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1. Introduction and statement of the result

Let $M$ be a smooth 4-manifold which admits an open subset $K$ with one end $N$

and an open submanifold $W_{0}$ with two ends $N_{-},N_{+}$ . $W_{1},$ $ W_{2},\cdots$ denote copies of
$W_{0}$ . The 4-manifold $M$ will be called end-periodic if it admits a decomposition
$ M=KU_{N}W_{0}U_{N}W_{1}\cup\cdots$ , where $N\subset K$ is identified with the end $N_{-}$ of $W_{0}$ and

the end $N_{+}$ of $W_{0}$ is identified with the end $N_{-}$ of $W_{1}$ and so on. Let $Y$ be the

compact oriented 4-manifold which is obtained from $W_{0}$ by identifying the two

ends. The manifold $Y$ has a Z-cover $\tilde{Y}=\cdots NW_{-l}U_{N}W_{0}U_{N}W_{1}\cdots$ with projection
$\pi:\tilde{Y}\rightarrow Y$ . A geometric object on $M$ , a vector bundle, a connection, a differential
operator, a Riemannian metric etc. will be called end-periodic if its restriction on
$EndM=W_{0}u_{N}W_{1}\cdots$ is the pull back by $\pi$ of an object on Y. By making choose a
smooth function $s:W_{0}\rightarrow[0,1]$ such that $s|N_{-}=0$ and $s|N_{+}=1$ , we obtain a
smooth step function $t$ on $M$ such that $t(x)=n+s(x)$ if $x\in W_{n}$ .

Let $P\rightarrow M$ be an end-periodic principal $SU(2)$ -bundle, and $A_{\{}$ be an end-

periodic connection on $P$ which is gauge equivalent over $EndM$ to the product

connection on $EndM\times SU(2)$ . Then by the lemma 7.1 in [7]

$l=(1/8\pi^{2})\int_{M}tr(F_{A_{0}}\wedge F_{A_{c}})$

is an integer, where $tr()$ is the trace on the adjoint representation of the group
$SU(2)$ . Let $E\rightarrow M$ be an end-periodic vector bundle which is associated to the
principal bundle $P\rightarrow M$ . Put $L_{Ioc}^{2}(E)=\{sectionu;u\in L^{2}(E|_{A})$ for every

measurable $A\subset\subset M$}, where we assume that the set $A$ has a finite measure, and

denote by $\Vert\cdot\Vert_{A_{0}}$ the norm by the covariant derivative $\nabla_{A_{0}}$ : $C_{0}^{\infty}(E)\rightarrow C_{0}^{\infty}(E\otimes T^{*}M)$

of compactly supported smooth sections, further $\nabla^{(4)}$

) denotes the j-times iterated

derivative $\nabla_{A_{0}}\cdots\nabla_{A_{0}}$ . For $\delta>0$ , put

$\mathscr{A}_{k}(\delta)=$ { $A_{0}+a;a\in L_{5}^{2}$ , loc $(adP\otimes T^{*}M)$ with norm $\Vert a\Vert_{A_{0}}<\infty$ },
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where $\Vert a\Vert_{A_{()}}=\int_{M}^{e^{t}}\delta\sum_{j=0}^{5}\Vert\nabla_{A}^{(j_{()})}a\Vert^{2}$ and define the small gauge group $\mathscr{G}_{k}^{\prime}(\delta)=\{h\in$

$ L_{6.1\propto}^{\sim^{\prime}}(AutP);\Vert\nabla_{A_{()}}h\Vert_{A_{()}}<\infty$ , and tends to the identity at $infinity$ },$where$ we have
used the adjoint representation ad: $SU(2)/Z_{2}\rightarrow End(su(2))$ and the embedding
$C^{\infty}(P\times_{ad}SU(2)/Z_{2})\rightarrow C^{\infty}(P\times_{ad}End(su(2))$ .

