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ON THE EXISTENCE OF POSTPROJECTIVE
COMPONENTS IN THE AUSLANDER-REITEN

QUIVER OF AN ALGEBRA

By

P. DR\"AXLER and J. A. de la PE\~NA

Let $k$ be an algebraically closed field and $A$ be a basic finite-dimensional k-

algebra of the form $A=kQ/I$ , where $Q$ is a quiver ( $=finite$ oriented graph) and $I$

is an admissible ideal of the path algebra $kQ$ , see [3]. In this work we assume
that $Q$ has no oriented cycles.

Let $mod_{A}$ denote the category of finite dimensional left A-modules. For each

indecomposable non-projective A-module $X$ , the Auslander-Reiten translate $\tau_{A}X$

is an indecomposable non-injective module. The Auslander-Reiten quiver $\Gamma_{A}$ has

as vertices representatives of the isoclasses of the finite dimensional
indecomposable A-modules, there are as many arrows from $X$ to $Y$ as
$\dim_{k}rad_{A}(X, Y)/rad_{A}^{2}(X, Y)$ . In this paper we do not distinguish between a module

and its corresponding isoclass. A connected component $\varphi$ of $\Gamma_{A}$ is postprojective

if $\varphi$ has no oriented cycles and each module $X$ in $\varphi$ has only finitely many

predecessors in the path order of $\varphi$ . Several important classes of algebras have

postprojective components: hereditary algebras $[3, 6]$ , algebras satisfying the

separation condition $[1, 2]$ , tilted algebras [8].

The aim of this work is to find necessary and sufficient conditions for the

existence of postprojective components in $\Gamma_{A}$ . In section 1 we give an algorithmic

procedure to decide the existence of postprojective components. In section 2 we
consider a one-point extension algebra $A=B[M]$ such that all indecomposable

direct summands of $M$ belong to postprojective components of $\Gamma_{B}$ , then we give

conditions that assure that the projective A-module $P$ with rad $P=M$ lies in a
postprojective component of $\Gamma_{A}$ . In section 3 we consider some special cases. We

recall that once identified a postprojective component $\varphi$ of $\Gamma_{A}$ , the modules on $\varphi$

may be constructed using the knitting procedure [3]. In [5], an algorithmic

procedure which makes essential use of the knitting procedure is given to

construct all the postprojective components of $\Gamma_{A}$ .

Received October 24, 1994.
Revised June 6, 1995.



458 P. DR\"AXLER and J. A. de la PENA

The research for this paper started during a stay of the first named author at
UNAM, M\’exico in March 93 and it was completed during a stay of the second
author at Bielefeld in May 94. Both authors thank their Institutions, DAAD
(Germany) and CONACYT and DGAPA, UNAM (Mexico) for support.

1. Existence of postprojective components.

1.1. Let $A=kQ/I$ be a finite dimensional k-algebra such that the quiver $Q$ has
no oriented cycles. We may consider $A$ as a k-category with objects the set of
vertices $Q_{0}$ of $Q$ and morphisms from $x,y\in Q_{0}$ the space $A(x,y)=e_{\}}Ae_{X}$ , where
$e_{X}$ denotes the trivial path at the vertex $x$ . For two vertices $x,y\in Q_{0}$ we write
$y\leq x$ if there is a path from $y$ to $x$ in $Q$ .

Let $x\in Q_{0}$ , we denote by $A^{X}$ the full subcategory of $A$ whose vertices are
those $y\in Q$) with $y\leq x$ . Observe that the quiver $Q^{X}$ of $A^{X}$ is a convex ( $=$ path
closed) subquiver of $Q$ . The indecomposable projective A-module $P_{X}=Ae_{X}$ has
radical rad $P_{X}$ which is an $A^{r}$ -module. We denote by rad $P$. $=\oplus_{j}n_{=^{r}1}R_{j}^{X}$ the
indecomposable decomposition of rad $P_{X}$ .

1.2. A path in $mod_{A}$ is a sequence $(X_{0},\cdots,X_{\iota})$ of (isomorphisms classes of)
indecomposable A-modules $X_{j},0\leq i\leq s$ , such that there is a map $ 0\neq f_{i}\in$

$Hom_{A}(X_{j},X_{i+1})$ which is not an isomorphism, $0\leq i\leq s-1$ . In this case we write
$X_{0}\leq X_{\backslash }$ and we say that $X_{0}$ is a predecessor of $X_{\iota}$ . If $s=1$ and $X_{0}=X_{\iota}$ we say
that the path $(X_{0},\cdots,X_{1})$ is a cycle.

Following [4] we say that a module $M$ is directing in $mod_{A}$ provided there do
not exist indecomposable direct summands $M_{1}$ and $M_{2}$ of $M$ and an
indecomposable non-projective module $X$ such that $M_{1}\leq\tau X$ and $X\leq M_{2}$ . It is
shown in [4] that an indecomposable module $X$ is directing if and only if there are
no cycles $(X_{0},\cdots,X, )$ with $X_{0}=X=X_{t}$ . The following result will be important in
our work.

THEOREM $[4, 7]$ . Let $x\in Q_{0}$ . Then $P_{v}$ is directing in $mod_{A}$ if and only if rad
$P_{X}$ is directing in $mod_{A}$ .

