A NOTE ON FREE DIFFERENTIAL GRADED ALGEBRA RESOLUTIONS

By

D. TAMBARA

Introduction

We work ove a field k. A differential graded algebra (dga for short) in this paper is a graded k-algebra $U = \bigoplus_{n \geq 0} U_n$ with differential d of degree -1. Given a k-algebra R, it is well-known that there exists a free dga resolution $\varepsilon: U \to R$ (Baues [2]). That is, U is a dga which is free as a graded algebra, ε is a dga map, and the sequence

$$\cdots \xrightarrow{d} U_n \xrightarrow{d} \cdots \xrightarrow{d} U_0 \xrightarrow{\varepsilon} R \to 0$$

is exact. Such a resolution is thought of as a prolongation of a presentation of R by generators and relations, and expected to contain lots of information about homology of R. Although free dga's frequently appear in homotopical algebra such as [2], not much seems to be known about the structure of free dga resolutions of algebras.

We study here a relationship between a free dga resolution of R and a free bimodule resolution of the R-bimodule R. Let U be a dga which is free on a graded space E, and $\varepsilon:U\to R$ an augmentation map. We construct a complex $R\otimes E\otimes R$ of free R-bimodules with augmentation $\sigma:R\otimes E\otimes R\to \Omega_R$, where Ω_R is the kernel of the multiplication map $R\otimes R\to R$. If ε is a resolution, then so is σ (Proposition 1.2). The converse is true when R is a connected graded algebra and U,ε are taken to be compatible with the grading of R (Theorem 3). Therefore, the verification of the exactness of $\varepsilon:U\to R$ reduces to that of $\sigma:R\otimes E\otimes R\to \Omega_R$, which is much easier.

Using this criterion, we give explicit free dga resolutions of Koszul algebras and their generalizations.

NOTATION. For a graded module $M = \bigoplus_{n \ge 0} M_n$, we write $M_+ = \bigoplus_{n \ge 0} M_n$. For a

400 D. TAMBARA

k-module V, T(V) is the tensor algebra on V. When V is a graded k-module, we give T(V) the induced grading.

1. The bimodule resolution associated with a dga resolution

A dga is a graded algebra $U = \bigoplus_{n \ge 0} U_n$ equipped with a linear map $d: U \to U$ such that $d^2 = 0$, $d(U_n) \subset U_{n-1}$ and $d(xy) = d(x)y + (-1)^p x d(y)$ for $x \in U_p$, $y \in U_q$. A dga (U, d) is said to be free if the graded algebra U is free, that is, U = T(E) for some graded subspace E of U.

Any algebra can be viewed as a dga concentrating in degree 0. Let U be a dga and R an algebra. A dga map $\varepsilon: U \to R$ is called a resolution if

$$\cdots \xrightarrow{d} U_n \xrightarrow{d} \cdots \xrightarrow{d} U_0 \xrightarrow{\varepsilon} R \to 0$$

is exact.

It is well-known that given an algebra R, there exist a free dga U and a resolution $\varepsilon: U \to R$. For example, see [2, Lemma 7.21], where a more general statement is proved. Although our results are logically independent of this fact, we briefly review a construction of a free dga resolution.

First, take a surjective algebra map $U^{(0)} = T(E_0) \to R$ from a tensor algebra. Suppose we have constructed a dga $U^{(n)}$ which is free on a graded space $E_0 \oplus \cdots \oplus E_n$, and a dga map $U^{(n)} \to R$ which induces isomorphism on homology in degree < n. Then take a linear map $\phi: E_{n+1} \to \operatorname{Ker}(d:U_n^{(n)} \to U_{n-1}^{(n)})$ so that $\operatorname{Im} \phi$ covers $H_n(U^{(n)})$. Put $U^{(n+1)} = T(E_0 \oplus \cdots \oplus E_{n+1})$ and extend the differential of $U^{(n)}$ to the differential d of $U^{(n+1)}$ so that $d \mid E_{n+1} = \phi$. Then $H_n(U^{(n+1)}) = 0$. Thus we obtain an increasing sequence of free dga's $U^{(n)}, n \ge 0$. Then $U = \bigcup_n U^{(n)}$ together with the map $U_0 = U^{(0)} \to R$ provides a free dga resolution of R.

In this section we give a construction of a free R-bimodule resolution of the R-bimodule R from a free dga resolution of R. This is based on an idea of Shukla in [5].