Let $\mathscr{A}_{k}*(\delta)\subset \mathscr{A}_{k}(\delta)$ denote the subset of irreducible connections, and $g_{0}$ be
an end-periodic metric on the tangent bundle $TM$ and $\mathscr{C}$ be the set of
asymptotically periodic metrics ((6.1) in [7]). Consider a $\mathscr{G}_{k}$ , equivariant map

$/^{\sigma?}$ : $\mathscr{A}_{k}(\delta)\times \mathscr{C}\ni(A,\phi)\rightarrow P_{-}(g_{0})(\phi^{-1})^{*}F_{A}\in L_{4,1\propto}^{2}(adP\otimes P_{-}\Lambda^{2}T^{*}M)$ ,

where $P_{-}$ denotes the projection to the anti-self dual part. Let
$\overline{\pi}^{\prime}$ : $\mathscr{M}_{k}^{\prime}=\mathscr{P}^{-1}(0)/\mathscr{G}_{k}$ ‘\rightarrow %’ be the projection. Put $\mathscr{M}(\phi)_{k}^{\prime}=\overline{\pi}^{\prime^{-l}}(\phi)$ . According to
the lemmas 5.3, 5.8 and 8.4 in [7], there exists a positive number $\delta*>0$ such that

for any $\delta,0<\delta<\delta*,\mathscr{M}_{k}^{\prime}(\phi)\cap(\mathscr{A}_{k}^{*}(\delta)/\mathscr{G}_{k}^{\prime}(\delta))$ is a smooth manifold. $\Omega^{3_{k}}$ denotes

the 3-fold iterated loop space of mappings of degree $k$ . In this paper we consider
the case of the manifold $M=S^{1}\times R^{3}$ which has been considered as an end-
periodic manifold, $ M^{\prime}=S^{1}\times D^{3_{3/2}\cup}(S^{1}\times S^{2}\times(1,3))^{\cup}(S^{1}\times S^{2}\times(2,4))^{\cup}\cdots$ (Proposi-
tion 1 in [1]). Now we have the following result which is proved in Appendix.

PROPOSITION. The manifold $M^{\prime}$ admits an end-periodic metric.
Then the main result in this article is

THEOREM. There exists a map $\mathscr{M}_{k}^{\prime}(\phi)\rightarrow\Omega_{k}^{3}(S^{3})$ which induces a surjection
of homology groups

$H_{q}(\mathscr{M}_{k}^{\prime}(\phi))\rightarrow H_{q}(\Omega^{3_{k}}(S^{3}))$ for $q\leqq[k/2]$ .

In the previous paper [1] we have discussed the moduli space of self-dual,
asymptotically periodic instantons. There we have used the gauge group
$\mathscr{G}_{k}(\delta)=\{h\in L_{6.1\propto}^{f}(AutP);\Vert\nabla_{A_{0}}h\Vert_{A_{0}}<\infty\}$ instead of the small gauge group S7 $’(\delta)$ .
Let $\overline{\pi}:\mathscr{M}_{k}=\mathscr{P}^{-1}(0)/.\mathscr{G}_{k}(\delta)\cap(\mathscr{A}_{k}^{*}(\delta))/\mathscr{G}_{k})\rightarrow \mathscr{C}$ be the projection and put
$\mathscr{M}_{k}(\phi)=\overline{\pi}^{-1}(\phi)$ . Then we have a principal SO(3)-bund1e $\mathscr{M}_{k}^{\prime}(\phi)\cap$

$(\mathscr{A}_{k}^{*}(\delta))/\mathscr{G}_{k}^{\prime}(\delta))\rightarrow \mathscr{M}_{k}(\phi)$ .
We prove the main theorem in the sections 2 and 3. Our main tools are

periodic instantons due to Harrington-Shepard, Atiyah-Jones diagram and Taubes’
existence theorem ([3], [2], [8]).

I am grateful to Doctor Yamaguchi K. for his indication of the usefulness of
the proposition (A. 1) in [6], and wish to thank the referee for his kind advices.
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2. Deformation of Harrington-Shepard’s periodic instantons

We abbreviate hyperbolic functions as follows:

ch $=cosh$ , and sh $=sinh$ .

Let $r$ be the distance from the source to a point in $R^{3}$ and $\tau\in[0,2\pi]$ .
Then Harrington-Shepard’s periodic solution is given by

$\phi=1+\frac{1}{r}.\frac{shr}{chr-\cos\tau}$ $([3])$ .

