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A NOTE ON FREE DIFFERENTIAL GRADED
ALGEBRA RESOLUTIONS

By

D. TAMBARA

Introduction

We work ove a field k. A differential graded algebra (dga for short) in this
paper is a graded k-algebra U =®,,,U, with differential 4 of degree —1. Given a
k-algebra R, it is well-known that there exists a free dga resolution £€:U — R
(Baues [2]). That is, U is a dga which is free as a graded algebra, € is a dga
map, and the sequence

d,y —24,.— 4,y —£5R>0

is exact. Such a resolution is thought of as a prolongation of a presentation of R
by generators and relations, and expected to contain lots of information about
homology of R. Although free dga’s frequently appear in homotopical algebra
such as [2], not much seems to be known about the structure of free dga
resolutions of algebras.

We study here a relationship between a free dga resolution of R and a free
bimodule resolution of the R-bimodule R. Let U be a dga which is free on a
graded space E, and €:U — R an augmentation map. We construct a complex
R® E® R of free R-bimodules with augmentation 0: R® E® R — Q,, where Q,
is the kernel of the multiplication map R® R— R. If € is a resolution, then so is
O (Proposition 1.2). The converse is true when R is a connected graded algebra
and U,e are taken to be compatible with the grading of R (Theorem 3).
Therefore, the verification of the exactness of &£:U — R reduces to that of
0:R®E®R— Q,, which is much easier.

Using this criterion, we give explicit free dga resolutions of Koszul algebras
and their generalizations.

NOTATION. For a graded module M=® ,,M,, we write M, =®,,M,. For a

n>0 i
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k-module V, T(V) is the tensor algebra on V. When V is a graded k-module, we
give T(V) the induced grading.

1. The bimodule resolution associated with a dga resolution

A dga is a graded algebra U=@®,,,U, equipped with a linear map d:U > U
such that d*> =0,d(U,)c U, and d(xy)=d(x)y+(-1)"xd(y) for xeU,,yeU,. A
dga (U, d) is said to be free if the graded algebra U is free, that is, U = T(E) for
some graded subspace E of U.

Any algebra can be viewed as a dga concentrating in degree 0. Let U be a
dga and R an algebra. A dga map €:U — R is called a resolution if

4,y —945..— 4,y —£5R—>0

is exact.

It is well-known that given an algebra R, there exist a free dga U and a
resolution £:U — R. For example, see [2, Lemma 7.21], where a more general
statement is proved. Although our results are logically independent of this fact,
we briefly review a construction of a free dga resolution.

First, take a surjective algebra map U‘'” =T(E,)— R from a tensor algebra.
Suppose we have constructed a dga U" which is free on a graded space
E,®---®E,, and a dga map U" — R which induces isomorphism on homology in
degree < n. Then take a linear map ¢:E,,, — Ker(d:U'" - U'")) so that Im¢
covers H (U").Put U =T(E,®---®E,,,) and extend the differential of U"’
to the differential d of U"*" so that d|E,,, =¢. Then H (U"")=0. Thus we
obtain an increasing sequence of free dga’s U"’,n>0. Then U=U, U™ together
with the map U, =U'” — R provides a free dga resolution of R.

In this section we give a construction of a free R-bimodule resolution of the
R-bimodule R from a free dga resolution of R. This is based on an idea of Shukla
in [5].

Let R be an algebra, U=(T(E),d) a free dga and €:U - R a dga map.
Define an R-bimodule map p: ROU®R—-> R®E®R by

PU®x,x, ®1) =T e(x,x,_,)®x, ®&(x,, - x,)
i=1
for x,,---,x, € E and
p(1®1®1)=0.

Then p(ROU, ®R)c RO E, ® R, because £(U,)=0.
Define an R-bimodule map d: R® EQ R— R® E® R as the composite



A note on free differential graded algebra resolutions 401

R®E®R >RIUXR—2 sROIU®R—2>RP®EQR.

Then J(R®E,®R)C R®E, ,®R.

n—1

Define an R-bimodule map 0: R® EQ R— R® R by
o(1®x®N=e(x)®1-1® &(x).