Moreover, if $x$ is a source, then $P_{x}$ is directing in $mod_{A}$ if and only if rad $P_{X}$

is directing in $mod_{A^{\iota}}$ .

1.3. We state our main result which provides an algorithmic criterion for the
existence of postprojective components.

THEOREM. Let $A=kQ/I$ be a finite dimensional k-algebra such that $Q$ has no
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oriented cycles. Then $\Gamma_{A}$ has a postprojective component if and only if for each

vertex $x\in Q_{0}$ one of the following conditions is satisfied:
(1x) there is a postprojective component $\varphi$ of $\Gamma_{A^{1}}$ such that $R_{i}^{X}\not\in \mathfrak{R}$ for every

$1\leq i\leq n_{X}$ ;
(2x) for each $1\leq i\leq n_{X}$ the set of predecessors $\{Y\in\Gamma_{\mathcal{A}^{X}} : Y\leq R_{j}^{x}\}$ of $R_{i}^{X}$ in

$mod_{A^{X}}$ is finite and formed by directing modules. Moreover, if $x$ is a source, then

rad $P_{X}$ is directing in $mod_{A^{X}}$ .
We prove the theorem in (1.5) after some preparation. In (1.8) we give some

examples.

1.4. LEMMA. Assume that all $x\in Q_{0}$ the condition (2x) is satisfied, then $\Gamma_{A}$

has a postprojective component.

PROOF: We claim that for every $x\in Q_{0}$ the following condition is satisfied:

(3x); for each $1\leq i\leq n_{X}$ , the set of predecessors $\{X\in\Gamma_{A} : X\leq R_{i}^{X}\}$ of $R_{i}^{X}$ in
$mod_{A}$ is finite and formed by directing modules.

Indeed, let $X$ be a predecessor of $R_{j}^{X}$ in $\Gamma_{A}$ and assume that $X$ is not an $A^{X}-$

module. We may assume that $x$ is minimal with this property in the path order of
$Q$ . Then there exists a vertex $y\leq x$ in $Q$ such that $X(y)\neq 0$ . Therefore in $mod_{A}$

we get

$P_{v}\leq X\leq R_{i}^{X}\leq P_{r}\leq P_{v}$ .

Since (2y) is satisfied, then by (1.2) $y$ is not a source in $Q$ . Let $z$ be a proper
predecessor of $y$ in $Q$ . Therefore, $P_{\backslash }$ is a non-directing predecessor of some $R_{j^{\backslash }}$ .
By (2z), $P_{v}$ is not an $A^{-}\backslash $ -module, contradicting the minimality of $x$ .

Then we are in position to repeat the argument given in [2, theorem (2.5)] to

prove the existence of a postprojective component. For the sake of completeness

we sketch the argument. We construct inductively full subquivers C. of $\Gamma_{A}$

satisfying:
i) $C_{l\ddagger}$ is finite, connected, contains no oriented cycle and is closed under

predecessors.
ii) $\tau_{A}^{-1}C_{ll}\cup C_{n}\subset C_{\iota+1}$ .

Then $\cup C_{l}$ forms the wanted postprojective component.

Set $C_{0}=\{S\}$ where $S$ is a simple projective A-module. Assume C. to be

defined and let $M_{1},\cdots,M_{t}$ be the modules in $C_{l}$, with $\tau_{A}^{-1}M_{j}\not\in C_{\iota}$ . We may assume
that $M_{i}\leq M_{j}$ implies $i\leq j$ . If $t=0$ , set $C_{\iota+1}=C_{l}$ . 0therwise we define full

subquivers $D_{i}(0\leq i\leq I)$ of $\Gamma_{A}$ satisfying $D_{0}=C_{ll},D_{j}\cup\{\tau_{A}^{-1}M_{i+1}\}\subset D_{i+1}$ and condition
(i) imposed on $D_{j}$ . Then $D_{n+1}=C_{t}$ will satisfy conditions (i) and (ii).
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Indeed, assume $D_{j}$ is well defined. Take the almost split sequence $0\rightarrow M_{j+1}$

$\rightarrow X\rightarrow\tau_{A}^{-1}M_{j+}|\rightarrow 0$ and define $D_{i+1}$ as the full subquiver of $\Gamma_{A}$ with vertices $D_{j}$

and all predecessors of $\tau_{A}^{-1}M_{i+1}$ . It is enough to show that for each
indecomposable direct summand $Y$ of $X$ , the set of predecessors $\{Z\in\Gamma_{A} : Z\leq Y\}$

is finite and formed by directing modules. If $Y$ is not projective, then $\tau_{A}Y\in C_{n}$

whence $Y$ belongs to $D_{j}$ and we are done. If $Y=P_{v}$ is projective, then (3y) is
satisfied. By (1.2), we get the result. $\square $

1.5. PROOF $0F$ THE $THE0REM$ . Let $\varphi$ be a postprojective component of $\Gamma_{A}$ .
Let $x\in Q_{0}$ . If the projective module $P_{X}$ belongs to $\varphi$ , then (2x) is satisfied.
Assume that $P_{X}\not\in \mathfrak{R}$ . We show that $\varphi$ is formed by $A^{X}$ -modules. Let $ X\in\varphi$ and
assume $X(y)\neq 0$ for some $y\leq x$ in $Q$ . Then $P_{X}\leq P,$ $\leq X$ in $mod_{A}$ , which implies
$P$. $\in\Phi$ , a contradiction. Hence $\varphi$ is a postprojective component in $\Gamma_{A^{r}}$ and
$ R_{i}^{X}\not\in\varphi$ for $I\leq i\leq n_{X}$ , that is (1x) is satisfied.

