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1. Introduction

In a recent study [D.D.], F. Dobarro and E. L. Dozo have studied from the
viewpoint of partial differential equations and variational methods, the problem of
showing when a Riemannian metric of constant scalar curvature can be produced
on a product manfild $B\times F$ by a warped product construction applied to the two
Riemannian manifolds $(B,g_{B})$ and $(F,g_{F})$ , especially in the case when the fibre
$(F,g_{F})$ is of constant curvature. Particularly, in Theorem 3.6 of [D.D.], the

uniqueness of the warping function is considered. In [D.D.], the eigenvalue

problem for the elliptic operator $Lu=-\frac{4n}{n+1}\Delta u+Ru$ of a warped product $B\times_{f}F$

of Riemannian manifolds $B$ and $F$ , where $\Delta$ is the Laplacian on $B$ and $R$ is the

scalar curvature on $B$ , is studied. Basically, the fact that the operator
$L-\lambda I:C^{2,\alpha}(M)\rightarrow C^{\alpha}(M)$ is an isomorphism for some $\lambda$ , is employed.

For Riemannian manifolds, warped products have been useful in producing
examples of spectral behavior, examples of manifolds of negative curvature (cf.

[B.O.], [D.G.], [D.D.], [Eb], [Ej], [K.K.P.], [M.M.]), and also in studying $L_{2}-$

cohomology (cf. [Z.]).

Perhaps even more interestingly on physical grounds than purely Riemannian
constructions employing warped products, many of the known exact solutions of
the Einstein field equations of General Relativity are warped product metrics of
the form $B\times_{f}F$ where $(B,g_{B})$ is a Lorentzian manifold and $(F,g_{F})$ is a
Riemannian manifold. A most notable class of examples are the Robertson-
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Walker space-times of cosmology theory as well as the Schwarzschild space-
time. So, in Lorentzian geometry, the warped product is also widely used for
studying space times with various applications (cf. [A1], [D.D.V.], [D.V.V.],
[G.], [M.], etc.)

In this paper, then, we consider the problem of achieving constant scalar
curvature for two different classes of pseudo-Riemannian manifolds. The first
class consisting of the case $B$ is an interval $(a,b)$ with negative definite metric
$-dt^{2}$ and $-\infty\leq a<b\leq+\infty$ and $F$ is a Riemannian manifold of dimension $n>1$ .
Here $n=3$ tums out to be a special case because of a term in the general
curvature formula which is multiplied by a factor of $(n-3)$ . In this first case, the
problem may be studied directly from an associated second order linear equation
$(n=3)$ , or from an autonomous differential equation, when $n\neq 3$ .
Correspondingly, when $n=3$ and one is seeking to produce constant positive
scalar curvature on the warped product, it may be done for any constant scalar
curvature value chosen for the fiber $(F,g_{F})$ (cf. Remark $3.6-(1)$ ). Whereas for
$n\neq 3$ , nonnegative scalar curvature may be needed for the fiber to produce
constant positive scalar curvature on the warped product (cf. Remark $3.8-(2)$ ).

The second class studied consists of taking $(B,g_{B})$ to be a compact
Riemannian manifold and $(F,g_{F})$ to be a pseudo-Riemannian manifold. In our
smdy of this case, we apply the method of upper and lower solutions and also
variational considerations.
Although we will assume throughout this paper that all data ( $M$ , metric $g$ , and
curvature, etc.) are smooth, this is merely for convenience. Our arguments go
through with little or no change if one makes minimal smoothness hypotheses,
such as assuming that the give data is Holder continuous.

2. Preliminaries on a warped product manifold

In this section, we briefly recall some results on warped product manifolds.
Complete details may be found in [B.E.], [B.O.], or $[0.]$ .
On a (semi)Riemannian product manifold $B\times F$ , let $\pi$ and $\sigma$ be the projections
of $B\times F$ onto $B$ and $F$ , respectively, and let $f>0$ be a smooth function on $B$ .

DEFINITION 2.1. The warped product manifold $M=B\times_{f}F$ is the product
manifold $M=B\times F$ furnished with metric tensor

$g=\pi^{*}(g_{B})+(f\circ\pi)^{2}\sigma^{*}(g_{F})$ ,

where $g_{B}$ and $g_{F}$ are metric tensors of $B$ and $F$ , respectively. In other words, if
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$v$ is tangent to $M$ at $(p,q)$ , then

$g(v,v)=g_{B}(d\pi(v),d\pi(v))+f^{2}(p)g_{F}(d\sigma(v),d\sigma(v))$ .

Here $B$ is called the base of $M$ and $F$ the fiber. We denote the metric $g$ by $\langle$ $\rangle$ . In
view of Remark $2.2-(1)$ and Lemma 2.3, we may also denote the metric $g_{B}$ by

$\langle, \rangle$ . The metric $g_{F}$ will be denoted by $( , )$ .

REMARK 2.2. Some well known elementary properties of the warped product
manifold $M=B\times_{f}F$ are as follows.

(1) For each $q\in F$ , the map $\pi|_{\sigma^{- 1}(q)=B\times q}$ is an isometry onto $B$ .
(2) For each $p\in B$ , the map $\sigma|_{\pi^{-1}(q)=p\times F}$ is a positive homothetic map onto $F$

with homothetic factor $1/f(p)$ .
(3) For each $(p,q)\in M$ , the horizontal leaf $B\times q$ and the vertical fiber $p\times F$

are orthogonal at $(p,q)$ .
(4) The horizontal leaf $\sigma^{-}$ $(q)=B\times q$ is a totally geodesic submanifold of $M$

and the vertical fiber $\pi^{-1}(p)=p\times F$ is a totally umbilic submanifold of $M$ .
(5) If $\phi$ is an isometry of $F$ , then $ 1\times\phi$ is an isometry of $M$ . And if $\psi$ is an

isometry of $B$ such that $ f=f\circ\psi$ , then $\psi\times 1$ is an isometry of $M$ .

