# THE STABLE TOPOLOGY OF MODULI SPACES OF PERIODIC INSTANTONS 

By<br>Hiromichi Matsunaga

## 1. Introduction and statement of the result

Let $M$ be a smooth 4-manifold which admits an open subset $K$ with one end $N$ and an open submanifold $W_{0}$ with two ends $N_{-}, N_{+} . W_{1}, W_{2}, \cdots$ denote copies of $W_{0}$. The 4-manifold $M$ will be called end-periodic if it admits a decomposition $M=K \cup_{N} W_{0} \cup_{N} W_{1} \cup \cdots$, where $N \subset K$ is identified with the end $N_{-}$of $W_{0}$ and the end $N_{+}$of $W_{0}$ is identified with the end $N_{-}$of $W_{1}$ and so on. Let $Y$ be the compact oriented 4-manifold which is obtained from $W_{0}$ by identifying the two ends. The manifold $Y$ has a $Z$-cover $\tilde{Y}=\cdots_{N} W_{-1} \cup_{N} W_{0} \cup_{N} W_{1} \cdots$ with projection $\pi: \tilde{Y} \rightarrow Y$. A geometric object on $M$, a vector bundle, a connection, a differential operator, a Riemannian metric etc. will be called end-periodic if its restriction on $\operatorname{End} M=W_{0} \cup_{N} W_{1} \cdots$ is the pull back by $\pi$ of an object on $Y$. By making choose a smooth function $s: W_{0} \rightarrow[0,1]$ such that $s \mid N_{-}=0$ and $s \mid N_{+}=1$, we obtain a smooth step function $t$ on $M$ such that $t(x)=n+s(x)$ if $x \in W_{n}$.

Let $P \rightarrow M$ be an end-periodic principal $S U(2)$-bundle, and $A_{0}$ be an endperiodic connection on $P$ which is gauge equivalent over End $M$ to the product connection on $\operatorname{End} M \times S U(2)$. Then by the lemma 7.1 in [7]

$$
l=\left(1 / 8 \pi^{2}\right) \int_{M} \operatorname{tr}\left(F_{A_{0}} \wedge F_{A_{0}}\right)
$$

is an integer, where $\operatorname{tr}()$ is the trace on the adjoint representation of the group $S U(2)$. Let $E \rightarrow M$ be an end-periodic vector bundle which is associated to the principal bundle $P \rightarrow M$. Put $L^{2}{ }_{\text {loc }}(E)=\left\{\right.$ section $u ; u \in L^{2}\left(\left.E\right|_{A}\right)$ for every measurable $A \subset \subset M\}$, where we assume that the set $A$ has a finite measure, and denote by $\|\cdot\|_{A_{0}}$ the norm by the covariant derivative $\nabla_{A_{0}}: C_{0}^{\infty}(E) \rightarrow C_{0}^{\infty}\left(E \otimes T^{*} M\right)$ of compactly supported smooth sections, further $\nabla_{A_{0}}^{(j)}$ denotes the j-times iterated derivative $\nabla_{A_{0}} \cdots \nabla_{A_{0}}$. For $\delta>0$, put

$$
\mathscr{A}_{k}(\delta)=\left\{A_{0}+a ; a \in L^{2}{ }_{5, \text { loc }}\left(a d P \otimes T^{*} M\right) \text { with norm }\|a\|_{A_{0}}<\infty\right\},
$$

where $\|a\|_{A_{0}}=\int_{M}^{e t \delta} \sum_{j=0}^{5}\left\|\nabla_{A_{0}}^{(j)} a\right\|^{2}$ and define the small gauge group $\mathscr{G}_{k}{ }^{\prime}(\delta)=\{h \in$ $L^{2}{ }_{6 . \text { loc }}\left(\right.$ AutP); $\left\|\nabla_{A_{0}} h\right\|_{A_{0}}<\infty$, and tends to the identity at infinity $\}$, where we have used the adjoint representation ad: $S U(2) / Z_{2} \rightarrow \operatorname{End}(\operatorname{su}(2))$ and the embedding $C^{\infty}\left(P \times_{\text {ad }} S U(2) / Z_{2}\right) \rightarrow C^{\infty}\left(P \times_{\text {ad }} \operatorname{End}(s u(2))\right.$.