Let R be an algebra, U = (T(E), d) a free dga and $\varepsilon: U \to R$ a dga map. Define an R-bimodule map $\rho: R \otimes U \otimes R \to R \otimes E \otimes R$ by

$$\rho(1 \otimes x_1 \cdots x_n \otimes 1) = \sum_{i=1}^n \varepsilon(x_1 \cdots x_{i-1}) \otimes x_i \otimes \varepsilon(x_{i+1} \cdots x_n)$$
for $x_1, \dots, x_n \in E$ and
$$\rho(1 \otimes 1 \otimes 1) = 0.$$

Then $\rho(R \otimes U_n \otimes R) \subset R \otimes E_n \otimes R$, because $\varepsilon(U_+) = 0$.

Define an R-bimodule map $\partial: R \otimes E \otimes R \to R \otimes E \otimes R$ as the composite

$$R \otimes E \otimes R \hookrightarrow R \otimes U \otimes R \xrightarrow{1 \otimes d \otimes 1} R \otimes U \otimes R \xrightarrow{\rho} R \otimes E \otimes R.$$

Then $\partial (R \otimes E_n \otimes R) \subset R \otimes E_{n-1} \otimes R$.

Define an R-bimodule map $\sigma: R \otimes E \otimes R \rightarrow R \otimes R$ by

$$\sigma(1 \otimes x \otimes 1) = \varepsilon(x) \otimes 1 - 1 \otimes \varepsilon(x) .$$

 σ vanishes on $R \otimes E_{+} \otimes R$.

PROPOSITION 1.1. $\partial^2 = 0$, $\sigma \partial = 0$.

Thus we obtain a complex of R-bimodules

$$\cdots \xrightarrow{\partial} R \otimes E_n \otimes R \xrightarrow{\partial} \cdots \xrightarrow{\partial} R \otimes E_0 \otimes R \xrightarrow{\sigma} R \otimes R \xrightarrow{\text{mult}} R \to 0.$$

PROPOSITION 1.2. If $\varepsilon: U \to R$ is a resolution, then this complex is exact.

2. Proof of Propositions 1.1 and 1.2

Viewing U as just an algebra, we form the standard free resolution of the U-bimodule U ([3]):

$$\cdots \xrightarrow{\delta} U^{\otimes (n+2)} \xrightarrow{\delta} \cdots \xrightarrow{\delta} U \otimes U \xrightarrow{\text{mult}} U \to 0$$

where

$$\delta(u_0 \otimes \cdots \otimes u_{n+1}) = \sum_{i=0}^n (-1)^i u_0 \otimes \cdots \otimes u_i u_{i+1} \otimes \cdots \otimes u_{n+1}.$$

Each term of the resolution is a complex as a tensor product of the complex U, and each δ is a chain map, because the multiplication $U \otimes U \to U$ is so.

Now regard R as a U-bimodule through the map $\varepsilon: U \to R$. Applying the functor $R \otimes_U () \otimes_U R$ to the standard resolution, we obtain a complex

$$\cdots \xrightarrow{\gamma} R \otimes U^{\otimes n} \otimes R \xrightarrow{\gamma} \cdots \xrightarrow{\gamma} R \otimes R \xrightarrow{\text{mult}} R \longrightarrow 0,$$

whose terms are complexes and differentials γ are chain maps. So we have a double complex B having terms $B_{pq} = (R \otimes U^{\otimes p} \otimes R)_q$ for $p,q \geq 0$. This was considered by Shukla [5]. The propositions are proved by relating $H_p^1 H_q^{\Pi}(B)$ and $H_q^{\Pi} H_p^{\Pi}(B)$ with $H_{p+q}(\text{tot }B)$. Here H^1, H^{Π} mean the homology with respect to the first, second index respectively, and tot B is the total complex of B.

We first treat $H^1H^{11}(B)$.

(i) We have a diagram

where the first row is exact and the triangle is commutative.