O vanisheson R®E, ®R.
PROPOSITION 1.1. 9 =0,00=0.

Thus we obtain a complex of R-bimodules

e ? JR®E ®R—2>.-—? sR®E,® R—I5>R®R—L ;R 0.

PROPOSITION 1.2. If €:U — R is a resolution, then this complex is exact.

2. Proof of Propositions 1.1 and 1.2

Viewing U as just an algebra, we form the standard free resolution of the U-

bimodule U ([3]):

. 5 U®(n+2) 6 N 6 )U®U mult U—)O

where
O(uy®---Qu,, )= i D'uy®---Quu,, ® - ®u,,,.
i=0
Each term of the resolution is a complex as a tensor product of the complex U,
and each & is a chain map, because the multiplication U®U — U is so.
Now regard R as a U-bimodule through the map €:U — R. Applying the
functor R®, ()®,, R to the standard resolution, we obtain a complex

il SROUQR—T ... Y sr@R—MUt s 0,

whose terms are complexes and differentials y are chain maps. So we have a
double complex B having terms B, =(R®U®’ ®R), for p,q20. This was
considered by Shukla [5]. The propositions are proved by relating H,H, (B) and
HH)(B) with H,, (tot B). Here H',H" mean the homology with respect to the
first, second index respectively, and tot B is the total complex of B.

We first treat H'H"(B).

(i) We have a diagram
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ROUQU®R—L3RIUOR—L SR®E®R——0

e

where the first row is exact and the triangle is commutative.

PROOF. Forget the differential graded structure of U for a moment. As U is
the tensor algebra on E, a minimal free resolution of the U-bimodule U is given
by

05UQREQU—Lsyueu—mult 17 59

where T(1®x®1)=x®1-1®x for xe E([2, p. 181, Ex2]). Define a U-bimodule
map 0:UQU®U - UR®EQ®U by

0(1®x,---x,®1)= i XX, @x; ®x;,, o0 x,
i=l

0(1®1®1)=0
for x,,---,x, € E. 0 is the identity on U® E®U and the diagram

URU®U —%» UeU
ol 1

URE®U —'» U®U

is commutative. By the exactness of the standard and the minimal resolutions, it
follows that the sequence

UQUAURU—95UUU— 5URE®U —0

is exact. Now apply R®, ()®, R to the above diagram and the sequence. As
p=R®,0®, R, 0=R®,17®, R, the assertion follows.

PROOF OF PROPOSITION 1.1. Since ¥is a chain map, it follows from the exact
sequence of (i) that R® E® R becomes a complex with differential 0" and p
becomes a chain map. By the definition of ¢d and the fact that p is the identity on
R® E®R, we know 0’=0. Thus (R® EQR,J) is a complex and p,o are chain
maps.

(ii) The homology of the complex

o9 S R®E ®R—25...—2 ;R®E,® R—2 >R®R

at R® E, ® R is isomorphic to H,, (tot B).
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PROOF. As noted in (i), the U-bimodule U has projective dimension 1. So
H (B)=Tor/*"(R®R,U)=0 for p>1. By (i), we have H/(B)=Kero,
H)(B)=Cok 0. So

H/(B,)=R®E,®R ifg>0

=Ker(R®E,® R—2 > R®R) ifg=0
Hy(B_)=0 if g>0.

Hence H, H|(B) is the homology at R® E, ® R of the complex in the statement
and the spectral sequence degenerates to give H;'HII(B) =H,, (tot B) for q = 0.
(iii) If €:U — R is a resolution, then H, (tot B)=0 for n > 0.

PROOF. By Kiinneth we have

ifg=0

11 @ R®(I’+2)
H'(B )=H (R®U® ®R) =
o (Bp)=H,( ) {o if g>0

and the complex
= Hy (B, )—-— H, (B,,)

is isomorphic to the standard free resolution of the R-bimodule R, which is
acyclic. Hence H,H,(B)=0 unless p=g=0.Then H,(tot B)=0 for n>0.
Now Proposition 1.2 follows from (ii) and (iii).