Let $\mathscr{A}_{k} *(\delta) \subset \mathscr{A}_{k}(\delta)$ denote the subset of irreducible connections, and $g_{0}$ be an end-periodic metric on the tangent bundle $T M$ and $\mathscr{C}$ be the set of asymptotically periodic metrics ((6.1) in [7]). Consider a $\mathscr{F}_{k}$, equivariant map

$$
\mathscr{P}: \mathscr{A}_{k}(\delta) \times \mathscr{C} \ni(A, \phi) \rightarrow P_{-}\left(g_{0}\right)\left(\phi^{-1}\right)^{*} F_{A} \in L_{4,1 \mathrm{loc}}^{2}\left(\mathrm{ad} P \otimes P_{-} \Lambda^{2} T^{*} M\right),
$$

where $P_{-}$denotes the projection to the anti-self dual part. Let $\bar{\pi}^{\prime}: \mathscr{M}_{k}^{\prime}=\mathscr{P}^{-1}(0) / \mathscr{S}_{k}^{\prime} \rightarrow \mathscr{C}$ be the projection. Put $\mathscr{M}(\phi)_{k}^{\prime}=\bar{\pi}^{\prime-1}(\phi)$. According to the lemmas $5.3,5.8$ and 8.4 in [7], there exists a positive number $\delta_{*}>0$ such that for any $\delta, 0<\delta<\delta *, \mathscr{M}_{k}^{\prime}(\phi) \cap\left(\mathscr{A}_{k}^{*}(\delta) / \mathscr{G}_{k}^{\prime}(\delta)\right)$ is a smooth manifold. $\Omega^{3}{ }_{k}$ denotes the 3 -fold iterated loop space of mappings of degree $k$. In this paper we consider the case of the manifold $M=S^{1} \times R^{3}$ which has been considered as an endperiodic manifold, $M^{\prime}=S^{1} \times D_{3 / 2}^{3}{ }^{U}\left(S^{1} \times S^{2} \times(1,3)\right)^{U}\left(S^{1} \times S^{2} \times(2,4)\right)^{U} \cdots$ (Proposition 1 in [1]). Now we have the following result which is proved in Appendix.

Proposition. The manifold $M^{\prime}$ admits an end-periodic metric.
Then the main result in this article is
THEOREM. There exists a map $\mathscr{M}_{k}(\phi) \rightarrow \Omega^{3}{ }_{k}\left(S^{3}\right)$ which induces a surjection of homology groups

$$
\mathrm{H}_{q}\left(\mathscr{M}_{k}^{\prime}(\phi)\right) \rightarrow \mathrm{H}_{q}\left(\Omega^{3}{ }_{k}\left(S^{3}\right)\right) \text { for } q \leqq[k / 2] .
$$

In the previous paper [1] we have discussed the moduli space of self-dual, asymptotically periodic instantons. There we have used the gauge group $\mathscr{S}_{k}(\delta)=\left\{h \in L^{2}{ }_{6 . \operatorname{loc}}(\operatorname{Aut} P) ;\left\|\nabla_{A_{0}} h\right\|_{A_{0}}<\infty\right\}$ instead of the small gauge group $\mathscr{F}_{k}^{\prime}(\delta)$. Let $\left.\bar{\pi}: \mathscr{M}_{k}=\mathscr{P}^{-1}(0) / \mathscr{G}_{k}(\delta) \cap\left(\mathscr{\mathscr { k }}_{k}^{*}(\delta)\right) / \mathscr{\mathscr { F }}_{k}\right) \rightarrow \mathscr{C}$ be the projection and put $\mathscr{M}_{k}(\phi)=\bar{\pi}^{-1}(\phi)$. Then we have a principal SO(3)-bundle $\mathscr{M}_{k}^{\prime}(\phi) \cap$ $\left.\left(\mathscr{A}_{k}^{*}(\delta)\right) / \mathscr{G}_{k}^{\prime}(\delta)\right) \rightarrow \mathscr{M}_{k}(\phi)$.

We prove the main theorem in the sections 2 and 3. Our main tools are periodic instantons due to Harrington-Shepard, Atiyah-Jones diagram and Taubes' existence theorem ([3], [2], [8]).

I am grateful to Doctor Yamaguchi K. for his indication of the usefulness of the proposition (A.1) in [6], and wish to thank the referee for his kind advices.