Conversely, assume that for each $x\in Q_{0}$ , one of the conditions (1x) or (2x) is
satisfied. If for every $x\in a$ , (2x) is satisfied then (1.4) implies the result.

Assume that for $x\in Q_{0},$ $(2x)$ is not satisfied. Choose a minimal such $x$ in the
path order in $Q$ . By hypothesis (1x) is satisfied, that is, there is a postprojective
component $\varphi$ of $\Gamma_{A^{r}}$ such that $R_{j}^{X}\not\in \mathfrak{R}$ for every $1\leq i\leq n_{r}$ . We shall prove that $\varphi$

is a component of $\Gamma_{A}$ . For this purpose it is enough to show that $x$ is a source in
$Q$ .

Assume $y\leq x$ is a source in $Q$ and $y\neq x$ . The minimality of $x$ implies that
(2y) is satisfied. We will show that (2x) is also satisfied which yields the wanted
contradiction. Indeed, let $X$ be a predecessor of $R_{j}^{X}$ in $mod_{A}$ . Then
$X\leq R_{j}^{\iota}\leq P_{t}\leq P_{\backslash },$ implies that $X$ is a predecessor of $R$) for some $1\leq j\leq n_{\}}$ .
Moreover, since $P_{\backslash }$ is directing in $mod_{A}$ , then $X$ is an $A^{\prime}$ -module. Thus
$\{X\in\Gamma_{A}:X\leq R_{i}^{\mathfrak{r}}\}$ is finite and formed by directing modules. Our theorem is
proved. $\square $

1.6. COROLLARY. Let $A=kQ/I$ be as above and assume $Q$ is connected.
Then all indecomposable projective modules belong to a postprojective component
if and only iffor every $x\in Q_{0}$ the condition $(2x)$ is satisfied.

PROOF. The “only if‘ direction is clear. For the converse, assume that for
every $x\in Q_{0}$ , the condition (2x) is satisfied. By the theorem there is a
postprojective component 91‘ of $\Gamma_{A}$ . Clearly we may assume that $Q$ is connected
(otherwise we take a postprojective component for each maximal connected full
subcategory of $A$ ). Let $x_{0}$ be a sink in $Q$ such that the projective $P_{\chi_{()}}\in \mathfrak{R}$ . Let
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$x\in Q_{0}$ and fix a walk $X_{()}X_{1}\underline{\alpha_{1}}$ –... $\underline{\alpha_{\backslash }}X_{\backslash }=x$ in $Q$ (that is, each $\alpha_{j}$ is an arrow
in $Q$ with some orientation). By induction, we may assume that $ P_{X_{1}1}\in\Phi$ . If

$ x_{\iota-1}\rightarrow^{\backslash }X_{\backslash }\alpha$ then $P_{x}$ is a predecessor of $P_{X|}$ and $ P_{x}\in\varphi$ . Thus, assume that
$ x_{\iota}\rightarrow^{\backslash }\chi_{\backslash -1}\alpha$ . Then there is a morphism $f:P_{X|}\rightarrow radP_{X}$ . Since (2x) is satisfied, then $f$

is a linear combination of compositions of finitely many irreductible maps. Hence
$R_{i}^{x}\in \mathfrak{R}$ for some $1\leq i\leq n_{X}$ . Thus $P_{X}\in \mathfrak{R}$ and we are done. $\square $

1.7. EXAMPLES. Consider the algebra $A=kQ/I$ given by the quiver

and the ideal $ I=\langle\alpha_{1}\beta_{1}-\alpha_{2}\beta_{2}\rangle$ . The quiver $\Gamma_{A}$ has no postprojective component
but for every proper full convex subcategory $B$ of $A$ , the quiver $\Gamma_{B}$ has a
postprojective component. Consider for example $A$ as the one-point extension $A=$

$B[M]$ where $B=A/Ae_{7}$ and $M=radP_{7}$ . Then $B$ is an hereditary algebra and
$M=M_{1}\oplus P_{6}$ where $P_{6}$ is a postprojective B-module and $M_{1}$ is a regular B-
module. Therefore $M$ is not directing and both conditions (1x) and (2x) are not
satisfied for $x=7$ .

It is also interesting to consider $A=C[N]$ where $C=A/Ae_{2}$ and $N=radP_{2}$ .
Then $\Gamma_{c}$ has a postprojective component $\varphi$ and $N=P_{1}$ is an indecomposable
module in $\varphi$ . In this case the projective C-module $P_{7}$ belongs to $\varphi$ . In section 2
we will consider more carefully this kind of situation.

Finally, we observe that in our example for every convex subcategory $B$ of $A$

(including $B=A$ ), the Auslander-Reiten quiver $\Gamma_{B}$ has a preinjective component.