3. Case where R is graded

In this section we state a converse of Proposition 1.2 under certain
assumptions. As before, let R be a k-algebra, U =(T(E),d) a free differential
graded algebra with augmentation €:U — R. Here we further assume that

e Ris aconnected graded algebra, that is, R=®, ,,R" with R’ =k.

e FE has another grading E=®, ,,E” compatible with the original one, that
is, E, =®, ,E" with E"=E"NE,.

e E)=0.

Then the upper grading of E induces the grading U=®,,,U" so that U is a

doubly graded algebra. The third condition means that the graded algebra U, is
connected. We finally assume

e« dU™YcU",e(U™")cR".
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REMARK. For any connected graded algebra R, one can find a resolution
£:U— R satisfying the above conditions. This is easily seen from the

construction reviewed in Section 1.

THEOREM 3. The following are equivalent.
(1) €:U >R is aresolution.
(2) The complex

om? SROE,®OR—2>..—2 5 R®E,® R—I>ROR—L , p 50

is exact.
(3) The complex

v 5E @R—2 5.~ 3E @R—I RT3k 50

is exact, where d =k®, 9, G =k®, G and 1 is the projection.

(2) = (3) is obvious, and (3) = (2) follows from a version of Nakayama’s

lemma. We shall prove (3) = (1) in the next section.

The map d on E is given also as E—‘1—>E®U&>E®R,and O =—-£ on

E (see (v) of the next section).

4. Proof of Theorem 3

Let 2 be the set of finite sequences v=(v,,--,v,) of non-negative integers.
Write [v|=v,+---+v,, I(v)=r. For u =(u,, -, u,) and v=_v,---,v,), define

/’lvz(ul’”"#l/’ V]"“svr)'

We write also 0% =(0,---,0),0*1=(0,---,0,1) (k is the number of 0).

Define a partial order < on ? as follows. For u and v as above we set u<v
if |u/=|v| and y, =v,,--- 4, , =v,_. 4, <v, for some h<gq,r. Note that u0’ <v0’
if and only if u<v.Let N ={(v,,---,v,)€A|r>0,v, >0}. Then < is a total order
on the subset {ve’||v|=n} for each n > 0.

For v=(v,,---,v,) €A’ define v_=(v,--,v,,,v, = 1).

For ve?,weset E,=E ®---®E, . Then

U=T(E)= @ E,, U,=T(E)=®E, U, =@ EU,.

For ve ¥, let
pr.U—>E,n . U>®E

k20 Vv

ok EU,
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be the projections with respect to the above decomposition for U.

(i) d(E)c EU.
PROOF. Clearly d(E,)cU, , < EU if n> 1. And
d(E,) < Ker(e: U, — R) c U; = E,U,
by the assumption U, =k.

We define a map d, :U, = U as follows. First, d, on E, is the composite

1®7,

E.—2EQU E®U,,

where 7, is the projection onto U,. As U, =U®E, ®U,, we can then define d.
on U, by
di(xyz) = (=1)" xd. (y)z
for xeU,,yeE,,zeU,. Clearly d. is right U,-linear and left skew U-linear.
Also d.(E,U))cE, U, for ve’.
(ii) For xe E .U, with ve U’ we have

d(x)-d.(x)e @ E,U,
ped’ H

U<v_
and in particular d.(x)=7m, d(x).

PROOF. Let v=(v,---,v,). As d and d. are right U,-linear, we may assume
x=x,-x, with x, €E, ,---,x, € E, . Then

A
X
I
M-~
H

X X d(X)x, e x

r

Xy X Prd(x;)x;,, - x

r

T

I
M-~

>M
H+

where A runs over elements of 2 such that [A|=v,-1,I(1)>1 (by (i)). If i<r or
if i=r and A4, <v, -1, then

(vl,.'.yvi—])z’(vi.;.]"“’Vr) < v-. M

If i=rand A, =v,—-1,then A=(v,—1,0,---,0). The sum of the terms for such i,4
is

tx0x, 2 pr, 0kd(x,)=d,,(x).
So © v

Thus d(x)-d.(x)e®,, E,.
(iii) pr,,d(xy) =D xpr,d(y) for A,ueW, xekE,, yel.
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PROOF. Expanding d(x) as above, we see pry, (d(x)y)=0.