## 2. Deformation of Harrington-Shepard's periodic instantons

We abbreviate hyperbolic functions as follows:

$$
\mathrm{ch}=\cosh , \text { and } \mathrm{sh}=\sinh .
$$

Let $r$ be the distance from the source to a point in $R^{3}$ and $\tau \in[0,2 \pi]$.
Then Harrington-Shepard's periodic solution is given by

$$
\phi=1+\frac{1}{r} \cdot \frac{\operatorname{sh} r}{\operatorname{ch} r-\cos \tau}
$$

Let $t$ be the smooth step function in the selection 1 , and $f$ be a smooth cut off function such that $f \mid K-N=1$ and $\{$ support $f\} \subset K$. We put

$$
\begin{aligned}
& \tilde{\phi}(\delta)=1+\frac{1}{r} \cdot \frac{\operatorname{sh} r}{\operatorname{ch} r-\cos \tau} \cdot e^{-t \delta} \quad \text { for } \delta>0 \\
& \hat{\phi}=1+\frac{1}{r} \cdot \frac{\operatorname{sh} r}{\operatorname{ch} r-\cos \tau} \cdot f(r)
\end{aligned}
$$

Then $\hat{\phi}$ is an end-periodic function and $\tilde{\phi}=\hat{\phi}+(\tilde{\phi}-\hat{\phi})$. We put $\nabla_{x_{i}}=\nabla_{i}$ for $i=1,2,3$. By a direct calculation

$$
\nabla_{i} \log \tilde{\phi}=\frac{e^{-t \delta}}{\tilde{\phi}} \cdot \frac{x_{\mathrm{i}}}{r^{2}(\operatorname{ch} r-\cos \tau)} \cdot\left(-\frac{\operatorname{sh} r}{r}+\frac{1-\operatorname{ch} r \cos \tau}{\operatorname{ch} r \cos \tau}-t^{\prime} \delta \operatorname{sh} r\right)
$$

We denote by $G_{i}$ the factor $\frac{x_{\mathrm{i}}}{r^{2}(\operatorname{ch} r-\cos \tau)}$ and by $G^{\#}$ the factor $\left(-\frac{\operatorname{sh} r}{r}+\frac{1-\operatorname{ch} r \cos \tau}{\operatorname{ch} r \cos \tau}-t^{\prime} \delta \mathrm{sh} r\right)$. By further calculations

$$
\nabla_{r} \log \tilde{\phi}=-\frac{1}{\tilde{\phi}} \cdot \frac{\sin \tau \operatorname{sh} r}{r(\operatorname{ch} r-\cos \tau)^{2}} \cdot e^{-t \delta}
$$

The gauge potential is given by
$\tilde{A}_{i}=\sqrt{-1} \bar{\sigma}_{i j} \nabla_{j}(\log \tilde{\phi})$, where $\bar{\sigma}_{i j}=(1 / 4 \sqrt{-1})\left[\sigma_{i}, \sigma_{j}\right]$ for $i, j=1,2,3$ and $\bar{\sigma}_{i 4}=$ $-\frac{1}{2} \sigma_{i}$, (c.f.[3] and Jackiw, R., Nohl, C., Rebbi, C., Conformal properties of pseudo particle configurations, Phys. Review D 15, 8 (1977)). To get the curvature we need the following formulas,

$$
\begin{gathered}
\nabla_{j} \nabla_{i} \log \tilde{\phi}=-\frac{1}{\tilde{\phi}^{2}} e^{-2 t \delta}\left(G_{j} \cdot G^{\#}\right)\left(G_{i} \cdot G^{\#}\right)+\frac{1}{\tilde{\phi}} \nabla_{j} \nabla_{i} \tilde{\phi} \\
\nabla_{j} \nabla_{i} \tilde{\phi}=e^{-t \delta}\left\{\left[-\frac{t^{\prime} \delta x_{j}}{r} G_{i}+\frac{\delta_{i j}}{r^{2}(\operatorname{ch} r-\cos \tau)}-\frac{2 x_{i} x_{j}}{r^{4}(\operatorname{ch} r-\cos \tau)}-\frac{x_{i} x_{j}}{r^{3}} \cdot \frac{\operatorname{sh} r}{(\operatorname{ch} r-\cos \tau)^{2}}\right] G^{\#}\right. \\
\left.+\left[\frac{x_{j} \operatorname{sh} r}{r^{2}}-\frac{x_{j} \operatorname{ch} r}{r^{2}}-\frac{\operatorname{sh} r \cos \tau}{\operatorname{ch} r-\cos \tau} \cdot \frac{x_{j}}{r}-\frac{(1-\operatorname{ch} r \cos \tau) \operatorname{sh} r}{(\operatorname{ch} r-\cos \tau)^{2}} \cdot \frac{x_{j}}{r}-\frac{t^{\prime \prime} \delta x_{j} \operatorname{sh} r}{r}-\frac{x_{j} \mathrm{t}^{\prime} \delta \operatorname{ch} r}{r}\right] G_{i}\right\}
\end{gathered}
$$