Recall that vectors tangent to leaves are called horizontal and vectors tangent
to fibers are called vertical. From now on, we will often use a natural
identification $T_{(p,q)}(B\times_{f}F)\cong T_{(p,q)}(B\times F)\cong T_{p}B\times T_{q}F$ . The decomposition of

vectors into horizontal and vertical parts plays a role in our proofs. If $X$ is a
vector field on $B$ , we define $\overline{X}$ at $(p,q)$ by setting $\overline{X}(p,q)=(X_{p},0_{q})$ . Then $\overline{X}$ is
$\pi$ -related to $X$ and $\sigma$ -related to the zero vector field on $F$ . Similarly, if $Y$ is a
vector field on $F,$

$\overline{Y}$ is defined by $\overline{Y}(p,q)=(0_{p}, Y_{q})$ .

LEMMA 2.3. If $h$ is a smooth function on $B$ , then the gradient of the lift $ h\circ\pi$

of $h$ to $M$ is the lift to $M$ of gradient of $h$ on $B$ .

PROOF. See Lemma 7.34 in $[0.]$ .

In view of Lemma 2.3, we simplify the notation by writing $h$ for $ h\circ\pi$ and
grad $(h)$ for grad $(h\circ\pi)$ . For a covariant tensor $A$ on $B$ , its lift $\overline{A}$ to $M$ is just its
pullback $\pi^{*}(A)$ under the projection $\pi:M\rightarrow B$ . That is, if $A$ is a (l,s)-tensor,

and if $v_{1},$ $\ldots,\dot{v}_{s}\in T_{(p,q)}M$ , then $\overline{A}(v_{1}, \ldots, v_{s})=A(d\pi(v_{I})),$
$\ldots,$ $d\pi(v_{s}))\in T_{p}(B)$ .

Hence if $v_{k}$ is vertical, then $\overline{A}=0$ on $B$ . For example, if $f$ is a smooth function
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on $B$ , the lift to $M$ of the Hessian of $f$ is also denoted by $H^{j}$ . This agrees with the
Hessian of the lift $ f\circ\pi$ generally only on horizontal vectors. For detailed
computations, see Lemma 5.1 in [B.E.P.].

Now we recall the formula for the Ricci curvature tensor $Ric$ of the warped
product manifold $M=B\times F$ . We write $Ric^{B}$ for the pullback by $\pi$ of the Ricci
curvature of $B$ and similarly for $Ric^{F}$ .

LEMMA 2.4. On a warped product manifold $M=B\times_{f}F$ with $n=\dim F>1$ , let
$X,$ $Y$ be horizontal and $V,$ $W$ vertical. Then

(1) $Ric(X, Y)=Ric^{B}(X, Y)-\frac{n}{f}H^{f}(X, Y)$

(2) $Ric(X, V)=0$

(3) $Ric(V, W)=Ric^{F}(V, W)-\langle V, W\rangle f^{\#}$ ,

where $f^{\#}=\frac{\Delta f}{f}+(n-1)\frac{\langle gradf,gradf\rangle}{f^{2}}$ , and $\Delta f=C(H^{f})=trace(H^{f})$ is the

Laplacian on $B$ .

PROOF. See Corollary 7.43 in $[0.]$ .

On the given warped product manifold $M=B\times_{f}F$ , we also write $S^{B}$ for the

pullback by $\pi$ of the scalar curvature $S^{B}$ of $B$ and similarly for $S^{F}$ . From now
on, we denote grad$(f)$ by $\nabla f$ .

COROLLARY 2.5. If $S$ is the scalar curvature of $M=B\times_{\int}F$ with $n=\dim F>1$ ,

then
(2.1) $S=S^{B}+\frac{S^{F}}{f^{2}}-2n\frac{N}{f}-n(n-1)\frac{\langle\nabla f,\nabla f\rangle}{f^{2}}$ ,

where $\Delta$ is the Laplacian on $B$ .

PROOF. For each $(p,q)\in M=B\times_{f}F$ , let $\{e_{j}\}$ be an orthonormal basis for
$T_{\rho}B$ . Then by the natural isomorphism $\{\overline{e_{i}}=(e_{j},0)\}$ is an orthonormal set in
$T_{(\rho,q)}M$ . We can choose $\{d_{j}\}$ on $T_{q}F$ such that $\{\overline{e_{i}},\overline{d_{j}}\}$ forms an orthonormal basis
for $T_{(\rho.q)}M$ . Then

$1=\langle\overline{d}_{j},\overline{d}_{j}\rangle=f(p)^{2}(d_{j},d_{j})=(f(p)d_{j},f(p)d_{j})$ ,

which implies that $\{f(p)d_{j}\}$ forms an orthonormal basis for $T_{q}F$ .
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By Lemma 2.4 (1) and (3), for each $i$ and $j$ ,

$Ric(\overline{e_{i}},\overline{e_{i}})=Ric^{B}(\overline{e_{i}},\overline{e_{i}})-\Sigma_{j}\frac{n}{f}H^{r}(\overline{e_{i}},\overline{e_{i}})$ ,

and

$Ric(\overline{d_{j}},\overline{d_{j}})=Ric^{F}(\overline{d_{j}},\overline{d_{j}})-f^{2}(d_{j},d_{j})(\frac{\Delta f}{f}+(n-1)\frac{\langle\nabla f,\nabla f\rangle}{f^{2}})$

Hence for $\epsilon_{\alpha}=g(e_{\alpha},e_{\alpha})$ ,

$S(p,q)=\Sigma_{a}\epsilon_{\alpha}R_{\alpha\alpha}$

$=\Sigma_{j}\epsilon_{j}Ric(\overline{e_{i}},\overline{e_{i}})+\Sigma_{j}\epsilon_{j}Ric(\overline{d_{j}},\overline{d_{j}})$

$=S^{B}(p,q)+\frac{S^{F}}{f^{2}}-2n\frac{\Delta f}{f}-n(n-1)\frac{\langle\nabla f,\nabla f\rangle}{f^{2}}$ ,

which is a nonlinear partial differential equation on $B\times q$ for each $q\in F$ .