Let $t$ be the smooth step function in the selection 1, and $f$ be a smooth cut off

function such that $f|K-N=1$ and {support $f$ } $\subset K$ . We put

$\tilde{\phi}(\delta)=1+\frac{1}{r}\cdot\frac{shr}{chr-\cos\tau}\cdot e^{-t\delta}$ for $\delta>0$

$\hat{\phi}=1+\frac{1}{r}\cdot\frac{shr}{chr-\cos\tau}\cdot f(r)$

Then $\hat{\phi}$ is an end-periodic function and $\tilde{\phi}=\hat{\phi}+(\tilde{\phi}-\hat{\phi})$ . We put $\nabla_{x_{j}}=\nabla_{i}$ for
$i=1,2,3$ . By a direct calculation

$\nabla_{i}\log\tilde{\phi}=\frac{e^{-t\delta}}{\tilde{\phi}}\cdot\frac{X_{i}}{r^{2}(chr-\cos\tau)}\cdot(-\frac{shr}{r}+\frac{1-chr\cos\tau}{chr\cos\tau}-t^{\prime}\&hr)$

We denote by $G_{i}$ the factor $\frac{x_{i}}{r^{2}(chr-\cos\tau)}$ and by $G^{\#}$ the factor

$(-\frac{shr}{r}+\frac{1- chr\cos\tau}{chr\cos\tau}-t^{t}\&hr)$ . By further calculations

$\nabla_{r}\log\tilde{\phi}=-\frac{1}{\tilde{\phi}}\cdot\frac{\sin\tau shr}{r(chr-\cos\tau)^{2}}\cdot e^{- t\delta}$

The gauge potential is given by
$\tilde{A}_{i}=\sqrt{-1}\overline{\sigma}_{ij}\nabla_{j}(\log\tilde{\phi})$ , where $\overline{\sigma}_{ij}=(1/4\sqrt{-1})[\sigma_{i},\sigma_{j}]$ for $i,j=1,2,3$ and $\overline{\sigma}_{i4}=$

$-\frac{1}{2}\sigma_{i}$ , (c.f.[3] and Jackiw, R., Nohl, C., Rebbi, C., Conformal properties of

pseudo particle configurations, Phys. Review $D$ 15, 8 (1977)). To get the

curvature we need the following formulas,

$\nabla_{j}\nabla_{j}\log\tilde{\phi}=-\frac{1}{\tilde{\phi}^{2}}e^{-2t\delta}(G_{j}\cdot G^{\#})(G_{j}\cdot G^{\#})+\frac{1}{\tilde{\phi}}\nabla_{r^{\nabla_{i}\tilde{\phi}}}$

$\nabla_{j}\nabla_{j}\tilde{\phi}=e^{-t\delta}\{[-\frac{t^{\prime}\&_{j}}{r}G_{i}+\frac{\delta_{ij}}{r^{2}(chr-\cos\tau)}-\frac{2x_{j}x_{j}}{r^{4}(chr-\cos\tau)}-\frac{x_{j}x_{j}}{r^{3}}\cdot\frac{shr}{(chr-\cos\tau)^{2}}]G^{\#}$

$+[\frac{x_{j}shr}{r^{2}}-\frac{x_{j}chr}{r^{2}}-\frac{shr\cos\tau}{chr-\cos\tau}\cdot\frac{X_{j}}{r}-\frac{(1- chr\cos\tau)shr}{(chr-\cos\tau)^{2}}\cdot\frac{X_{j}}{r}-\frac{t^{\prime\prime}\delta \mathfrak{r}_{j}shr}{r}-\frac{x_{j}t^{\prime}\&hr}{r}G_{j}$
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$\nabla_{\gamma}\nabla_{j}\tilde{\phi}=e^{- t\delta}(\frac{-x_{j}\sin\tau}{r^{2}(chr-\cos\tau)^{2}}G^{\#}+G\cdot\frac{\sin^{2}r\sin\tau}{(chr-\cos\tau)^{2}})$

$\nabla_{\gamma}\nabla_{\gamma}\log\tilde{\phi}=\nabla_{\gamma}(\frac{\nabla_{\gamma}\tilde{\phi}}{\tilde{\phi}})=-\frac{1}{\tilde{\phi}^{2}}(\nabla_{r}\tilde{\phi})^{2}+\frac{1}{\tilde{\phi}}\nabla_{\gamma}\nabla_{\gamma}\tilde{\phi}$