$$
\begin{gathered}
\nabla_{\gamma} \nabla_{i} \tilde{\phi}=e^{-t \delta}\left(\frac{-x_{j} \sin \tau}{r^{2}(\operatorname{ch} r-\cos \tau)^{2}} G^{\#}+G \cdot \frac{\sin ^{2} r \sin \tau}{(\operatorname{ch} r-\cos \tau)^{2}}\right) \\
\nabla_{\gamma} \nabla_{\gamma} \log \tilde{\phi}=\nabla_{\gamma}\left(\frac{\nabla_{\gamma} \tilde{\phi}}{\tilde{\phi}}\right)=-\frac{1}{\tilde{\phi}^{2}}\left(\nabla_{r} \tilde{\phi}\right)^{2}+\frac{1}{\tilde{\phi}} \nabla_{\gamma} \nabla_{\gamma} \tilde{\phi} \\
\nabla_{\gamma} \nabla_{\gamma} \tilde{\phi}=e^{-t \delta} \cdot \frac{\operatorname{sh} r}{r} \cdot \frac{\operatorname{ch} r \cos \tau-\sin ^{2} \tau-1}{(\operatorname{ch} r-\cos \tau)^{2}}
\end{gathered}
$$

Since $\phi \fallingdotseq 0$ as $r \geqq 1$, we obtain approximately the difference between our potential and H-S's in [3]:

$$
\nabla_{i} \log \tilde{\phi}: e^{-t \delta} \cdot \frac{x_{i} t^{\prime} \delta \operatorname{sh} r}{r^{2}(\operatorname{ch} r-\cos \tau)}
$$

$\nabla_{j} \nabla_{i} \log \tilde{\phi}: e^{-2 t \delta}\left\{2 G_{i} G^{\#} G_{j}\left(t^{\prime} \delta \mathrm{sh} r\right)-G_{i} G_{j}\left(t^{\prime} \delta \mathrm{sh} r\right)^{2}\right\}+e^{-t \delta} \frac{x_{i} t^{\prime} \delta}{r} G_{i} G^{\# \prime}+\frac{\delta x_{\mathrm{j}}\left(t^{\prime \prime} \mathrm{sh} r+t^{\prime} \mathrm{ch} r\right)}{r} G_{i}$
Therefore $\tilde{A}=\hat{A}+(\tilde{A}-\hat{A}) \in \mathscr{A}(2 \delta)$ for any $\delta$ such that $0<2 \delta<\delta_{*}$, where $\tilde{A}$ and $\hat{A}$ denote the connections derived from $\tilde{\phi}$ and $\hat{\phi}$.

Now we consider an electric field $E: R \rightarrow R^{3} \cup\{\infty\}$ which is by definition linear and the field of a single charge has the properties:

1) $E \rightarrow 0$ at $\infty$, 2) $E \rightarrow \infty$ at the source, 3) $E$ is spherically symmetric (c.f.[2]). Then we have

LEMMA. The map $\left(\nabla_{i} \log \tilde{\phi}\right): C_{1}\left(R^{3}\right) \rightarrow \Omega^{3}{ }_{1}\left(S^{3}\right)$ gives an electric field.
Proof. As $r \rightarrow \infty, \phi \rightarrow 1, e^{-t \delta} \rightarrow 0, t^{\prime}$ is bounded. Then $\nabla_{i} \log \tilde{\phi} \rightarrow 0$. As $r \rightarrow 0, \quad \operatorname{sh} r / r \rightarrow 1, \quad \operatorname{ch} r \rightarrow 1, \quad e^{-t \delta}=1, \quad t^{\prime}=0$. Let $\tau$ to be zero. Then $(-\operatorname{sh} r / r-1) \rightarrow-2$. By the fact $\left(x_{1} / r^{2}\right)^{2}+\left(x_{2} / r^{2}\right)^{2}+\left(x_{3} / r^{2}\right)^{2} \rightarrow \infty$ we have $\left\|\left(\nabla_{i} \log \tilde{\phi}\right)\right\| \rightarrow \infty$. Now clearly $\left(\nabla_{i} \log \tilde{\phi}\right)$ is spherically symmetric in $R^{3}$. Thus, we obtain the lemma.