Now we may pose the following question: if $S_{F}(q)\equiv c$ (constant) on $F$ , can
we find a warping function $f>0$ on $B$ such that the warped metric $g$ has constant
scalar curvature $S(p,q)=k$ on $M=B\times_{f}F$ ? If $S(p,q)\equiv k$ for all $(p,q)\in M$ , then

equation (2.1) is the pullback by $\pi$ of the following equation:

$k=S_{B}(.p)+\frac{c}{f^{2}}-2n\frac{\Delta f}{f}-n(n-1)\frac{\langle\nabla f,\nabla f\rangle}{f^{2}}$ ,

or equivalently,

(2.2) $\Delta f+\frac{1}{2n}(k-S_{B})f-\frac{c}{2nf}+\frac{n-1}{2}\frac{\langle\nabla f,\nabla f\rangle}{f^{2}}=0$ .

3. Generalized Robertson-Walker space-times

In this section, we restrict our results to the case that $B=(a,b)$ is an open
connected subset of $R_{1}^{1}$ with the negative definite metric $-dt^{2}$ and $-\infty\leq$

$ a<b\leq+\infty$ . Recalling that $\Delta f=-f^{\prime\prime}(t)$ and $\langle\nabla f,\nabla f\rangle=-(f^{\prime}(t))^{2}$ and making the

change of variable $f(t)=\sqrt{v(t)}$ , we have the following equation from equation
(2.2),

(3.1) $v^{\prime\prime}(t)+\frac{(n-3)|v^{\prime}(t)|^{2}}{4v(t)}-\frac{k}{n}v(r)+\frac{c}{n}=0$
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where we assume that $F$ is a Riemannian manifold with constant scalar
curvature $c$ and $\dim F=n>1$ (cf. equation (2.16) in [B.E., p. 78]).

Now we consider the following problem:

. Problem I: Given a fiber $F$ with constant scalar curvature $c$ , can we find a
warping function $f>0$ on $B=(a,b)$ such that for any real number $k$ , the warped
metric $g$ admits $k$ as the constant scalar curvature on $M=(a,b)\times_{f}F$ ?

We consider several cases according to the dimension of $F$ and the value of
the given $c$ .

THEOREM 3.1. If $\dim F=n=3$ , i.e., $M$ is a generalized Robertson-Walker
space-time, then for any real number $k$ the following warping function $v(t)$

produces constant scalar curvature $k$ on $(M, g)$ :

i) $k>0,$ $v(r)=c_{1}\exp(\sqrt{\frac{k}{3}}t)+c_{2}\exp(-\sqrt{\frac{k}{3}}r)+\frac{c}{k}$ ,

ii) $k=0,$ $v(r)=-\frac{c}{6}t^{2}+c_{1}t+c_{2}$ ,

iii) $k<0,$ $v(t)=c_{1}\sin(\sqrt{-\frac{k}{3}}’)+c_{2}\cos(\sqrt{-\frac{k}{3}}t)+\frac{c}{k}$ ,

where $c_{\iota}$ and $c_{2}$ are suitable constants chosen (if possible) so that $v(t)$ is positive
on $B=(a, b)$ .

PROOF. If $n=3$ , then we have a simple differential equation,

$v^{\prime\prime}(t)-\frac{k}{3}v(t)+\frac{c}{3}=0$

Putting $h(t)=\frac{k}{3}v(r)-\frac{c}{3}$ , it follows that $h(t)-\frac{k}{3}h(t)=0$ . Hence, according

to sign of $k$ , the above solutions follow directly from elementary methods for
ordinary differential equations.

REMARK 3.2. The difficulty in applying Theorem 3.1 is simply to insure that
$c_{1},c_{2}$ may be chosen, depending on $c,$

$k$ , and the interval $B=(a, b)$ such that $v(t)$

is positive for all $t\in(a,b)$ . The strongest statement that may be made independent
of choice of $(a,b)$ is the following.
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COROLLARY 3.3. For $\dim F=3$ and $(a,b)$ arbitrary,
i) for $k>0$ , Problem I may be solved affirmatively for all $c$ ,

ii) for $k=0$ , Problem I may be solved affirmatively for all $c\leq 0$ ,

iii) for $k<0$ , Problem I may be solved affirmatively for all $c<0$ .

REMARK 3.4. (1) If $k=0,$ $c>0$ and $B=(a,b)=(-\infty,+\infty)$ , then no values of
$c_{1},c_{2}$ may be chosen which will produce a warping function positive on all of
$(-\infty,+\infty)$ . Similarly, if $k<0,$ $c\geq 0$ and $B=(a,b)=(-\infty,+\infty)$ , then no values of
$c_{1},c_{2}$ will produce $v(t)>0$ on all of $(-\infty,+\infty)$ .

(2) By Remark 2.58 in [B.E.] and Corollary 5.6 in [P.], if $B=(a,b)$ is a finite

interval and $\dim F=n=3$ , then all nonspacelike geodesics are incomplete. But if
$B=(-\infty,+\infty)$ , then there exists $v(t)$ so that all non-spacelike geodesics are
complete. For Theorem 5.5 in [P.] implies that all timelike geodesics are future

(resp. past) complete on $(a,b)\times_{v(l)}F$ if and only if $\int_{t_{0}}^{+\infty}(\frac{v}{1+v})^{1/2}dt=+\infty$ (resp.