PROOF. Forget the differential graded structure of U for a moment. As U is the tensor algebra on E, a minimal free resolution of the U-bimodule U is given by

$$0 \to U \otimes E \otimes U \xrightarrow{\tau} U \otimes U \xrightarrow{\text{mult}} U \to 0$$

where $\tau(1 \otimes x \otimes 1) = x \otimes 1 - 1 \otimes x$ for $x \in E([2, p. 181, Ex2])$. Define a *U*-bimodule map $\theta: U \otimes U \otimes U \to U \otimes E \otimes U$ by

$$\theta(1 \otimes x_1 \cdots x_n \otimes 1) = \sum_{i=1}^n x_1 \cdots x_{i-1} \otimes x_i \otimes x_{i+1} \cdots x_n$$
$$\theta(1 \otimes 1 \otimes 1) = 0$$

for $x_1, \dots, x_n \in E$. θ is the identity on $U \otimes E \otimes U$ and the diagram

$$\begin{array}{ccc} U \otimes U \otimes U & \stackrel{\delta}{\longrightarrow} & U \otimes U \\ \theta \downarrow & & \parallel \\ U \otimes E \otimes U & \stackrel{\gamma}{\longrightarrow} & U \otimes U \end{array}$$

is commutative. By the exactness of the standard and the minimal resolutions, it follows that the sequence

$$U \otimes U \otimes U \otimes U \xrightarrow{\delta} U \otimes U \otimes U \xrightarrow{\theta} U \otimes E \otimes U \rightarrow 0$$

is exact. Now apply $R \otimes_U () \otimes_U R$ to the above diagram and the sequence. As $\rho = R \otimes_U \theta \otimes_U R$, $\sigma = R \otimes_U \tau \otimes_U R$, the assertion follows.

PROOF OF PROPOSITION 1.1. Since γ is a chain map, it follows from the exact sequence of (i) that $R \otimes E \otimes R$ becomes a complex with differential ∂' and ρ becomes a chain map. By the definition of ∂ and the fact that ρ is the identity on $R \otimes E \otimes R$, we know $\partial' = \partial$. Thus $(R \otimes E \otimes R, \partial)$ is a complex and ρ, σ are chain maps.

(ii) The homology of the complex

$$\cdots \xrightarrow{\partial} R \otimes E_n \otimes R \xrightarrow{\partial} \cdots \xrightarrow{\partial} R \otimes E_0 \otimes R \xrightarrow{\sigma} R \otimes R$$

at $R \otimes E_n \otimes R$ is isomorphic to $H_{n+1}(\text{tot } B)$.

PROOF. As noted in (i), the *U*-bimodule *U* has projective dimension 1. So $H_p^1(B) = \operatorname{Tor}_p^{U \otimes U^{op}}(R \otimes R, U) = 0$ for p > 1. By (i), we have $H_1^1(B) \cong \operatorname{Ker} \sigma$, $H_0^1(B) \cong \operatorname{Cok} \sigma$. So

$$H_1^{\mathsf{I}}(B_{\cdot,q}) \cong R \otimes E_q \otimes R \qquad \text{if } q > 0$$

$$\cong \operatorname{Ker}(R \otimes E_0 \otimes R \xrightarrow{\sigma} R \otimes R) \quad \text{if } q = 0$$

$$H_0^{\mathsf{I}}(B_{\cdot,q}) = 0 \qquad \text{if } q > 0.$$

Hence $H_q^{II}H_1^{I}(B)$ is the homology at $R \otimes E_q \otimes R$ of the complex in the statement and the spectral sequence degenerates to give $H_q^{II}H_1^{I}(B) \cong H_{q+1}(\text{tot } B)$ for $q \ge 0$.

(iii) If $\varepsilon: U \to R$ is a resolution, then $H_n(\text{tot } B) = 0$ for n > 0.

PROOF. By Künneth we have

$$H_q^{\mathrm{II}}(B_{p,\cdot}) = H_q(R \otimes U^{\otimes p} \otimes R) \cong \begin{cases} R^{\otimes (p+2)} & \text{if } q = 0\\ 0 & \text{if } q > 0 \end{cases}$$

and the complex

$$\cdots \to H_0^{\mathrm{II}}(B_{p,\cdot}) \to \cdots \to H_0^{\mathrm{II}}(B_{0,\cdot})$$

is isomorphic to the standard free resolution of the R-bimodule R, which is acyclic. Hence $H_p^1H_q^{11}(B)=0$ unless p=q=0. Then $H_n(\cot B)=0$ for n>0.

Now Proposition 1.2 follows from (ii) and (iii).

3. Case where R is graded

In this section we state a converse of Proposition 1.2 under certain assumptions. As before, let R be a k-algebra, U = (T(E), d) a free differential graded algebra with augmentation $\varepsilon: U \to R$. Here we further assume that

- R is a connected graded algebra, that is, $R = \bigoplus_{m \ge 0} R^m$ with $R^0 = k$.
- E has another grading $E = \bigoplus_{m \ge 0} E^m$ compatible with the original one, that is, $E_n = \bigoplus_{m \ge 0} E_n^m$ with $E_n^m = E^m \cap E_n$.
- $E_0^0 = 0$.