1.8. Let $A=kQ/I$ be an algebra as above. Let $x\in Q_{0}$ and consider the
connected components $Q_{1}^{X},\cdots,Q_{t_{X}}^{X}$ of the quiver $Q^{X}$ associated with the algebra
$A^{X}$ . Recall that the vertex $x$ is said to be separating if for each $1\leq j\leq s_{X}$ the
quiver $Q_{;}^{X}$ contains the support of at most one $R_{j}^{X}(1\leq i\leq n_{X})$ ; thus $s_{X}\geq n_{X}$ . The
algebra $A$ satisfies the separation condition if all $x\in Q_{0}$ are separating, see $[1, 2]$ .
Observe that with $A$ also $A^{X}$ satisfies the separation condition.

C0ROLLARY [2]. If $A$ satisfies the separation condition, then $\Gamma_{A}$ has a
postprojective component.
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PROOF. Let $x\in Q_{t}$
) Consider A $=A_{1}^{r}\coprod\cdots\coprod A_{l}^{1}$

, where $A_{j}^{1}$ is the full convex
subalgebra of $A$ with connected quiver $Q$). Since also $A_{j}^{1}$ satisfies the separation
condition, by induction hypothesis, the Auslander-Reiten quiver of $Af$ has a
postprojective component $\varphi_{j}$ . For each $1\leq i\leq n_{r}$ , we may assume that $R_{j}^{r}$ is an
$A_{j}^{X}$ -module.

If $R_{i}^{\kappa}\not\in\wp_{j}$ for some $i$ , then $R_{;}^{X}\not\in \mathfrak{R}_{j}$ for every $1\leq j\leq n_{X}$ . In this case (1x) is

satisfied. 0therwise, $R_{j}^{t}\in\varphi_{j}$ for all $1\leq i\leq n_{X}$ . Then clearly (2x) is satisfied.

Hence (1.3) implies the result.

2. One-point extensions using postprojective modules.

2.1. Let $A=kQ/l$ be a finite dimensional k-algebra such that $Q$ has no
oriented cycles. Let $a$ be a source in $Q$ and consider the quotient $B=A/Ae_{a}$ . For
the B-module $M=radP_{l}$ , we have $A$ $=B[M]$ . Let $\varphi$ be a postprojective
component of $\Gamma_{B}$ and assume that all indecomposable direct summands of $M$

belong to $\varphi$ . In this section we consider the problem of when $P_{l}$ belongs to a
postprojective component of $\Gamma_{A}$ .

We recall that for two A-modules $X,$ $Y$ we have $rad_{A}^{\infty}(X, Y)=\bigcap_{m\geq 0}rad_{A}^{m}(X, Y)$ .

We say that an irreducible map $h:X\rightarrow Y$ in $\varphi$ is M-finite if $h\not\in rad_{A}^{\infty}(X, Y)$ . An

indecomposable B-module $ X\in\varphi$ is M-finite if there is a walk $M_{j}=$

$X_{0}\underline{\alpha_{1}}$ –... $\underline{\alpha,}X,$ $=X$ in $\varphi$ (where $M_{j}$ is an indecomposable direct summand

of $M$) such that each $\alpha_{j}$ is M-finite, $1\leq i\leq s$ . Of course, if a map or a module is

not M-finite we say that it is M-infinite.
The following characterization is useful.

LEMMA. Let $h:X\rightarrow Y$ be a map in $modA$ with $X$ and $Y$ indecomposable
modules. Then $h\in rad_{A}^{\infty}(X, Y)$ if and only if there are infinitely many A-modules
$L_{\iota},n\in N$ , without common direct summands and morphisms $f_{l}$ : $X\rightarrow L_{\iota},g,$, :
$L_{n}\rightarrow Y$ with $g_{l1}f_{n}=h$ .

PROOF. Assume that $h\in rad^{\infty}(X, Y)$ . We construct the modules $L_{l}$

inductively. For $n=1$ , we set $L_{1}=X$ . Assume we have already constructed
$ L_{1},\cdots$ , L. as in the statement. Let $m$ be the maximal of $\dim_{k}C$ for $C$ an
indecomposable direct summand of some $L_{j},1\leq i\leq n$ . By the Harada-Sai Lemma,

there is a number $N(m)$ such that for every chain $C_{1}\rightarrow C_{2}\rightarrow\cdots\rightarrow C_{t}$ of non
isomorphisms between indecomposable modules with $\dim_{k}C_{j}\leq m+$ ], if $s\geq N(m)$ .
then the composition of the chain is zero. Since $h\in rad_{A}^{Ntm)}(X, Y)$ , then $h$ may be
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written as a linear combination $h=\Sigma_{j}^{r_{=1}}h_{j}$ , where $h_{j}$ is composition of $N(m)$ non-
isomorphisms between indecomposable modules. Therefore each $h_{j}$ factorizes

through some indecomposable module $Z_{i}$ with $\dim_{A}Z_{j}\geq m+1,1\leq i\leq r$ . We can
define $L_{l+1}=\oplus_{i^{r_{=}}1}Z_{j}$ .