$\int_{\rightarrow}^{t_{0}}|\frac{v}{1+v}|^{1/2}dt=+\infty)$ and Remark 2.58 in [B.E.] implies that all null geodesics are

future (resp. past) complete if and only if $\int_{t_{0}}^{+\infty}v^{1/2}dr=+\infty$ $(resp$ . $\int_{-}^{t_{0}}v^{1/2}dt=+\infty)$

(cf. Theorem 4.1, Remark 4.2 in [B.E.P.]).

THEOREM 3.5 If $\dim F=n\neq 3$ and $c=0$ , then for any real number $k$ the
warping function $v(t)$ produces constant scalar curvature $k$ on $(M, g)$ :

i) $k>0,v(r)=(c_{1}\exp(\sqrt{\frac{(n+1)k}{4n}}t)+c_{2}\exp(-\sqrt{\frac{(n+1)k}{4n}}t))^{4/}n+|$

ii) $k=0,v(r)=(c_{1}t+c_{2})^{/}4n+|$

iii) $k<0,v(t)=(c_{1}\cos(\sqrt{\frac{-(n+1)k}{4n}}t)+c_{2}(\sin(\sqrt{\frac{-(n+1)k}{4n}}r)))^{4/}n+1$

where $c_{1}$ and $c_{2}$ are suitable constants chosen (if possible) so that $v(r)$ is positive.

PROOF. In this case, equation (3.1) is changed into the simpler form,

$\frac{v^{\nu}(r)}{v(t)}+\frac{(n-3)v^{\prime}\langle r)^{2}}{4v(r)^{2}}-\frac{k}{n}=0$ .

Putting $v(t)=\omega(t)^{\frac{4}{n+1}}$ , then $\omega(t)$ satisfies the equations,

$v^{\prime}(t)=\frac{4}{n+1}\omega(t)^{3/}n+|\omega^{\prime}(r)-n$
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and

$v^{\prime\prime}(r)=\frac{4(3-n)}{(n+1)^{2}}\omega^{(/)- 2}n+|\omega^{\prime}(r)^{2}4+\frac{4}{n+1}\omega^{(/)- 1}1+|\omega^{\nu}(r)4$

Hence $\omega^{\prime\prime}(t)=\frac{n+1}{4n}k\omega(r)$ and our solutions follow.

REMARK 3.6 (1) If $k>0$ and $(a, b)$ is arbitrary, taking $c_{1}=c_{2}=1$ in Theorem
3.5 provides an affirmative solution to Problem I.

(2) If $k=0$ and $B=(-\infty,+\infty)$ , only a constant warping function $v(t)$ with
$c_{1}=0,$ $c_{2}>0$ will satisfy $v(t)>0$ on all of $B$ .

(3) If $k<0$ and $B=(-\infty,+\infty)$ , then iii) reveals that Problem I may not be
solved on all of $B$ . In the case that $B$ is a finite interval, evidently iii) reveals that
a positive warping function $v(t)$ may be constructed, but all nonspacelike
geodesics will necessarily be incomplete.

THEOREM 3.7. If $\dim F=n\neq 1,3$ and $c\neq 0$ , then for any real number $k$ the
warping function $v(t)$ produces constant scalar curvature $k$ on $(M , g)$ :

i) $k>0,v(t)=[c_{1}\exp(\sqrt{\frac{k}{n(n+1)}}t)+\frac{n+1}{n-1}\frac{c}{4kc_{1}}\exp(-\sqrt{\frac{k}{n(n+1)}}t)]^{2}$ ,

ii) $k=0,v(t)=\frac{-c}{n(n-1)}t^{2}+c_{1}t-\frac{n(n-1)}{4c}c_{1}^{2}$ ,

iii) $k<0,$ $v(r)=\frac{n+1}{n-1}\frac{c}{k}[\tan^{2}(\pm\sqrt{\frac{-k}{n(n+1)}}t+c_{1})+1]^{-1}$ ,

where $c_{1}$ is a suitable constant chosen (if possible) so that $v(t)$ is positive.

PROOF. Suppose $v(r)$ is a solution of equation (3.1). If $v(t)$ is a constant, then
$v(r)=\frac{c}{k}$ , which is defined only when $ck>0$ . If $v(t)$ is nonconstant, putting

$v(t)=\omega(t)^{/}4n+|$ then $\omega(t)satisfies$ the equations,

$v^{\prime}(t)=\frac{4}{n+1}\omega(t)^{1-\prime/}n+|\omega^{\prime}(t)$

and

$v^{\prime\prime}(t)=\frac{4(3-n)}{(n+1)^{2}}\omega^{t^{4}/)-2}n+|\omega^{\prime}(t)^{2}+\frac{4}{n+1}\omega^{t^{4}/\vdash|}n+|\omega^{\prime}(r)$ .
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Hence

$\omega^{\prime\prime}(t)-\frac{n+1}{4n}k\omega(r)+\frac{n+1}{4n}c\omega^{1-(/)}4_{\Pi+1}=0$ .

Putting $\frac{d\omega(t)}{dt}=y$ and $\frac{dy}{dt}=\omega^{\prime\prime}(r)$ ,

$\frac{d\omega}{dy}=\frac{y}{\frac{k(n+1)}{4n}\omega-\frac{c(n+1)}{4n}\omega^{1- t^{4}/)}|+|}$
.

$y^{2}=\frac{n+1}{4n}\omega^{2}(k-\frac{n+1}{n-1}c\omega^{(-/)}4n+|)$

and

$\frac{d\omega}{\omega\sqrt{k-\frac{n+1}{n-1}c\omega^{(/)}4n+|}}=\pm\sqrt{\frac{n+1}{4n}}dr$
.