Then the upper grading of E induces the grading $U = \bigoplus_{m \ge 0} U^m$ so that U is a doubly graded algebra. The third condition means that the graded algebra U_0 is connected. We finally assume

• $d(U^m) \subset U^m, \varepsilon(U^m) \subset R^m$.

404 D. TAMBARA

REMARK. For any connected graded algebra R, one can find a resolution $\varepsilon: U \to R$ satisfying the above conditions. This is easily seen from the construction reviewed in Section 1.

THEOREM 3. The following are equivalent.

- (1) $\varepsilon: U \to R$ is a resolution.
- (2) The complex

$$\cdots \xrightarrow{\partial} R \otimes E_n \otimes R \xrightarrow{\partial} \cdots \xrightarrow{\partial} R \otimes E_0 \otimes R \xrightarrow{\sigma} R \otimes R \xrightarrow{\text{mult}} R \to 0$$

is exact.

(3) The complex

$$\cdots \xrightarrow{\overline{\partial}} E_n \otimes R \xrightarrow{\overline{\partial}} \cdots \xrightarrow{\overline{\partial}} E_0 \otimes R \xrightarrow{\overline{\sigma}} R \xrightarrow{\eta} k \to 0$$

is exact, where $\bar{\partial} = k \otimes_R \partial$, $\bar{\sigma} = k \otimes_R \sigma$ and η is the projection.

 $(2) \Rightarrow (3)$ is obvious, and $(3) \Rightarrow (2)$ follows from a version of Nakayama's lemma. We shall prove $(3) \Rightarrow (1)$ in the next section.

The map $\overline{\partial}$ on E is given also as $E \xrightarrow{d} E \otimes U \xrightarrow{1 \otimes \mathcal{E}} E \otimes R$, and $\overline{\sigma} = -\mathcal{E}$ on E (see (v) of the next section).

4. Proof of Theorem 3

Let \mathfrak{A} be the set of finite sequences $v = (v_1, \dots, v_r)$ of non-negative integers. Write $|v| = v_1 + \dots + v_r$, l(v) = r. For $\mu = (\mu_1, \dots, \mu_q)$ and $v = (v_1, \dots, v_r)$, define

$$\mu v = (\mu_1, \dots, \mu_q, v_1, \dots, v_r).$$

We write also $0^k = (0, \dots, 0), 0^k 1 = (0, \dots, 0, 1)$ (k is the number of 0).

Define a partial order < on $\mathfrak A$ as follows. For μ and ν as above we set $\mu < \nu$ if $|\mu| = |\nu|$ and $\mu_1 = \nu_1, \dots, \mu_{h-1} = \nu_{h-1}, \mu_h < \nu_h$ for some $h \le q, r$. Note that $\mu 0^i < \nu 0^j$ if and only if $\mu < \nu$. Let $\mathfrak A' = \{(\nu_1, \dots, \nu_r) \in \mathfrak A \mid r > 0, \nu_r > 0\}$. Then < is a total order on the subset $\{\nu \in \mathfrak A' \mid |\nu| = n\}$ for each n > 0.

For $v = (v_1, \dots, v_r) \in \mathfrak{A}'$, define $v_- = (v_1, \dots, v_{r-1}, v_r - 1)$.

For $v \in \mathfrak{A}$, we set $E_v = E_{v_0} \otimes \cdots \otimes E_{v_n}$. Then

$$U=T(E)=\bigoplus_{\mathbf{v}\in\mathbb{Y}}E_{\mathbf{v}},\ U_0=T(E_0)=\bigoplus_{k\geq 0}E_{0^k}\ U_+=\bigoplus_{\mathbf{v}\in\mathbb{Y}}E_{\mathbf{v}}U_0\,.$$

For $v \in \mathcal{N}$, let

$$\operatorname{pr}_{v}:U\to E_{v},\ \pi_{v}:U\to \bigoplus_{k>0}E_{v,0^{k}}=E_{v}U_{0}$$

be the projections with respect to the above decomposition for U.

(i) $d(E) \subset EU$.

PROOF. Clearly $d(E_n) \subset U_{n-1} \subset EU$ if n > 1. And

$$d(E_1) \subset \operatorname{Ker}(\varepsilon: U_0 \to R) \subset U_0^+ = E_0 U_0$$

by the assumption $U_0^0 = k$.