For the converse, define inductively the finite set of indecomposable modules
$X^{(n)}$ in the following way. The set $X^{(1)}$ is formed by those indecomposable
modules which are direct summands of the module $Z$ , where $X\rightarrow Z$ is a source
map in the category $modA$ . If $X^{(n)}$ is defined, then $X^{(n+1)}$ is formed by those

modules in $Z^{(1)}$ for $Z$ in $X^{(n)}$ . For any $n$ , choose an $m$ such that the module $L_{m}$

has no direct summands in $X^{(n)}$ Consider the factorization $h=g_{m}f_{m}$ with

$f_{m}$ : $X\rightarrow L_{m},g_{m}$ : $L_{m}\rightarrow Z$ . Using the properties of source maps, we get that $f_{m}$ lies

in $rad_{A}^{n}(X,L_{m})$ . Hence $h\in rad_{A}^{\infty}(X,Z)$ .

2.2. Consider the directed vector space category $Hom_{A}(M,\Phi)$ , see $[3, 6]$ .
Denote by $|X|=Hom_{A}(M,X),X\in\varphi$ . Then the full subcategory of $Hom_{A}(M,\wp)$

whose objects are those $|X|\neq 0$ with $X\in \mathfrak{R}$ , form a poset $\varphi_{M}$ . Indeed, $|X|\leq|\eta$ in
$\varphi_{M}$ implies that $X\leq Y$ in $\varphi$ .

A subposet $\circ\psi$ of $\varphi_{M}$ is said to be of finite type if for each $|X|\in^{o}\psi$ ,

$\dim_{k}|X|\leq 1$ and $\mathscr{N}$ does not contain as a full subposet one of the posets (1,1,1,1),

(2,2,2), (1,3,3), (1,2,5) or $(N, 4)$ of Kleiner’s list.

If $\varphi_{M}$ is representation-infinite there is a infinite family of triples
$Y_{\lambda}=$ $(V, Y,\gamma_{\lambda} : V\rightarrow Hom_{B}(M, Y))$ where $V\in mod_{k}$ , $Y$ is a B-module whose

indecomposable direct summands $X$ have $|X|\in\varphi_{M}$ and $\gamma_{\lambda}$ is linear, corresponding

to indecomposable pairwise non-isomorphic A-modules. A module $X\in \mathfrak{R}$ is said

to be M-representation-infinite if there are infinitely many pairwise non-
isomorphic indecomposable A-modules of the form (V, $Y,\gamma:V\rightarrow Hom_{B}(M,Y)$ )

where $V\in mod_{k},$ $Y$ isa B-module with $X$ asadirect summand and $\gamma$ is linear.

LEMMA. Let $h:X\rightarrow Y$ be an irreducible map in $\varphi$ . Then $h$ is M-infinite if
and only if the following two conditions hold

i) $X$ is M-representation-infinite;
ii) there is a morphism $0\neq g\in Hom_{B}(M,X)$ with $hg=0$ .

PROOF. First assume that $h\in rad_{A}^{\infty}(X, Y)$ . Then there are infinitely many A-

modules $L_{n}=(V_{ll},Z_{n},\gamma_{n} : V$. $\rightarrow Hom_{B}(M,Z_{n}))$ , $n\in N$ without common direct

summands and morphisms $f_{n}$ : $X\rightarrow L_{\iota},g_{n}$ : $L_{n}\rightarrow Y$ with $g_{t}f_{l}=h$ . Fix $n\in N$ and let
$Z_{ll}=X^{a}\oplus Y^{b}\oplus Z_{n}^{\prime}$ be such that $X$ and $Y$ are not summands of $Z_{l}^{\prime}$ . The following

diagrams commute:
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$\left\{\begin{array}{l}\lambda_{j}\\h_{j}^{\prime}*\end{array}\right\}=f,\nearrow_{z_{n}^{\prime}}g_{ll}=g(h_{i}^{\prime\prime},\mu_{j}, *)Z_{n}=^{l}X^{a}\oplus Y^{b}\oplus$
$\downarrow$ $\downarrow Hom(M,g_{\iota})$

$X$ $\underline{h}$
$Y$ $V_{t}\underline{\gamma_{l}}Hom_{B}(M,Z_{l})$

$0\rightarrow Hom_{B}(M,Y)$

with $\lambda_{j}\in k,h_{i}^{\prime\prime}\in Hom_{B}(X, Y)(1\leq i\leq a),\mu_{j}\in k,$ $h_{j}^{\prime}\in Hom_{B}(X, Y)(1\leq j\leq b)$ . Without
loss of generality we may assume that $V_{n}\neq 0$ and $(O,X,O),$ $(0,Y,O)$ are not direct
summands of $L_{\iota}$ . First we show that $\mu_{j}=0(1\leq j\leq b)$ . 0therwise there is some
$0\neq v\in V_{n}$ and $\gamma_{n}(v)=(v_{i}^{\prime},v_{j}^{\prime\prime},*)$ with $v_{j_{0}}^{\prime\prime}\neq 0$ and $Hom(M,\mu_{j_{0}})(v_{;_{t)}}^{\prime\prime})\neq 0$ for some
$j_{0}$ , a contradiction. Since $h$ is irreducible as a B-morphism, then $a>0,\lambda_{i_{()}}\neq 0$ and
$h_{j_{()}}^{\prime\prime}$ is a non-zero multiple of $h$ for some $1\leq i_{0}\leq a$ . This shows (i). Moreover,
there is some $0\neq\omega\in V_{n}$ with $\gamma_{n}(\omega)=(\omega\int,\omega_{j}^{\nu},*)$ and $0\neq\omega_{j_{()}}^{\prime}\in Hom_{B}(M,X)$ .
Therefore $\omega_{j_{()}}^{\prime}h_{i_{()}}^{\prime\prime}=Hom(M,h_{i_{()}}^{\prime\prime}(\omega_{j_{()}}^{\prime}))=0$ and condition (ii) holds.