Here we have three following cases:

$\int\frac{d\omega}{\omega\sqrt{k-\frac{n+1}{n-1}c\omega^{(-/)}4n+|}}=-\frac{n+1}{4\sqrt{k}}\log\frac{\sqrt{k-\frac{n+1}{n-1}c\omega^{(-4/)}n+|}-\sqrt{k}}{\sqrt{k-\frac{n+1}{n-1}c\omega^{(-/)}4n+|}+\sqrt{k}}$ , $k>0$ ,

$=\sqrt{-\frac{(n+1)(n-1)}{4c}}\omega^{(/)}2n+1$ $k=0$

$=-\frac{n+1}{2\sqrt{-k}}\tan^{-1}[\frac{\sqrt{k-\frac{n+1}{n-1}c\omega^{(-/)}4n+|}}{\sqrt{-k}}1,$ $k<0$

Hence our results follow easily. For example, if $k>0$ , then

$\sqrt{k-\frac{n+1}{n-1}c\omega^{(-4/)}+|}=\frac{\sqrt{k}(1+\tilde{c}_{1}\exp(-\sqrt{\frac{4k}{n(n+1)}}t))}{1-\tilde{c}_{1}\exp(-\sqrt{\frac{4k}{n(n+1)}}t)}$

for some constant $\tilde{c}_{1}$ . Thus

$v(r)=\omega(t)^{(/)}4n+|=\frac{n+1}{n-1}\frac{c}{(-4k\tilde{c}_{1})}[\exp(\sqrt{\frac{k}{n(n+1)}}t)-\tilde{c}_{1}\exp(-\sqrt{\frac{k}{n(n+1)}}t)]^{2}$ ,

which implies the first case, replacing $\tilde{c}_{1}=\frac{n+1}{n-1}\frac{c}{(-4kc_{1}^{2})}$

REMARK 3.8. (1) If $k\leq 0$ and $B=(-\infty,+\infty)$ , then ii) and iii) of Theorem 3.7
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reveal that no warping function $v(t)$ may be found which is positive on all of $B$ .
(2) If $k>0$ , then i) of Theorem 3.7 reveals that Problem I may be solved
affirmatively for any $B$ provided that $c\geq 0$ .

4. Warped products with semi-Riemannian flber

In this section, we treat the case that, for $M=B\times_{f}F,$ $B$ is a compact
Riemannian manifold and $F$ is a (semi) Riemannian manifold. We denote the
volume element of $g_{B}$ by $dV$ , the gradient by $\nabla$ , and the associated Laplacian by
$\Delta$ . The mean value $\overline{h}$ of a function $h$ on $B$ is, of course,

$\overline{h}=\frac{1}{vo1(B)}\int_{B}hdV$ .

We let $H_{\iota,\rho}(B)$ denote the Sobolev space of functions on $B$ whose derivatives
through order $s$ are in $L_{p}(B)$ . The norm on $H_{s.p}(B)$ will be denoted by $\Vert\Vert_{s.p}$ . The
usual norm $L_{2}(B)$ inner product will be written $\Vert\Vert$ .

By equation (2.2), on $B$ , assuming that $M$ has a constant scalar curvature $k$ ,

(4.1) $\Delta f+\frac{1}{2n}(k-S_{B})f-\frac{c}{2nf}+\frac{n-1}{2}\frac{\{\nabla f,\nabla f\}}{f}=0$ .

By the change of variables $f=v^{\frac{2}{n+1}}$ ,

$\nabla f=\frac{2}{n+1}v^{(/)- 1}n+|\nabla v2$

and

$\Delta f=\frac{2}{n+1}(\frac{2}{n+1}-1)v^{(/)-2}n+||\nabla v|^{2}2+\frac{2}{n+1}v^{(/)-1}n+|\Delta v2$

Hence equation (4.1) is changed into

(4.2) $\Delta v+\frac{n+1}{4n}(k-S(p))v-\frac{n+1}{4n}cv^{(1-/)}4n+|=0$ .

In Theorem 2.1 of [D.D.], F. Dobarro and E. L. Dozo obtained the same
equations (2.1) and (4.2) by using conformal deformations since if
$g=g_{B}+f^{2}g_{F}=f^{2}(f^{-2}g_{B}+g_{F})$ , then $g$ is conformal to $f^{-2}g_{B}+g_{F}$ on $B\times_{f}F$ and
$f^{-2}g_{B}$ is conformal to $g_{B}$ .

THEOREM 4.1. Let $v_{+},$ $v_{-}$ satisfy the following equations

$\Delta v_{+}+\frac{n+1}{4n}(k-S(p))v_{+}-\frac{n+1}{4n}cv_{+}^{(1-/)}n+|\leq 04$
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and

$\Delta v_{-}+\frac{n+1}{4n}(k-S(p))v_{-}-\frac{n+1}{4n}cv_{-}^{(1/)}-4_{\Pi+1}\geq 0$

on $B$ with $0<v_{-}\leq v_{+}$ . Then there exists $v>0$ on $B$ such that $0<v_{-}\leq v\leq v_{+}$ and
$v$ is a solution of equation (4.2).

PROOF. We briefly outline the proof. Let

$N=1.u.b_{p\in B,0<v_{-}\leq v\leq v_{+}}[-\frac{n+1}{4n}(k-S(p))+\frac{n+1}{4n}c(1-\frac{4}{n+1})v^{(/}- 4n+|)]$

and, if necesssary, add a positive constant to $N$ to insure that $N>0$ . Set $v_{0}=v_{+}$ ,

and then define the sequence $\{v_{j}\}$ recurrently as the unique solution on $B$ of

$\Delta v_{j+1}-Nv_{j+1}=-\frac{n+1}{4n}(k-S(p))v_{j}+\frac{n+1}{4n}cv_{j}^{(1/)}-4n+|-Nv_{j}$ .