We define a map $d_{\star}: U_{+} \to U$ as follows. First, d_{\star} on E_{+} is the composite

$$E_{+} \xrightarrow{d} E \otimes U \xrightarrow{1 \otimes \pi_{\emptyset}} E \otimes U_{0}$$

where π_{\varnothing} is the projection onto U_0 . As $U_+ = U \otimes E_+ \otimes U_0$, we can then define d_{\star} on U_+ by

$$d_{\star}(xyz) = (-1)^p x d_{\star}(y)z$$

for $x \in U_p$, $y \in E_+$, $z \in U_0$. Clearly d_\star is right U_0 -linear and left skew U-linear. Also $d_\star(E_vU_0) \subset E_{v_-}U_0$ for $v \in \mathfrak{A}'$.

(ii) For $x \in E_{\nu}U_0$ with $\nu \in \mathfrak{A}'$ we have

$$d(x) - d_{\star}(x) \in \bigoplus_{\substack{\mu \in \mathbb{N}' \\ \mu < \nu_{-}}} E_{\mu} U_{0}$$

and in particular $d_{\star}(x) = \pi_{v} d(x)$.

PROOF. Let $v = (v_1, \dots, v_r)$. As d and d_{\star} are right U_0 -linear, we may assume $x = x_1 \cdots x_r$ with $x_1 \in E_{v_1}, \cdots, x_r \in E_{v_r}$. Then

$$d(x) = \sum_{i=1}^{r} \pm x_1 \cdots x_{i-1} d(x_i) x_{i+1} \cdots x_r$$
$$= \sum_{i=1}^{r} \sum_{\lambda} \pm x_1 \cdots x_{i-1} \operatorname{pr}_{\lambda} d(x_i) x_{i+1} \cdots x_r$$

where λ runs over elements of $\mathfrak A$ such that $|\lambda| = v_i - 1$, $l(\lambda) \ge 1$ (by (i)). If i < r or if i = r and $\lambda_1 < v_r - 1$, then

$$(v_1, \dots, v_{i-1})\lambda(v_{i+1}, \dots, v_r) < v_-.$$

If i = r and $\lambda_1 = v_r - 1$, then $\lambda = (v_r - 1, 0, \dots, 0)$. The sum of the terms for such i, λ is

$$\pm x_1 \cdots x_{r-1} \sum_{k \ge 0} \operatorname{pr}_{(\nu_r - 1)0^k} d(x_r) = d_{\star}(x).$$

Thus $d(x) - d_{\star}(x) \in \bigoplus_{\mu < \nu_{-}} E_{\mu}$.

(iii)
$$\operatorname{pr}_{\lambda\mu}d(xy) = (-1)^{|\lambda|} x \operatorname{pr}_{\mu}d(y)$$
 for $\lambda, \mu \in \mathfrak{A}, x \in E_{\lambda}, y \in U$.

PROOF. Expanding d(x) as above, we see $\operatorname{pr}_{\lambda u}(d(x)y) = 0$.

(iv) Let $\mu \in \mathfrak{A}$, $v \in \mathfrak{A}'$, $\mu < v$. If $\pi_{v_{-}} d(E_{\mu}) \neq 0$, then $\mu = v_{-} 0^{i} 10^{j}$ for some $i, j \geq 0$.

PROOF. We have $\operatorname{pr}_{\lambda}d(E_{\mu}) \neq 0$ for some $\lambda = v_{-}0^{k}$, $k \geq 0$. Put r = l(v), $q = l(\mu)$, $p = l(\lambda) = r + k$. Then $q \leq p$ by (i), and there exists $h \leq q$ such that

$$\mu_1 = \lambda_1, \dots, \mu_{h-1} = \lambda_{h-1},$$

$$\mu_h = \lambda_h + \dots + \lambda_{h+p-q} + 1,$$

$$\mu_{h+1} = \lambda_{h+p-q+1}, \dots, \mu_q = \lambda_p.$$

If h < r, then $\mu > v$, a contradiction. If h = r, then $\mu = v0^{q-r}$, which is also impossible. Hence h > r and $\mu = v_0^{-1}10^{j}$ for some i,j.

Let $\eta: R \to k$ be the projection map. $E \otimes R \cong k \otimes_R (R \otimes E \otimes R)$ becomes a complex with differential $\bar{\partial} = k \otimes_R \partial$ and augmentation $\bar{\sigma} = k \otimes_R \sigma: E \otimes R \to R$.