For the converse, consider an infinite family $L_{n}=(V_{n},Z_{n},\gamma_{n})$ of pairwise non-
isomorphic indecomposable A-modules $(n\in N)$ such that $X$ is a direct summand
of $Z_{n}$ . Let $Z_{n}=X\oplus Z_{n}^{\prime}$ and $\sigma_{I}$ : $X\rightarrow Z_{n}$ be the canonical inclusion. Assume first
that $\dim_{k}|X|=1$ . Then for the A-morphism $g_{n}=(0,h\pi_{n}):L_{n}\rightarrow Y$ where
$\pi_{n}$ : $Z_{n}\rightarrow X$ is the canonical projection, we get $g_{n}\sigma_{n}=h$ . This may only happen if
$h\in rad_{A}^{\infty}(X, Y)$ . Now, assume that $\dim_{k}|X|\geq 2$ and take $b\in Hom_{B}(M,X)$ such that
$g,$

$b$ are linearly independent. Then we may choose $Z_{n}=X\oplus X,V=k$ and
$\gamma_{n}:k\rightarrow Hom_{B}(M,X)^{2}$ $1\vdash\div(\lambda_{n}g, b)$ for some $\lambda_{n}\neq 0$ . Again, if $g_{n}=(0,h\pi_{n})$ :
$L_{n}\rightarrow Y$ where $\pi_{n}$ : $X\oplus X\rightarrow X$ is the first canonical projection, we get $g_{n}\sigma_{n}=h$ .
We are done. $\square $

2.3. The main result in this section is the following:

THEOREM. Let $A=B[M]$ be $a$ one-point extension algebra with $M=radP_{a}$

for a source $a$ of Q. Assume that all indecomposable direct summands of $M$

belong to a postprojective component $\varphi$ of $\Gamma_{B}$ .
If $P_{a}$ belongs to a postprojective component of $\Gamma_{A}$ then the following

conditions hold:
a) $M$ is directing;
b) for every irreducible map $h:X\rightarrow Y$ in $\varphi$ such that $Y$ is M-finite, then $h$

is M-finite;
c) for every indecomposable projective B-module $P,$

$\in \mathfrak{R}$ which is M-finite,

the set of predecessors of I, in $\Gamma_{A}$ is finite and formed by directing modules.

Conversely, if conditions $(a)$ and $(c)$ hold, then $P_{tl}$ belongs to a postprojective
component of $\Gamma_{A}$ .
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PROOF. Assume first that $\Phi^{\prime}$ is a postprojective component of $\Gamma_{A}$ containing
$P_{tl}$ . Therefore $M$ is directing.

Let $Y\in \mathfrak{R}$ be M-finite, we show that $Y\in \mathfrak{R}^{\prime}$ Indeed, consider a chain of

irreducible maps $MX_{1}X_{2}\underline{\alpha_{1}}\underline{\alpha_{2}}$ –... $\underline{\alpha_{\backslash }}X_{s}=Y$ with $\alpha_{j}$ being M-finite. By

induction we may assume that $X_{\iota-1}\in \mathfrak{R}^{\prime}$ . If $ X_{\iota}\rightarrow^{\backslash }X_{\iota- 1}\alpha$ then clearly $X_{\iota}\in\varphi^{\prime}$ If
$ X_{s-1}\rightarrow^{\backslash }X_{s}\alpha$ and $X,$

$\not\in \mathfrak{R}^{\prime}$ then $\alpha_{s}\in rad_{4}^{\infty}(X_{s-1},X_{s})$ , which is a contradiction.

Therefore $Y\in \mathfrak{R}^{\prime}$ .
We show (b): let $h:X\rightarrow Y$ be an irreducible map in $\varphi$ and assume $Y$ to be

M-finite. Then $Y\in \mathfrak{R}^{\prime}$ and also $X\in \mathfrak{R}^{\prime}$ . Since $\mathfrak{R}^{\prime}$ is postprojective, $h\not\in rad_{A}^{\infty}(X,Y)$ .
And (c): let $P_{y}\in \mathfrak{R}$ be M-finite. Then $P_{y}\in \mathfrak{R}^{\prime}$ and therefore $P_{y}$ has only finitely

many predecessors in $\Gamma_{A}$ , all of them directing.