One uses the maximum principle to show that $0<v_{-}\leq v_{j+1}\leq v_{j}\leq\cdots\leq v_{+}$ . A
standard argument shows that the sequence $\{v_{j}\}$ converges to a positive solution
$v$ of equation (4.2) with $0<v_{-}\leq v\leq v_{+}$ . (For details, see [C.H., pp. 370-371],

[K.W. 1, 2, 3], [K.K.], or [K.]).

Here $v_{+}$ is called an upper solution of equation (4.2) and $v_{-}$ a lower solution
of equation (4.2).

THEOREM 4.2. If equation (4.2) has a solution for $c$ , then equation (4.2) has a
solution of $Nc$ , where $N$ is any positive constant.

PROOF. If $v$ is a solution of equation (4.2) for $c$ , then $v_{1}=N^{(/)}4v(n+|)$ is also a
solution of equation (4.2) for $Nc$ .

THEOREM 4.3. If there exists a solution of equation (4.2) and $c\leq 0$ , then

$\int(k-S(p))dV\leq 0$ , i.e., $\int_{B}S(p)dV\geq kvol(B)$ .

PROOF. Multiply both sides of equation (4.2) by $v^{-1}$ and integrate.

Even though there always exists a metric on a compact Riemannian manifold
such that $\int_{B}S(p)dV<0$ , we do not assume negative total scalar curvature. Recall

also that there are topological obstmctions for zero scalar curvature and positive
scalar curvature ([K.W.1]).

Now we tum to consideration of the following problem:
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Problem II. Does $B$ admit a warping function $f=v^{tf_{n+1})}>0$ such that the
associated warped metic $g$ has constant scalar curvature on $M=B\times_{f}F$ , given
constant scalar curvature $c$ on $(F,g_{F})$ ?

As in section 3, we consider several cases according to the value of $c$ .

THEOREM 4.4. If $c=0$ , then the Problem II admits a solution.

PROOF. Letting $L(v)=-\Delta v+\frac{n+1}{4n}S(p)v$, we consider the first eigenvalue of

the differential operator $L$ on the Sobolev space $H_{1.2}(B)$ , i.e.,

$\lambda_{1}=\min_{v\neq\in H_{12}(B)}()\frac{\int_{B}vL(v)dV}{\int_{B}v^{2}dV}$

$=\min_{v\neq 0\in H_{12}(B)}\frac{\int_{B}|\nabla v|^{2}dV+\frac{n+1}{4n}\int_{B}S(p)v^{2}dV}{\int_{B}v^{2}dV}$

Put $\lambda_{1}=\frac{n+1}{4n}\overline{k}$ . Then $L(v)=\lambda_{1}v=\frac{n+1}{4n}\overline{k}v,$ , where $v$ is a positive eigenfunction.

(Recall that the eigenfunction is never zero and smooth, so we can assume that
$v>0$ ([K.W. 1])). Hence

$\Delta v+\frac{n+1}{4n}(\overline{k}-S(p))v=0$ ,

which implies that the warped metric $g$ has the constant $\overline{k}$ as the scalar curvature
of $g$ .

REMARK 4.5. Note that if $v$ is an eigenfunction, then $rv$ is also an
eigenfunction for any real positive number $r$ . Therefore, in case that $c=0$ , there
are infinitely many warped metrics all of which have constant scalar curvature

$\overline{k}$ .

THEOREM 4.6 If $c<0$ and equation (4.2) has a solution for $k_{1}$ , then for any
$k\leq k_{1}$ , there exists a solution of equation (4.2) for $k$ .

PROOF. Let $v>0$ be a solution of equation (4.2) for $k_{1}$ , i.e.,

$0=\Delta v+\frac{n+1}{4n}(k_{1}-S(p))v-\frac{n+1}{4n}cv^{(1-/)}4n+|$

$=\Delta v+\frac{n+1}{4n}(k-S(p))v-\frac{n+1}{4n}cv^{t/}1-4n+|)+\frac{n+1}{4n}(k_{1}-k)v$ .
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Since $k_{1}-k\geq 0$ and $v>0$ ,

$\Delta v+\frac{n+1}{4n}(k-S(p))v-\frac{n+1}{4n}cv^{1\frac{4}{\prime|+|}}\leq 0$

which implies that $v$ is an upper solution of equation (4.2) for $k$ . Since $c<0$ and
the exponent $(1-4/n+1)$ is less than 1, a sufficiently small positive constant less
than $v$ is a lower solution of equation (4.2) for $k$ . Hence Theorem 4.1 implies
that there exists a solution of equation (4.2) for $k$ .

THEOREM 4.7. If $c<0$ , then there exists a constant $k_{0}$ such that we can solve
equation (4.2) for $k<k_{0}$ , but not for $k>k_{0}$ .

PROOF. If $k_{1}<\min_{p\in B}S(p)$ , then a large positive constant is an upper solution
and a small positive constant is a lower solution of equation (4.2) for $k_{1}$ . Hence
by Theorem 4.1 there exists a solution $v$ of equation (4.2) with $v>0$ . Theorem
4.6 implies that if $k<k_{1}$ , then we can solve equation (4.2) for $k$ . Define $k_{0}$ by
$k_{0}=l.u.b$ { $k|$ equation (4.2) admits a solution for that value of $k$ }.

Now we observe that if $c<0$ , then the above $k_{0}$ is finite. For suppose
$ k_{0}=\infty$ . Choose $k>\max_{p\in B}S(p)$ and let $v$ be a corresponding solution $t\emptyset$ equation
(4.2). By choice of $c$ and $k$ ,

$\frac{n+1}{4n}\int(k-S(p))\iota AV-\frac{n+1}{4n}c\int v^{(1-4/)}n+|dV>0$ ,

which is a contradiction to $v$ satisfying equation (4.2).

