}) \geq 0
$$

Proof. First assume that for some $t \in\{1, \cdots, m\}$, there is no M_{i} belonging to \mathscr{P}_{t}. Take $X \in \mathscr{P}_{t}$ with proj $\operatorname{dim}_{B} X \leq 1$, then

$$
\left\langle\underline{\operatorname{dim}} X, \underline{\operatorname{dim}} M_{i}\right\rangle_{B}=\operatorname{dim}_{k} \operatorname{Hom}_{B}\left(X, M_{i}\right)-\operatorname{dim}_{k} \operatorname{Ext}_{B}^{1}\left(X, M_{i}\right) .
$$

Since $M_{i} \notin \mathscr{P}_{t}$, then $\operatorname{Ext}_{B}^{1}\left(X, M_{i}\right)=0$ and $\left\langle\underline{\operatorname{dim}} X, \underline{\operatorname{dim}} M_{i}\right\rangle_{B} \geq 0$. This shows that $q_{i j}(\underline{\operatorname{dim}} X) \geq 0$ for any two $i, j \in\{1, \cdots, s\}$.

In the other case, choose $t=1$. Take $i, j \in\{1, \cdots, s\}$ different and $X \in \mathscr{P}_{1}$ with proj $\operatorname{dim}_{B} X \leq 1$. Assume that

$$
\left\langle\underline{\operatorname{dim}} X, \underline{\operatorname{dim}} M_{i}\right\rangle_{B}<0<\left\langle\underline{\operatorname{dim} X}, \underline{\operatorname{dim}} M_{j}\right\rangle_{B} .
$$

Since proj $\operatorname{dim}_{B} X \leq 1$, this implies that $\operatorname{Ext}_{B}^{1}\left(X, M_{i}\right) \neq 0 \neq \operatorname{Hom}_{B}\left(X, M_{j}\right)$. The Auslander-Reitern formula gives $0 \neq D \operatorname{Ext}_{B}^{1}\left(X, M_{i}\right) \cong \overline{\operatorname{Hom}}_{B}\left(M_{i}, \tau_{B} X\right)$ (see [3]). Therefore there is a path in $\Gamma_{B}, M_{i} \leq \tau_{B} X \leq X \leq M_{j}$. By (1.2), P_{a} is not directing. Let \mathscr{P} be a postprojective component of Γ_{A}. Since each \mathscr{P}_{ℓ} for $1 \leq \ell \leq m$, contains a summand of M, then $\mathscr{P} \neq \mathscr{P}_{\ell}$. Therefore \mathscr{P} is not a component of Γ_{B}. Hence it contains a module $Y \in \mathscr{P}$ with $0 \neq Y(a)=\operatorname{Hom}_{A}\left(P_{a}, Y\right)$. This implies that $P_{a} \in \mathscr{P}$. But then P_{a} should be directing, a contradiction. We are done.
3.3. We come back to our example (1.7) now considering $A=B[M]$ where M
$=\operatorname{rad} P_{7}$. Thus $M=M_{1} \oplus M_{2}$, where

$$
\underline{\operatorname{dim}} M_{1}=(1,0,0,1,1,0,0) \text { and } \underline{\operatorname{dim}} M_{2}=(0,0,0,0,0,1,0)
$$

in $K_{0}(B)$. There is a unique postprojective component \mathscr{P}_{1} of Γ_{B} which has the shape

where $\underline{\operatorname{dim}} X=(6,2,2,2,3,0,1) \in K_{0}(B)$ and clearly proj $\operatorname{dim}_{B} X \leq 1$.
We have

$$
\left\langle x, \underline{\operatorname{dim}} M_{1}\right\rangle_{B}=x_{1}-x_{2}-x_{3}-x_{7} \text { and }\left\langle x, \underline{\operatorname{dim}} M_{2}\right\rangle_{B}=x_{6}-x_{7} .
$$

Hence $q_{12}(\underline{\operatorname{dim} X})=-1$. The quiver Γ_{A} has no postprojective component (as we already knew).

References.

[1] Bautista, R., Larrión, F. and Salmerón, L.: On simply connected algebras. J. London Math. Soc. (2) 27 (1983), 212-220.
[2] Bongartz, K.: A criterion for finite representation type. Math. Ann. 269 (1984), 1-12.
[3] Gabriel, P. and Roiter, A. V.: Representation of finite-dimensional algebras. Algebra VIII Encyclopaedia of Math. Sc. Vol. 73 (1992).
[4] Happel, D. and Ringel, C. M.: Directing projective modules. Archiv. Math. 60 (1993) 237-243.
[5] Kasjan, S. and de la Peña, J. A.: Constructing the postprojective components of an algebra. J. Algebra. 179 (1996), 793-807.
[6] Ringel, C. M.: Tame algebras and integral quadratic forms. Lecture Notes in Mathematics 1099, Springer, Berlin (1984).
[7] Skowronski, A. and Wenderlich, M.: Artin algebras with directing indecomposable projectives. J. Algebra. 165 (1994), 507-530.
[8] Strauss, H.: The perpendicular category of a partial tilting module. J. Algebra 144 (1991) 4366.
P. Dräxler

Fakultät Füf Mathematik
Universität Bielefeld
D-4800 Bielefeld
Germany

José Antonio de la Peña
Instituto de Matemáticas, UNAM
México 04510, D.F.
México

[^0]: Received October 24, 1994.
 Revised June 6, 1995.