(v) We have

$$\overline{\partial} | E : E \xrightarrow{d} E \otimes U \xrightarrow{1 \otimes \varepsilon} E \otimes R, \ \overline{\sigma} | E = -\varepsilon.$$

PROOF. By the definition of ρ and the fact $\eta \varepsilon(E) = 0$, we have a commutative diagram

$$\begin{array}{ccc} U & \xrightarrow{p \mid U} & R \otimes E \otimes R \\ \bigcup & & \downarrow^{\eta \otimes 1 \otimes 1} \\ E \otimes U & \xrightarrow{1 \otimes \varepsilon} & E \otimes R. \end{array}$$

From this and (i), the first assertion follows. The second is clear.

(vi) The following diagram is commutative.

$$\begin{array}{ccc} E_n \otimes U_0 & \xrightarrow{\quad 1 \otimes \varepsilon \quad} & E_n \otimes R \\ & \downarrow_{\bar{\partial}} & & \downarrow_{\bar{\partial}} \\ E_{n-1} \otimes U_0 & \xrightarrow{\quad 1 \otimes \varepsilon \quad} & E_{n-1} \otimes R. \end{array}$$

PROOF. Follows from (v) and the definition of d_{\star} .

From now on we assume (3) of Theorem 3.

(vii) $\varepsilon: U \to R$ is onto.

PROOF. The exactness of $E_0 \otimes R \xrightarrow{\overline{\sigma}} R \xrightarrow{\eta} k$ implies $R^+ = \varepsilon(E_0)R$. So R is generated by $\varepsilon(E_0)$ as a k-algebra.

(viii)
$$U_1 \xrightarrow{d} U_0 \xrightarrow{\varepsilon} R$$
 is exact.

PROOF. By (vi) we have a commutative diagram

Consider the ideal $I = \operatorname{Ker}(\varepsilon: U_0 \to R) \subset U_0^+ = E_0 \otimes U_0$. By the exactness of the right column of the diagram, we have $I \subset d_{\star}(E_1 \otimes U_0) + \operatorname{Ker}(1 \otimes \varepsilon)$, hence $I \subset d(U_1) + E_0 I$. Since $d(U_1)$ is an ideal of U_0 , we have $I = d(U_1)$ by Nakayama's lemma.

(ix)
$$U_{n+1} \xrightarrow{d} U_n \xrightarrow{d} U_{n-1}$$
 is exact for $n > 0$.

PROOF. Fix $p \ge 0$. Let us show the exactness in upper degree p. Firstly we note that the set $\{v \in \mathfrak{A}' | \pi_v(U_n^p) \ne 0\}$ is finite. Indeed, such v must satisfy |v| = n and $\#\{i|v_i = 0\} \le p$ because $E_0^0 = 0$. So $l(v) \le n + p$.

For $0 \neq x \in U_n^p$, let H(x) be the greatest element of $\{v \in \mathfrak{A}' | \pi_v(x) \neq 0\}$ with respect to the order <. We shall show that if $0 \neq x \in \text{Ker}(d: U_n^p \to U_{n-1}^p)$, then there exists $y \in U_{n+1}^p$ such that H(x-d(y)) < H(x) or x-d(y) = 0. Then the exactness will follow by induction.

Put $H(x) = v = (v_1, \dots, v_r)$ and $v_r = m > 0, v' = (v_1, \dots, v_{r-1})$. Also put $x_\mu = \pi_\mu(x)$ for $\mu \in \mathfrak{A}'$. Then $x = x_\nu + \sum_{\mu < \nu} x_\mu$. We have

$$0 = \pi_{v_{-}} d(x) = \pi_{v_{-}} d(x_{v}) + \sum_{\mu \leq v} \pi_{v_{-}} d(x_{\mu}).$$

By (ii), $\pi_{v_{-}}d(x_{v}) = d_{\star}(x_{v})$. If $\mu < v$ and $\pi_{v_{-}}d(x_{\mu}) \neq 0$, then, by (iv), $\dot{\mu}0^{k} = v_{-}0^{i}10^{j}$ for some i, j, k. Hence $\mu = v_{-}0^{i}1$ as $\mu \in \mathfrak{A}'$. So $x_{\mu} \in E_{v_{-}} \otimes U_{1}$. Then, by (iii), $\pi_{v_{-}}d(x_{\mu}) \in E_{v_{-}} \otimes d(U_{1})$. Hence $(1 \otimes \varepsilon)d_{\star}(x_{v}) = 0$ (*).