For the converse we proceed as in (1.4) to construct a postprojective

component $\mathfrak{R}^{\prime}$ of $\Gamma_{A}$ . Indeed, we define inductively full subquivers $C_{n}$ of $\Gamma_{A}$

satisfying: (i) $C_{n}$ is finite, connected, contains no oriented cycle and is closed

under predecessors and (ii) $\tau_{A}^{-1}C_{n}\cup C_{n}\subset C_{n+1}$ .
Let $S$ be a simple projective in $\varphi$ , then set $C_{0}=\{S\}$ . Assume $C_{n}$ is well

defined and let $X_{1},\cdots,X_{t}$ be those modules in $C_{n}$ with $\tau_{A}^{-1}X_{j}\not\in C_{n}$ , numbered in

such a way that $i<j$ whenever $X_{l}\leq X_{j}$ . Define $D_{0}=C_{n},D_{l+}$ as the full subquiver

of $\Gamma_{A}$ consisting of $D_{i}$ and the predecessors of $\tau_{A}^{-1}X_{j+1}$ and $C_{n+1}=D_{t}$ . It is enough

to show inductively that $D_{i}$ satisfies condition (i) above. Consider the Auslander-

Reiten sequence $0\rightarrow X_{i+1}\rightarrow X\rightarrow\tau_{A}^{-1}X_{i+1}\rightarrow 0$ and assume that $D_{j}$ satisfies (i). We

shall prove that each indecomposable direct summand $Y$ of $X$ has only finitely

many predecessors, all of them directing.

We first show the following: let (V, $N,\gamma:V\rightarrow Hom_{B}(M,N)$) be an

indecomposable module in $D_{j}$ , then every indecomposable direct summand $N^{\prime}$ of

$N$ belongs to $\varphi$ and is M-finite. We proceed by induction on the path order in $D_{j}$

(which satisfies $(i)$ ). As a first case, assume that $V=0$ . If $N=P$, is projective,

then every direct summand $R_{j}^{v}$ of rad $P_{V}$ belongs to $\varphi$ and is M-finite. Therefore
$N\in \mathfrak{R}$ . Moreover, since the canonical inclusion $R_{j}^{1}\rightarrow N$ is not in $rad_{A}^{\infty}(R_{j}^{v},N)$ ,

then $N$ is M-finite. If $N$ is not projective, consider the Auslander-Reiten sequence
$0\rightarrow\tau_{B}N^{\sigma}\rightarrow E\rightarrow N\rightarrow 0$ in $mod_{B}$ and the corresponding sequence
$0\rightarrow\overline{\tau_{B}N}\rightarrow\overline{E}\rightarrow N\rightarrow 0$ in $mod_{A}$ , where $\overline{E}=(Hom_{B}(M,\tau_{B}N),E,Hom_{B}(M,\sigma))$ .

Since the indecomposable direct summands of $\overline{E}$ belong to $D_{j}$ by induction

hypothesis we get that the indecomposable direct summands of $E$ belong to $\varphi$ and

are M-finite. Hence $ N\in\varphi$ . Moreover, since $N$ is in $D_{j}$ , it has only finitely many

predecessors and therefore any irreducible map $E_{j}\rightarrow N$ in $\varphi$ is M-finite. For the

second case, assume that $V\neq 0$ and take an indecomposable direct summand $N^{\prime}$

of $N$ . Hence $Hom_{B}(M,N^{\prime})\neq 0$ . Suppose that $N^{\prime}$ is not in $\varphi$ , then $rad_{B}^{\infty}(M,N^{\prime})\neq 0$
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and $N^{\prime}$ has infinitely many predecessors. The same happens to (V, $ N,\gamma$ ) which
contains $(0, N^{\prime},O)$ . A contradiction showing that $ N^{\prime}\in\varphi$ . In the same way $N^{\prime}$ is
M-finite.

Now we continue the main line of the proof. Let $Y$ be an indecomposable
direct summand of $X$ . If $Y$ is not projective, then $Y$ belongs to $D_{j}$ and we are
done. Assume that $Y$ is projective. Consider first the case $Y=P_{tl}$ . By (a), $P_{a}$ is
directing and therefore the predecessors of $P$, in $mod_{A}$ are B-modules and are
predecessors of some direct summand $M_{i}$ of $M=$ rad P. in $mod_{B}$ . Since every

$M_{j}$ belongs to $\varphi$ , then $Y=P_{a}$ has only finitely many (all directing) predecessors.
Finally assume that $Y=P$, for some $y\neq a$ . Let $R_{1}$

} be a direct summand of rad $P_{v}$

belonging to $D_{j}$ . By the claim shown above, $R_{1}$

}
$\in\Phi$ and $R_{1}^{v}$ is M-finite.

Therefore $P$
}

$\in \mathfrak{R}$ and it is also M-finite. By hypothesis (c), $Y=P_{v}$ has only
finitely many (all directing) predecessors in $\Gamma_{A}$ . This finishes our proof. $\square $

2.4. We consider again the example (1.7). With the notation introduced there
$A=C[N]$ where $N=P_{1}$ is simple projective. We sketch part of the postprojective
component $\varphi$ of $\Gamma_{c}$ where $N$ lies.

The walk $\alpha_{5}^{-1}\alpha_{4}\alpha_{\tau}^{-1}\alpha_{2}\alpha_{1}$ from $N$ to $Y$ is formed by N-finite irreducible maps,
therefore $Y$ is N-finite. On the other hand, $\dim_{k}Hom_{c}(N,X)=2$ and
$\dim_{k}Hom_{c}(N, Y)=1$ , therefore by (2.2), $h$ is not N-finite. By (2.3), $P_{2}$ does not

belong to a postprojective component in $\Gamma_{A}$ .