REMARK 4.8. (1) According to Theorem 3.2 in [D.D.], $k_{0}$ should be the first

eigenvalue of $-\frac{4n}{n+1}\Delta+S(p)$ .

(2) We can obtain another result using the variational method. For
$k_{1}<\min_{p\in B}S(p)$ , if we define the functional $J(v)$ by

$J(v)=\frac{1}{2}[\int_{B}|\nabla v|^{2}dV-\frac{n+1}{4n}\int_{B}(k_{1}-S(p))v^{2}dV]$

on. $\{v\in H_{1,2}(B)|v\geq 0,\int_{B}v^{(2/1)}-4n+dV=1\}$ Clearly $\inf_{v}J(v)\geq 0$ . We can see that there

exist a minimizing sequence $\{v_{j}\}$ and a function $v_{0}$ such that $v_{j}\rightarrow v_{0}$ (strongly in
$L_{2}(B)$ , weakly in $H_{1,2}(B)$ , and almost everywhere pointwise) and $J(v_{j})\rightarrow\overline{c}$ ,

whose value may not be equal to the originally given value $c$ . Then $v_{0}$ is a
solution of equation (4.2) for $k_{1}$ and $\overline{c}$ (since this method is similar to the proof
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of Theorem 4.10 below, we omit details).

In case that $c$ is positive, little is known about the existence of a positive
solution of the equation (4.2). But using the variational method, we have some
partial results, i.e., if $S(p)$ does not change “too much,” then we can solve the
equation (4.2) for some $k$ and some $c$ .

We consider the functional

$J(v)=\frac{1}{2}[\int_{B}|\nabla v|^{2}dV-\frac{n+1}{4n}\int_{B}(k-S(p))v^{2}dV][|+|)]^{-2/(2-4/)}n+|$

$=\frac{1}{2}[\int_{B}|\nabla v|^{2}dV-\frac{n+1}{4n}\int_{B}(k-S(p))v^{2}dV]$

on the set $D=\{v\in H_{1,2}(B)|v\geq 0,\int_{B}v^{t2/}-4n+|)dV=1\}$ . It is well known that if

$\int_{B}(M^{V}=0$ , then $\Vert d|\leq\lambda_{1}^{-1}\Vert\nabla d|$ , where $\lambda_{1}$ is the first positive eigenvalue of $\Delta$ on
$B$ .

LEMMA 4.9. If the maximum value of $|k-S(p)|$ is less than $\frac{4n}{n+1}\lambda_{1}^{2}$ for $n>2$ ,

where $\lambda_{1}$ is the first positive eigenvalue of $\Delta$ on $B$ , then the above given

functional has an infinimum on the set $D$ .

PROOF. Consider $v-\overline{v}$ for all $v\in H_{1,2}(B),$ $v\not\equiv O,$ $v\geq 0$ . Then
$\Vert v-\overline{v}\Vert\leq\lambda_{1}^{-1}\Vert\nabla v\Vert$ . Since $\Vert v-\overline{v}\Vert^{2}=\Vert v\Vert^{2}-\frac{1}{vo1(B)}(\int_{B}\omega V)^{2}$ , on the set $D$ ,

$J(v)=\frac{1}{2}[\int_{B}|\nabla v|^{2}dV-\frac{n+1}{4n}\int_{B}(k-S(p))v^{2}dV]$

$\geq\lambda_{1}^{2}\Vert v\Vert^{2}-\frac{\lambda_{1}^{2}}{vo1(B)}(\int_{B}uiV)^{2}-\frac{n+1}{4n}M_{1}\Vert v\Vert^{2}$

$(\leftarrow M_{1}=\max_{p\in B}|k-S(p)|)$

$=(\lambda_{1}^{2}-\frac{n+1}{4n}M_{1})\Vert v\Vert^{2}-\frac{\lambda_{1}^{2}}{vo1(B)}\Vert v\Vert_{1}^{2}$ ,

$(\leftarrow\int_{B}WV=\Vert v\Vert_{1}$ since $v\geq 0)$

$\geq-\Vert v\Vert_{1}^{2}\underline{\lambda_{1}^{2}}$ .
$vol(B)$

Since $B$ is compact, $\Vert\iota l|_{1}^{2}\leq c_{1}\Vert d|^{2_{\{2-4/)}}=n+|C_{1}$ for some constant $C_{1}$ . Hence
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$J(v)\geq-\frac{\lambda_{1}^{2}}{vo1(B)}C_{1}$ .

Let $\overline{c}=\inf_{v}J(v)$ . Even if the maximum and minimum values of $S(p)$ are

close together, $\overline{c}$ may admit positive, zero, or negative values depending on the

choice of $k$ . We now consider the case $\overline{c}<0$ (i.e., $c$ is positive since
$-\frac{n+1}{4n}c=2\overline{c}$ , cf., the proof of the following Theorem 4.10) because the cases

$\overline{c}\geq 0$ (i.e., $c$ is negative or zero) have already been treated.

THEOREM 4.10. If $S(p)$ is of small variation in the sense of Lemma 4.9 and
$\inf_{v}J(v)<0$ , then Problem II admits a solution for such $k$ and all $c>0$ .

PROOF. By Lemma 4.9, there exists a minimizing sequence $\{v_{i}\}$ in
$D\subset H_{1,2}(B)$ such that $J(v_{l})\rightarrow\overline{c}$ . For the proof, we follow several steps.