Next we consider homotopic deformation,

$$
\tilde{\phi}_{(s)}(\delta)=1+\frac{s}{r}+\frac{(1-s) \operatorname{sh} r}{r(\operatorname{ch} r \cos \tau)} \cdot e^{-t \delta}, \quad 0 \leqq s \leqq 1
$$

Then $\tilde{\phi}(\delta)$ is homotopic to $\tilde{\phi}_{(1)}=1+1 / r$ and so $\nabla \log \tilde{\phi}(\delta)$ is homotopic to $\nabla \log \tilde{\phi}_{(1)}$, which is self-dual in $R^{4}$. In the same way we can see that $\nabla \log \tilde{\phi}(\delta)$ is homotopic to $\nabla \log \hat{\phi}$ which is trivial on End $M$. Now we consider $k$-instantons. For this purpose we consider the functions

$$
\tilde{\phi}_{k}(\delta)=1+\sum_{i=1}^{k} \frac{1}{r_{i}} \cdot \frac{\operatorname{sh} r_{i}}{\operatorname{ch} r_{i}-\cos \tau} \cdot e^{-t \delta}
$$

$$
\hat{\phi}_{k}=1+\sum_{i=1}^{k} \frac{1}{r_{i}} \cdot \frac{\operatorname{sh} r_{i}}{\operatorname{ch} r_{i}-\cos \tau} \cdot f\left(r_{i}\right)
$$

where $r_{i}$ denotes the distance from a point to $i$-th base point in $R^{3}, i=1,2, \cdots, k$. A set of $k$-distinct base points can be regarded as an element of the configuration space $C_{k}\left(R^{3}\right)$. We denote by $A$ the connection which is obtained from $\hat{\phi}_{k}$. The space $R^{3}$ is deformable onto the unit open disc by a homotopy

$$
(1-s) x+\frac{2 s \operatorname{Tan}^{-1}\|x\|}{\|x\| \pi} \cdot x \quad \text { for } 0 \leqq s \leqq 1 \text { and } x \neq 0
$$

where the origin in $R^{3}$ is fixed. Thus we can assume that $k$-distinct points lies in the unit open disc in $R^{3}$. Then by the construction in Remark 2 in [1] we have a 1 -form $a$ such that $A+a$ is self-dual where the connection A has a compact support. Therefore the 1 -form $a$ also has a compact support. For $g \in \mathscr{G}_{k}^{\prime}(\delta)$, by making use of the homotopy $g^{-1}(A+(1-s) a) g+g^{-1} d g, 0 \leqq s \leqq 1$, we can see that the homotopy gives a homotopy in the space $\mathscr{P}_{k}^{\prime}(\boldsymbol{\delta})=\mathscr{A}_{k}(\boldsymbol{\delta}) / \mathscr{E}_{k}^{\prime}(\boldsymbol{\delta})$. Then the class $[A+a]$ is homotopic to the class $[A]$. Thus the gauge potential $\nabla \log \left(\tilde{\phi}_{k}\right)$ gives an element of $\mathscr{M}_{k}^{\prime}(\delta)$.

## 3. Proof of Main theorem

We prove the theorem by making use of a modified Atiyah-Jones diagram [2]. We denote by $B_{k}$ and $M_{k}$ the moduli space of connections and self-dual connections on an $S U(2)$ bundle over $R^{4}$ with topological charge $k$ respectively. By the consideration in Section, $\log \tilde{\phi}(\delta)$ is homotopic to $\log \tilde{\phi}_{(1)}$. Then by the lemma $(3,6)$ in [2] we have a homotopy-commutative diagram

where $\lambda_{k}$ is the map (3.4) in [2].
We denote by $\Omega^{1,2}{ }_{k}\left(S^{3}\right)$ the set of based maps from the space $S^{1} \times S^{2}$ to $S^{3}$ of degree $k$. For a map $p: S^{1} \times S^{2} \rightarrow S^{3}$ we define a map $\hat{p}: S^{1} \times S^{2} \rightarrow S^{3}$ by

$$
\hat{p}(t, x)=p\left(t, x_{0}\right)^{-1} p(t, x) p\left(t_{0}, x\right)^{-1}
$$