(iv)Let ue, veA’, u<v. If m d(E,)#0, then p=v_ 010’ for some
i,j20. ‘
PROOF. We have pr,d(E,)# 0 for some A=v_0“,k20. Put r=Ii(v),q=1I(u),
p=Il(A)=r+k.Then g<p by (i), and there exists & < g such that
My = Ayl = Ay,
T Y ) 8
:uh+l = 2’h+p—q+l’“.’/‘lq = A‘p'
If h<r, then u>v, a contradiction. If h=r, then u=v0’", which is also
impossible. Hence h>r and p=v_0'10’ for some i,j.
Let n:R—k be the projection map. EQR=k®,(R®E®R) becomes a

complex with differential @ =k ®, d and augmentation G =k®,0: EQR— R.
(v) We have

IEE—245EQU—I®E sEQR, G|E=-¢.

PROOF. By the definition of p and the fact ne(E)=0, we have a

commutative diagram

v PV, ReE®R

U ln®1®l
Eeu —2%, E®R

From this and (i), the first assertion follows. The second is clear.

(vi) The following diagram is commutative.

Eou, —2, E®R
&l 5
En—l ® U() ——178?9 En—l ® R.

PROOF. Follows from (v) and the definition of d..

From now on we assume (3) of Theorem 3.
(vii) €:U —> R is onto.

PROOF. The exactness of E,®R C ,R—1 5k implies R* =&(E,)R. So R
is generated by &(E,) as a k-algebra.

(viil) U, d >U, £ SR is exact.
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PROOF. By (vi) we have a commutative diagram

U o E®U, —®&, E®R

ad L l;
U, o> E®U, —2&, E®R
ed s
R = R.

Consider the ideal I=Ker(e:U, > R)c U, = E,®U,. By the exactness of the
right column of the diagram, we have Icd.(E, ®U,)+Ker(1®¢), hence
Icd(U))+E,I.Since d(U,) is an ideal of U, we have I =d(U,) by Nakayama’s
lemma.

ax) U,,, dﬁ\Un d >U,_, is exact for n>0.

PROOF. Fix p=0. Let us show the exactness in upper degree p. Firstly we
note that the set {veU’|x (U’)=0} is finite. Indeed, such v must satisfy |v|=n
and #{ilv, =0} < p because E; =0.So I(v)<n+p.

For 0#£xeU!, let H(x) be the greatest element of {ve’|m (x)#0} with
respect to the order <. We shall show that if 0 #xeKer(d:U! — U} ), then there
exists ye U’ such that H(x-d(y))<H(x) or x—d(y)=0. Then the exactness
will follow by induction.

Put H(x)=v=(v,--,v,) and v,=m>0,v'=(v,,---,v,,). Also put x, =m,(x)
for e’ . Then x=x,+X . We have

pev X

O=m, dx)=mn, d(x)+ X &, d(x,).
u<v

By (ii), 7, d(x,)=d.(x,). If u<v and nv_d(xy)¢0, then, by (iv), p0* =v_010’
for some i, j, k. Hence u=v 0'1 as ueU’. So x,€E, ®U,. Then, by (iii),
r,d(x,)eE, ®d(U,). Thus we know d.(x,)eE, ®d(U,). Hence
(1®€)d.(x,)=0(%).

By (vi), the diagram

E.®E,  oU —2%% , r ®F ®R

m+1

d | d1®d
E,®E,®U, —®® , F ®FE ®R
a Ji®3
E,®E,_ oU, —2® , £ ®E ®R

commutes up to sign. By (x), (vii) and the exactness of the right column, there
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exists ze(E,.®F

m+i

®U,)" such that
x, —d.(z)eKer(E, ®U,—®E 5E ® R)=E, ®d(U,).

Since d. operates as *1®d on E ®U,, we have x, —d.(z)=d.(u) for some
ue(E ®U,))".
But by (ii),
d(2)—-d.(2) € y@(\ E U,

d(u) - d. (u) (S @ EIJUO’
u<v

where pue?’. Hence
x—d(z+u)=x,—d(z+u)+ X x, € ® EU,

u<v H<v

as required.