$\nabla_{\gamma}\nabla_{\gamma}\tilde{\phi}=e^{-t\delta}\cdot\frac{shr}{r}\cdot\frac{chr\cos\tau-\sin^{2}\tau-1}{(ch_{\Gamma}-\cos\tau)^{2}}$

Since $\phi\fallingdotseq 0$ as $r\geqq 1$ , we obtain approximately the difference between our
potential and H-S’s in [3]:

$\nabla_{j}\log\tilde{\phi}:e^{- t\delta}\cdot\frac{x_{i}t^{\prime}\delta shr}{r^{2}(chr-\cos\tau)}$

$\nabla_{j}\nabla_{i}\log\tilde{\phi}:e^{- 2t\delta}\{2G_{j}G^{\alpha}G_{j}(t^{\prime}\delta shr)-G_{j}G_{j}(t^{\prime}\delta shr)^{2}\}+e^{- t\delta}\frac{x_{i}t^{\prime}\delta}{r}G_{j}G^{\#}+\frac{\delta r_{j}(t^{\prime\prime}shr+t^{\prime}chr)}{r}G_{j}$

Therefore $\tilde{A}=\hat{A}+(\tilde{A}-\hat{A})\in \mathscr{A}(2\delta)$ for any $\delta$ such that $0<2\delta<\delta_{*}$ , where $\tilde{A}$ and
$\hat{A}$ denote the connections derived from $\tilde{\phi}$ and $\hat{\phi}$ .

Now we consider an electric field $E:R\rightarrow R^{3}\cup\{\infty\}$ which is by definition
linear and the field of a single charge has the properties:

1) $E\rightarrow 0$ at $\infty$ , 2) $ E\rightarrow\infty$ at the source, 3) $E$ is spherically symmetric
(c.f.[2]). Then we have

LEMMA. The map $(\nabla_{j}\log\tilde{\phi}):C_{1}(R^{3})\rightarrow\Omega_{I}^{3}(S^{3})$ gives an electric field.

PROOF. As $r\rightarrow\infty,\phi\rightarrow 1,e^{-\iota\delta}\rightarrow 0,t^{\prime}$ is bounded. Then $\nabla_{j}\log\tilde{\phi}\rightarrow 0$ . As
$r\rightarrow 0$ , $shr/r\rightarrow 1$ , $chr\rightarrow 1$ , $e^{-l\delta}=1$ , $t^{\prime}=0$ . Let $\tau$ to be zero. Then
$(-shr/r-1)\rightarrow-2$ . By the fact $(x_{1}/r^{2})^{2}+(x_{2}/r^{2})^{2}+(x_{3}/r^{2})^{2}\rightarrow\infty$ we have
$\Vert(\nabla_{j}\log\tilde{\phi})\Vert\rightarrow\infty$ . Now clearly $(\nabla_{j}\log\tilde{\phi})$ is spherically symmetric in $R^{3}$ Thus,
we obtain the lemma.

Next we consider homotopic deformation,

$\tilde{\phi}_{(s)}(\delta)=1+\frac{s}{r}+\frac{(1-s)shr}{r(chr\cos\tau)}\cdot e^{-t\delta}$ , $0\leqq s\leqq 1$ .

Then $\tilde{\phi}(\delta)$ is homotopic to $\tilde{\phi}_{(1)}=1+1/r$ and so $\nabla\log\tilde{\phi}(\delta)$ is homotopic to
$\nabla\log\tilde{\phi}_{(1)}$ , which is self-dual in $R^{4}$ . In the same way we can see that $\nabla\log\tilde{\phi}(\delta)$ is
homotopic to $\nabla Iog\hat{\phi}$ which is trivial on $EndM$ . Now we consider k-instantons.
For this purpose we consider the functions