3. Some quadratic conditions.

3.1. In this section we consider again the situation of section 2 and we find
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some necessary conditions for the existence of a postprojective component in $\Gamma_{A}$

containing the projective module corresponding to the extension vertex. These
conditions are expressed by the values of certain quadratic forms.

Let $A=B[M]$ be a one-point extension of the algebra $B$ by the module
$M=radP_{\mathcal{L}l}$ . Let $M=\oplus_{i^{\backslash }=1}M_{i}$ be the indecomposable decomposition of $M$ . Consider
the Euler form associated with $B$ :

$\langle\underline{\dim}X,\underline{\dim}Y\rangle_{B}=\sum_{j=0}^{\infty}(-1)^{j}\dim_{k}Ext_{B}^{j}(X, Y)$ ,

where $\underline{\dim}X$ is the element of the Grothendieck group $K_{0}(B)$ corresponding to $X$ .
See [3].

For different $i,j\in\{1,\cdots,s\}$ , we define the quadratic form

$q_{ij}(\omega)=\langle\omega,\underline{\dim}M_{i}\rangle_{B}\langle\omega,\underline{\dim}M_{j}\rangle_{B}$ .

3.2. PROPOSITION. Let $\varphi_{1},\cdots,\varphi_{m}$ be the postprojective components of $\Gamma_{B}$ and
assume that $m\geq 1$ . Suppose that $\Gamma_{A}$ has a postprojective component, then there
exists a component $\varphi_{f}$ such that for every two different $i,j,\in\{1,\cdots,s\}$ and every
$X\in \mathfrak{R}_{t}$ with projdim $BX\leq 1$ , we have

$q_{ij}(\underline{\dim}X)\geq 0$

PROOF. First assume that for some $t\in\{1,\cdots,m\}$ , there is no $M_{j}$ belonging to
$\varphi_{l}$ . Take $X\in \mathfrak{R}_{f}$ with proj $\dim_{B}X\leq 1$ , then

$\langle\underline{\dim}X,\underline{\dim}M_{i}\rangle_{B}=\dim_{k}Hom_{B}(X,M_{j})-\dim_{k}Ext_{B}^{1}(X,M_{i})$ .

Since $M_{j}\not\in \mathfrak{R}_{t}$ , then $Ext_{B}^{1}(X,M_{j})=0$ and $\langle\underline{\dim}X,\underline{\dim}M_{j}\rangle_{B}\geq 0$ . This shows that
$q_{ij}(\underline{\dim}X)\geq 0$ for any two $i,j\in\{1,\cdots,s\}$ .

In the other case, choose $t=1$ . Take $i,j\in\{1,\cdots,s\}$ different and $X\in \mathfrak{R}_{1}$ with
proj $\dim_{B}X\leq 1$ . Assume that

$\langle\underline{\dim}X,\underline{\dim}M_{j}\rangle_{B}<0<\langle\underline{\dim}X,\underline{\dim}M_{j}\rangle_{B}$ .

Since proj $\dim_{B}X\leq 1$ , this implies that $Ext_{B}^{1}(X,M_{j})\neq 0\neq Hom_{B}(X,M_{j})$ . The
Auslander-Reitern formula gives $0\neq DExt_{B}^{1}(X,M_{j})\cong\overline{Hom}_{B}(M_{j},\tau_{B}X)$ (see [3]).

Therefore there is a path in $\Gamma_{B},M_{j}\leq\tau_{B}X\leq X\leq M_{j}$ . By (1.2), $P_{a}$ is not directing.
Let $\varphi$ be a postprojective component of $\Gamma_{A}$ . Since each $\varphi_{\ell}$ for $1\leq\ell\leq m$ ,

contains a summand of $M$ , then $\varphi\neq\varphi_{p}$ . Therefore $\varphi$ is not a component of $\Gamma_{B}$ .
Hence it contains a module $ Y\in\varphi$ with $0\neq Y(a)=Hom_{A}(P_{a},Y)$ . This implies that
$P_{a}\in \mathfrak{R}$ . But then P. should be directing, a contradiction. We are done. $\square $

3.3. We come back to our example (1.7) now considering $A=B[M]$ where $M$
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$=radP_{7}$ . Thus $M=M_{1}\oplus M_{2}$ , where

$\underline{\dim}M_{1}=(1,0,0,1,1,0,0)$ and $\underline{\dim}M_{2}=(0,0,0,0,0,1,0)$

in $K_{0}(B)$ . There is a unique postprojective component $\varphi_{1}$ of $\Gamma_{B}$ which has the
shape

where $\underline{\dim}X=(6,2,2,2,3,0,1)\in K_{0}(B)$ and clearly proj $\dim_{B}X\leq 1$ .
We have

$\langle x,\underline{\dim}M_{1}\rangle_{B}=x_{1}-x_{2}-x_{3}-x_{7}$ and $\langle x,\underline{\dim}M_{2}\rangle_{B}=x_{6}-x_{7}$ .

Hence $q_{12}(\underline{\dim}X)=-1$ . The quiver $\Gamma_{A}$ has no postprojective component (as we
already knew).
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