Step 1. $\{v_{i}\}$ is bounded in $H_{I,2}(B)$ .
Since $J(v_{j})\rightarrow\overline{c}$ , we may assume that for all $i$ ,

$J(v_{j})=\frac{1}{2}[\int_{B}|\nabla v_{j}|^{2}dV-\frac{n+1}{4n}\int_{B}(k-S(p))v_{i}^{2}dV]\leq C_{2}$

for some positive $C_{2}$ . Since $\Vert\nabla v_{j}\Vert_{2}^{2}\geq\lambda_{1}^{2}\Vert v_{j}\Vert_{2}^{2}-\frac{\lambda_{1}^{2}}{vo1(B)}\Vert v_{j}\Vert_{1}^{2}$ ,

$(\lambda_{1}^{2}-\frac{n+1}{4n}M_{1})\Vert v_{i}\Vert_{2}^{2}-\frac{\lambda_{1}^{2}}{vo1(B)}\Vert v_{j}\Vert_{1}^{2}\leq C_{2}$

and

$(\lambda_{1}^{2}-\frac{n+1}{4n}M_{1})\Vert v_{i}\Vert_{2}^{2}\leq C_{2}+\frac{\lambda_{1}^{2}}{vo1(B)}\Vert v_{j}\Vert_{1}^{2}\leq C_{1}+C_{2}$ .

Hence 1 $v_{i}\Vert^{2}\leq C_{3}$ for some positive $C_{3}$ since $\lambda_{1}^{2}-\frac{n+1}{4n}M_{1}>0$ .

Now since $J(v_{j})=\frac{1}{2}[\int_{B}|\nabla v_{j}|^{2}dV-\frac{n+1}{4n}\int_{B}(k-S(p))v_{i}^{2}dV]\leq C_{2}$ .

$\Vert\nabla v_{i}\Vert_{2}^{2}\leq\frac{n+1}{4n}\int_{B}(k-S(p))v_{i}^{2}dV+2C_{2}$

$\leq\frac{n+1}{4n}M_{1}\Vert v_{i}\Vert_{2}^{2}+2C_{2}$

$\leq\frac{n+1}{4n}M_{1}C_{3}+2C_{2}$ ,

which implies that $\{v_{j}\}$ is bounded in $H_{1,2}(B)$ .
Step 2. By Kondrokov’s theorem for compact manifolds (cf. [Au]), the

imbedding $H_{1,2}(B)\rightarrow L_{2}(B)$ is compact. A bounded closed set in $H_{1,2}(B)$ is weakly
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compact, so there exist a subsequence $\{v_{j}\}$ of $\{v_{j}\}$ and a function $v_{0}\in H_{1,2}(B)$

such that
i) $v_{j}\rightarrow v_{0}$ strongly in $L_{2}(B)$ , so $v_{j}\rightarrow v_{0}$ strongly in $L_{t2^{-4}/n+1)}(B)$ ,

ii) $v_{j}\rightarrow v_{0}$ weakly in $H_{1.2}(B)$ ,

iii) $v_{j}\rightarrow v_{0}$ almost everywhere pointwise.
By i) and iii), $\int_{B}v_{0}^{(2-\gamma_{n+1})}dV=1$ and $v_{0}\geq 0$ . And by ii), $\Vert v_{0}\Vert_{1.2}\leq\lim\inf_{j\rightarrow\infty}\Vert v_{j}\Vert_{1,2}$ .

Since $v_{j}\rightarrow v_{0}$ strongly in $L_{7}(B)$ , we can see that $J(v_{0})\leq\overline{c}.$ . The minimum
property implies that $J(v_{0})=\overline{c}$ .

Step 3. Set $\varphi=v_{0}+t\psi$ , where $t$ is a small real number and $\psi\in H_{1.2}(B)$ . An
asymptotic expansion gives

$J(\varphi)=[\frac{1}{2}\{\int_{B}|\nabla v_{0}|^{2}dV-\frac{n+1}{4n}\int_{B}(k-S(p))v_{0}^{2}dV\}+r\{\int_{B}\nabla v_{0}\nabla\psi dV$

$-\frac{n+1}{4n}\int_{B}(k-S(p))v_{0}\psi dV\}+o(t^{2})][(2-\gamma_{n+1)}(2-/n+|)$

$-2t\int_{B}v_{0}^{1-(4/)}n+|\psi dV+0(t^{2})]$

$=\overline{c}+r[\int_{B}\nabla v_{0}\nabla\psi dV-\frac{n+1}{4n}\int_{B}(k-S(p))v_{0}\psi dV$

$-2\overline{c}\int_{B}v_{0}^{1\dashv/)}4n+|\psi dV]+0(t^{2})$ .

From $\frac{df(\varphi)}{dr}|_{t=0}=0,$
$v_{0}$ satisfies that for all $\psi\in H_{1.2}(B)$ ,

$\int_{B}\nabla v_{0}\nabla\psi dV-\frac{n+1}{4n}\int_{B}(k-S(p))v_{0}\psi dV-2\overline{c}\int_{B}v_{0}^{1\dashv/)}1+|\psi dV4=0$ .

Thus we have

$\Delta v_{0}+\frac{n+1}{4n}(k-S(p))v_{0}+2\overline{c}v_{0}^{1-(/)}4n+1=0$ ,

where $2\overline{c}=-\frac{n+1}{4n}c$ . By the elliptic regularity theory, $v_{0}$ is a $C^{2}$ solution. And

then by the maximum principle for $C^{2}$ solutions, $v_{0}$ can not attain zero, cf.

Proposition 3.75 in [Au] since $\Delta v_{0}\geq\frac{n+1}{4n}(S(p)-k)v_{0}$ . Hence $v_{0}>0$ , which is

our desired smooth solution.

REMARK 4.11. From Theorem 4.7, in case $c$ is negative, there is a
discriminant value $k_{0}$ for which $k<k_{0}$ is necessary in order to solve equation
(4.2). However, in case $c$ is nonnegative, we do not know if there exists such a
discriminant value for $k$ .
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