$\tilde{\phi}_{k}(\delta)=1+\sum_{i=1}^{k}\frac{1}{r_{i}}\cdot\frac{shr_{i}}{ch_{\Gamma_{j}}-\cos\tau}\cdot e^{-t\delta}$
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$\hat{\phi}_{k}=1+\sum_{i=1}^{k}\frac{1}{r_{j}}\cdot\frac{shr_{i}}{chr_{j}-\cos\tau}\cdot f(r_{i})$

where $r_{i}$ denotes the distance from a point to i-th base point in $R^{3},i=1,2,\cdots,k$ . A

set of k-distinct base points can be regarded as an element of the configuration
space $C_{k}(R^{3})$ . We denote by $A$ the connection which is obtained from $\hat{\phi}_{k}$ . The

space $R^{3}$ is deformable onto the unit open disc by a homotopy

$(1-s)x+\frac{2sTan^{-1}\Vert_{X}\Vert}{\Vert_{X}||\pi}\cdot x$ for $0\leqq s\leqq landx\neq 0$ ,

where the origin in $R^{3}$ is fixed. Thus we can assume that k-distinct points lies in

the unit open disc in $R^{3}$ . Then by the construction in Remark 2 in [1] we have a
l-form $a$ such that $A+a$ is self-dual where the connection A has a compact

support. Therefore the l-form $a$ also has a compact support. For $g\in \mathscr{G}_{k}^{\prime}(\delta)$ , by

making use of the homotopy $g^{-1}(A+(1-s)a)g+g^{-1}dg,$ $0\leqq s\leqq 1$ , we can see that

the homotopy gives a homotopy in the space $\mathscr{J}^{\prime}(\delta)=\mathscr{A}_{k}(\delta)/\mathscr{G}_{k}^{\prime}(\delta)$ . Then the

class $[A+a]$ is homotopic to the class $[A]$ . Thus the gauge potential $\nabla\log(\tilde{\phi}_{k})$

gives an element of $\mathscr{M}_{k}^{\prime}(\delta)$ .

3. Proof of Main theorem

We prove the theorem by making use of a modified Atiyah-Jones diagram [2].

We denote by $B_{k}$ and $M_{k}$ the moduli space of connections and self-dual
connections on an $SU(2)$ bundle over $R^{4}$ with topological charge $k$ respectively.
By the consideration in Section, $\log\tilde{\phi}(\delta)$ is homotopic to $\log\tilde{\phi}_{(1)}$ . Then by the

lemma $(3, 6)$ in [2] we have a homotopy-commutative diagram

$\nearrow\Omega^{3}k(S^{3})$

$B_{k}$

$\backslash $

$\lambda_{k}$

$\Omega^{4}k(S^{4})$

where $\lambda_{k}$ is the map (3.4) in [2].

We denote by $\Omega_{k}^{1,2}(S^{3})$ the set of based maps from the space $S^{1}\times S^{2}$ to $S^{3}$ of

degree $k$ . For a map $p:S^{1}\times S^{2}\rightarrow S^{3}$ we define a map $\hat{p}$ : $S^{1}\times S^{2}\rightarrow S^{3}$ by

$\hat{p}(t,x)=p(t,x_{0})^{-1}p(t,x)p(t_{0},x)^{-1}$
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where $x_{0},t_{0}$ are base points in $S^{1},S^{2}$ . Then the map $\hat{p}$ gives a map $\tilde{p}$ : $S^{3}\rightarrow S^{3}$ .
Thus we have a map $P:\Omega_{k}^{1,2}(S^{3})\rightarrow\Omega_{k}^{3}(S^{3})$ . By making use of the natural
projection $S^{1}\times S^{2}\rightarrow S^{3}$ we have a map $j:\Omega_{k}^{3}(S^{3})\rightarrow\Omega_{k}^{1.2}(S^{3})$ such that $P\cdot j=$

the identity map. By the proposition 2.3 in [2] we have a homotopy equivalence
$B_{k}\rightarrow\Omega^{3_{k}}(S^{3})$ . By mimicking the proof of this proposition, we obtain a map
$C:\mathscr{J}^{\prime}(\delta)\rightarrow\Omega_{k}^{1.2}(S^{3})$ which is compatible with the homotopy equivalence
$B_{k}\rightarrow\Omega^{3_{k}}(S^{3})$ . Precisely the space $\mathscr{J}^{\prime}(\delta)$ is deformable into the subspace
$\mathscr{B}_{k}^{\prime}(\delta)_{\infty}$ of the classes of connections which are flat outside a compact set in
$M=S^{1}\times R^{3}$ (this fact can be seen by making use of a cut off function and a
homotopy as in the consideration in the section 2). For any such connection A
there exists a flat section $\alpha$ of the principal bundle $P\rightarrow S^{1}\times R^{3}$ with
$\alpha|K_{n}^{c}=K_{n}^{c}\times g_{0}$ , where $K_{n}^{c}$ denotes the complement of the subspace
$K_{n}=KW_{0}W_{1}^{\cup..\cup}NW_{n}$ for a sufficiently large $n$ . Pick any section $\beta$ of $P$