By (vi), the diagram

commutes up to sign. By (*), (vii) and the exactness of the right column, there

exists $z \in (E_{v'} \otimes E_{m+1} \otimes U_0)^p$ such that

$$x_v - d_{\star}(z) \in \operatorname{Ker}(E_v \otimes U_0 \xrightarrow{1 \otimes \varepsilon} E_v \otimes R) = E_v \otimes d(U_1).$$

Since d_{\star} operates as $\pm 1 \otimes d$ on $E_{v} \otimes U_{1}$, we have $x_{v} - d_{\star}(z) = d_{\star}(u)$ for some $u \in (E_{v} \otimes U_{1})^{p}$.

But by (ii),

$$d(z) - d_{\star}(z) \in \bigoplus_{\mu < v} E_{\mu} U_{0}$$

$$d(u) - d_{\star}(u) \in \bigoplus_{\mu < v} E_{\mu} U_{0},$$

where $\mu \in \mathfrak{A}'$. Hence

$$x - d(z + u) = x_v - d(z + u) + \sum_{\mu < v} x_\mu \in \bigoplus_{\mu < v} E_\mu U_0$$

as required.

5. Examples of resolutions

We shall first give a free dga resolution of a Koszul algebra. Let R be a connected graded algebra generated by elements of degree 1 with defining relations of degree 2. So we can write as R = T(V)/(I) where $I \subset V \otimes V$. Put

$$I^{(n)} = \bigcap_{i+j=n-2} V^{\otimes i} \otimes I \otimes V^{\otimes j} \subset V^{\otimes n}$$

for $n \ge 0$. We understand $I^{(0)} = k$, $I^{(1)} = V$. R is called a Koszul algebra if the following complex of right R-modules is exact.

$$\rightarrow I^{(n)} \otimes R \rightarrow I^{(n-1)} \otimes R \rightarrow \cdots \rightarrow R \rightarrow k \rightarrow 0$$
.

Here the differential is induced by the inclusion maps

$$I^{(n)} \subset I^{(n-1)} \otimes V \subset I^{(n-1)} \otimes R$$
.

For equivalent definitions of Koszul algebras, see [1], [4].

Let $\Delta_{p,q}: I^{(p+q)} \to I^{(p)} \otimes I^{(q)}$ be the inclusion map for p,q>0. Let $E=\bigoplus_{n\geq 1} I^{(n)}$ with bigrading $E_n=E^{n+1}=I^{(n+1)}$. Put U=T(E). Let $d:U\to U$ be the derivation such that

$$d(x) = \sum_{\substack{p+q=n+1\\ p,q>0}} (-1)^p \Delta_{p,q}(x) \quad \text{for } x \in E_n.$$

Let $\varepsilon: U \to R$ be the algebra map such that $\varepsilon(x) = x$ for $x \in E_0 = V$ and $\varepsilon(x) = 0$ for $x \in E_+$.

PROPOSITION 5.1. $\varepsilon:(U,d)\to R$ is a free dga resolution.

PROOF. $d^2 = 0$ follows from the coassociativity of $\Delta_{p,q}$. $\varepsilon d = 0$ is clear. Let $\overline{\partial}$ be as in Theorem 3. For $x \in E_p$ we have

$$\overline{\partial}(x) = (1 \otimes \varepsilon) \sum_{p+q=n+1} (-1)^p \Delta_{p,q}(x) = (-1)^n \Delta_{n,1}(x).$$

Hence, up to sign, $\bar{\partial}$ coincides with the differential of the above free resolution of the R-module k. So $\varepsilon: U \to R$ is a resolution.

We next introduce a generalization of a Koszul algebra, for which we give a free dga resolution. Fix an integer $e \ge 2$. Let R = T(V)/(I) with $I \subset V^{\otimes e}$. As before, define

$$I^{(n)} = \bigcap_{i+j=n-e} V^{\otimes i} \otimes I \otimes V^{\otimes j} \subset V^{\otimes n}.$$

Consider the complex of right R-modules

$$\to I^{(en+1)} \otimes R \to I^{(en)} \otimes R \to \cdots \to I^{(1)} \otimes R \to I^{(0)} \otimes R \to k \to 0$$

where the differential is induced by the inclusion maps

$$I^{(en+1)} \subset I^{(en)} \otimes V \subset I^{(en)} \otimes R$$

$$I^{(en)} \subset I^{(e(n-1)+1)} \otimes V^{\otimes (e-1)} \subset I^{(e(n-1)+1)} \otimes R.$$

We say R is an e-Koszul algebra if the above complex is exact.