S. Examples of resolutions

We shall first give a free dga resolution of a Koszul algebra. Let R be a
connected graded algebra generated by elements of degree 1 with defining
relations of degree 2. So we can write as R=T(V)/(I) where IcV®V. Put

I(n) — ﬂ V@i ®1® V®j c V®n

i+j=n-2
for n>0. We understand I'” =k, I'"=V. R is called a Koszul algebra if
the following complex of right R-modules is exact.

S>I"QRHI""®R—>--->R—>k—O0.

Here the differential is induced by the inclusion maps
1" cI""®VcI™ @R
For equivalent definitions of Koszul algebras, see [1], [4].

Let A, 17" —» I'” ® 'Y be the inclusion map for p,g>0. Let E=®,, I
with bigrading E, = E"' =1'""". Put U=T(E). Let d:U— U be the derivation
such that

dix)= Y (—1)”Ap‘q(x) for xeE,.

pHg=n+l
r.g>0

Let £:U — R be the algebra map such that €(x)=x for x€eE, =V and &(x)=0
for xe E, .
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PROPOSITION 5.1. €:(U,d) > R is a free dga resolution.

PROOF. d? =0 follows from the coassociativity of A/,‘q.ekdzo is clear. Let

d be as in Theorem 3. For x e E, we have

Ix)=(1®e) T (-D'A, (0)=(1)"A,, (x).

prqg=n+l

Hence, up to sign, 0 coincides with the differential of the above free resolution
of the R-module k. So £€:U — R is a resolution.

We next introduce a generalization of a Koszul algebra, for which we give a
free dga resolution. Fix an integer e>2. Let R=T(V)/(I) with IcV®. As
before, define

"= N v¥eI®V® v

i+j=n—e
Consider the complex of right R-modules

SI“V"QRSI““OR— > I"QR-I"®R—>k—0
where the differential is induced by the inclusion maps

[“Vc I VcI“°®R

I(en) c I(e(n~l)+l) ® V®(e—l) c I(e(n—])+l) ® R.

We say R is an e-Koszul algebra if the above complex is exact.

REMARK. (i) 2-Koszul just means Koszul. (ii) k[x]/(x¢) is e-Koszul. (iii) Let
JcV®V. If T(V)/(J) is Koszul, then T(V)/(J'®) is e-Koszul. We omit the
proof.

Let us give a free dga resolution of an e-Koszul algebra R=T(V)/(I). Let

E—_— @ I(en+1)® @ I(en)
n20 n21
_ en+l __ y(en+l) — en __ y(en)
E, =E™ =[“"*", E, ,=E"=I1"".
Put Eev = GBnZO E2n’ E a= @nZI E2n—l‘ Let

O

%)

i Eeg = Eyg ® Ey
0 Ey > EX

0 Ey 2 Ey®E,
o Ey 2 E, ®E,

O O o,

be the maps whose components are respectively the inclusion maps
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1((‘1i+j)b - I(t'i) ®1(¢'j)
I(e(i,+--»+i‘,+l)) N I(ei,+l) ®® I(yi‘,+l)
1(€(i+j)+1) - I(t’i) ®I(ej+l)

I(t’(i+j)+l) - I(e‘i+|) ®I(t’j)

Put U=T(E). Let d:U — U be the derivation such that

. @d={60_6“ on E_

n20

50‘ —'5‘0 on ECV'

Let £:U — R be the algebra map which is the identity on E; =V and vanishes on
E

PROPOSITION 5.2. €:(U,d) > R is a free dga resolution.

PROOF. Again d’ =0 is a consequence of the coassociativity of the maps
6,,,6,,0,0,0,. Recall the description of J after Theorem 3. We have the
equalities of maps

(Eyps —25(E®U),, ,—1®€ 5E, ,®R)
=(E,,,, D E,, ,® E(?(H) —E, ,®R),
(E2" _6|.Q__)(E® E)2n—l —L&) E2n~l ® R)

=(E,, > E,, ,®E, > E,_ ®R),
(1®£)8,, =0,
(1®¢€)8,, =0.

Hence o equals the differential of the free resolution of the R-module k up to
sign. So by Theorem 3 £:U — R is a resolution.
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