which agrees with $\alpha$ on $ S^{1}\times\ell,\ell$ is a line through the origin in $R^{3},(S^{1}\times R^{3}$

retracts onto $S^{1}\times l$ , therefore such $\beta$ exists). For a sufficiently large $n$ and a
subspace $S^{1}\times S^{2}\times(t)$ in $ W_{n},\alpha$ and $\beta$ differ by a map $g:S^{1}\times S^{2}\times(t)\rightarrow SU(2)$

with $g(S^{1}\times\ell)=1$ . Then by assigning $g$ to $A$ we get the required map
$\ovalbox{\tt\small REJECT}^{\prime}(\delta)\rightarrow\Omega^{1,2_{k}}(S^{3})$ .

Thus we obtain the following homotopy-commutative diagram:

$C_{k}(S^{1}xR^{3})$ ,

where $i$ and $\gamma$ denote the inclusion maps and $h$ denotes the composite map of
$P\cdot C$ and a homotopy inverse $\Omega^{3_{k}}\rightarrow B_{k}$ . The commutativity in the lower part
follows from the consideration in the section 2. By the theorem due to $G\cdot Segal$

([5]) the induced homomorphism

$(\nabla\log\tilde{\phi}_{k}(\delta))_{*}:$ $H_{q}(C_{k}(R^{3}))\rightarrow H_{q}(\Omega_{k}^{3}(S^{3}))$

is an isomorphism for $k>>q$ . The homotopy type of $\Omega_{k}^{3}(S^{3})$ is independent of $k$ .
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Then by the proposition (A.1) in [6], $H_{q}(C_{k}(R^{3}))\rightarrow H_{q}(\Omega_{k}^{3}(S^{3}))$ is an
isomorphism for $q\leqq[k/2]$ . Therefore the homomorphism

$(P\cdot C\cdot\gamma)_{*};$ $H_{g}(\mathscr{M}_{k}^{\prime}(\delta))\rightarrow H_{g}((\Omega_{k}^{3}(S^{3}))$

is surjective for $q\leqq[k/2]$ . Thus we have proved the theorem.

REMARK. By making use of a diffeomorphism
$R^{3}\times S^{1}\ni(x,y,z,\theta)\rightarrow(x,y,e^{z}\cos\theta,e^{z}\sin\theta)\in R^{4}-R^{2}\cong S^{4}-S^{2}$

we obtain a compactification of the space up to diffeomorphism. But I do not

know a conformal compactification without singularities ([4]).

APPENDIX. Proof of the proposition in the section one.
Firstly I should remark that the manifold $M=S^{1}\times R^{3}$ has been considered as an
end-periodic manifold

$ M^{\prime}=S^{1}\times D^{3_{3/2^{\cup}}}(S^{1}\times S^{2}\times(1,3))^{\cup}(S^{1}\times S^{2}\times(2,4))^{\cup}\ldots$ . $(2.[1])$

The space $ S^{1}\times S^{2}\times[1,\infty$) admits the pull-back metric via $\pi$ of the product metric
on the space $S^{1}\times S^{2}\times S^{1}$ . By making use of the cut off function $f$ in the section 2,

we connect the natural metric $g_{0}$ in the space $S^{1}\times D_{3/2}^{2}$ with the metric $g\mathfrak{l}$ on the
$EndM$ , and we obtain a metric on the manifold $M$ ’

$g=f(r)g_{0}+(1-f(r))g_{1}$ .

Then the restriction of the metric $g$ over $EndM$ is induced from the conformally
flat metric $g_{1}$ on the manifold Y. Thus we obtain an end-periodic metric on the
manifold $M’$ .
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