REMARK. (i) 2-Koszul just means Koszul. (ii) $k[x]/(x^e)$ is e-Koszul. (iii) Let $J \subset V \otimes V$. If T(V)/(J) is Koszul, then $T(V)/(J^{(e)})$ is e-Koszul. We omit the proof.

Let us give a free dga resolution of an e-Koszul algebra R = T(V)/(I). Let

$$\begin{split} E &= \bigoplus_{n \geq 0} I^{(en+1)} \oplus \bigoplus_{n \geq 1} I^{(en)} \\ E_{2n} &= E^{en+1} = I^{(en+1)}, \ E_{2n-1} = E^{en} = I^{(en)}. \end{split}$$

Put $E_{\text{ev}} = \bigoplus_{n \geq 0} E_{2n}$, $E_{\text{od}} = \bigoplus_{n \geq 1} E_{2n-1}$. Let

$$\begin{split} & \boldsymbol{\delta}_{11} : E_{\text{od}} \rightarrow E_{\text{od}} \otimes E_{\text{od}} \\ & \boldsymbol{\delta}_{0} : E_{\text{od}} \rightarrow E_{\text{ev}}^{\otimes e} \\ & \boldsymbol{\delta}_{10} : E_{\text{ev}} \rightarrow E_{\text{od}} \otimes E_{\text{ev}} \\ & \boldsymbol{\delta}_{01} : E_{\text{ev}} \rightarrow E_{\text{ev}} \otimes E_{\text{od}} \end{split}$$

be the maps whose components are respectively the inclusion maps

$$\begin{split} I^{(e(i+j))} &\to I^{(ei)} \otimes I^{(ej)} \\ I^{(e(i_1+\cdots+i_e+1))} &\to I^{(ei_1+1)} \otimes \cdots \otimes I^{(ei_e+1)} \\ I^{(e(i+j)+1)} &\to I^{(ei)} \otimes I^{(ej+1)} \\ I^{(e(i+j)+1)} &\to I^{(ei+1)} \otimes I^{(ej)}. \end{split}$$

Put U = T(E). Let $d: U \to U$ be the derivation such that

$$E = \bigoplus_{n \ge 0} d = \begin{cases} \delta_0 - \delta_{11} & \text{on } E_{\text{od}} \\ \delta_{01} - \delta_{10} & \text{on } E_{\text{ev}}. \end{cases}$$

Let $\varepsilon: U \to R$ be the algebra map which is the identity on $E_0 = V$ and vanishes on E_+ .

PROPOSITION 5.2. $\varepsilon:(U,d)\to R$ is a free dga resolution.

PROOF. Again $d^2 = 0$ is a consequence of the coassociativity of the maps $\delta_{11}, \delta_0, \delta_{10}, \delta_{01}$. Recall the description of $\bar{\partial}$ after Theorem 3. We have the equalities of maps

$$(E_{2n-1} \xrightarrow{\delta_0} (E \otimes U)_{2n-2} \xrightarrow{1 \otimes \varepsilon} E_{2n-2} \otimes R)$$

$$= (E_{2n-1} \hookrightarrow E_{2n-2} \otimes E_0^{\otimes (\varepsilon-1)} \hookrightarrow E_{2n-2} \otimes R),$$

$$(E_{2n} \xrightarrow{\delta_{10}} (E \otimes E)_{2n-1} \xrightarrow{1 \otimes \varepsilon} E_{2n-1} \otimes R)$$

$$= (E_{2n} \hookrightarrow E_{2n-1} \otimes E_0 \hookrightarrow E_{2n-1} \otimes R),$$

$$(1 \otimes \varepsilon) \delta_{01} = 0,$$

$$(1 \otimes \varepsilon) \delta_{11} = 0.$$

Hence $\bar{\partial}$ equals the differential of the free resolution of the *R*-module *k* up to sign. So by Theorem 3 $\varepsilon: U \to R$ is a resolution.

References

- [1] J. Backelin and R. Fröberg, Koszul Algebras, Veronese subrings and rings with linear resolutions, Rev. Roumaine Math. Pures, Appl. 30 (1985) 85-97.
- [2] H. J. Baues, Algebraic Homotopy, Cambridge University Press, Cambridge, 1989.
- [3] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, New Jersey, 1956.
- [4] S. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970) 39-60.
- [5] M. U. Shukla, Cohomologie des algèbres associatives, Ann. Scient. Éc. Norm. Sup. 78 (1961) 163-209.

Department of Mathematics Hirosaki University Hirosaki 036, Japan