where $x_{0}, t_{0}$ are base points in $S^{1}, S^{2}$. Then the map $\hat{p}$ gives a map $\tilde{p}: S^{3} \rightarrow S^{3}$. Thus we have a map $P: \Omega^{1,2}{ }_{k}\left(S^{3}\right) \rightarrow \Omega^{3}{ }_{k}\left(S^{3}\right)$. By making use of the natural projection $S^{1} \times S^{2} \rightarrow S^{3}$ we have a map $j: \Omega^{3}{ }_{k}\left(S^{3}\right) \rightarrow \Omega^{1,2}{ }_{k}\left(S^{3}\right)$ such that $P \cdot j=$ the identity map. By the proposition 2.3 in [2] we have a homotopy equivalence $B_{k} \rightarrow \Omega^{3}{ }_{k}\left(S^{3}\right)$. By mimicking the proof of this proposition, we obtain a map $C: \mathscr{B}_{k}{ }^{\prime}(\delta) \rightarrow \Omega^{1,2}{ }_{k}\left(S^{3}\right)$ which is compatible with the homotopy equivalence $B_{k} \rightarrow \Omega^{3}{ }_{k}\left(S^{3}\right)$. Precisely the space $\mathscr{B}_{k}^{\prime}(\delta)$ is deformable into the subspace $\mathscr{B}_{k}^{\prime}{ }^{\prime}(\delta)_{\infty}$ of the classes of connections which are flat outside a compact set in $M=S^{1} \times R^{3}$ (this fact can be seen by making use of a cut off function and a homotopy as in the consideration in the section 2 ). For any such connection $A$ there exists a flat section $\alpha$ of the principal bundle $P \rightarrow S^{1} \times R^{3}$ with $\alpha \mid K_{n}{ }^{c}=K_{n}{ }^{c} \times g_{0}$, where $K_{n}{ }^{c}$ denotes the complement of the subspace $K_{n}=K^{U}{ }_{N} W_{0}{ }_{N}{ }_{N} W_{1}^{U} \ldots{ }_{N} W_{n}$ for a sufficiently large $n$. Pick any section $\beta$ of $P$ which agrees with $\alpha$ on $S^{1} \times \ell, \ell$ is a line through the origin in $R^{3},\left(S^{1} \times R^{3}\right.$ retracts onto $S^{1} \times \ell$, therefore such $\beta$ exists). For a sufficiently large $n$ and a subspace $S^{1} \times S^{2} \times(t)$ in $W_{n}, \alpha$ and $\beta$ differ by a map $g: S^{1} \times S^{2} \times(t) \rightarrow S U(2)$ with $g\left(S^{1} \times \ell\right)=1$. Then by assigning $g$ to $A$ we get the required map $\mathscr{B}_{k}^{\prime}(\delta) \rightarrow \Omega^{1,2}{ }_{k}\left(S^{3}\right)$.

Thus we obtain the following homotopy-commutative diagram:

where $i$ and $\gamma$ denote the inclusion maps and $h$ denotes the composite map of $P \cdot C$ and a homotopy inverse $\Omega^{3}{ }_{k} \rightarrow B_{k}$. The commutativity in the lower part follows from the consideration in the section 2. By the theorem due to G•Segal ([5]) the induced homomorphism

$$
\left(\nabla \log \tilde{\phi}_{k}(\delta)\right)_{*}: \mathrm{H}_{q}\left(C_{k}\left(R^{3}\right)\right) \rightarrow \mathrm{H}_{q}\left(\Omega^{3}{ }_{k}\left(S^{3}\right)\right)
$$

is an isomorphism for $k \gg q$. The homotopy type of $\Omega^{3}{ }_{k}\left(S^{3}\right)$ is independent of $k$.

Then by the proposition (A.1) in [6], $\quad \mathrm{H}_{q}\left(C_{k}\left(R^{3}\right)\right) \rightarrow \mathrm{H}_{q}\left(\Omega^{3}{ }_{k}\left(S^{3}\right)\right)$ is an isomorphism for $q \leqq[k / 2]$. Therefore the homomorphism

$$
(P \cdot C \cdot \gamma)_{*}: \mathrm{H}_{g}\left(\mathscr{M}_{k}^{\prime}(\delta)\right) \rightarrow \mathrm{H}_{g}\left(\left(\Omega^{3}{ }_{k}\left(S^{3}\right)\right)\right.
$$

is surjective for $q \leqq[k / 2]$. Thus we have proved the theorem.

REMARK. By making use of a diffeomorphism

$$
R^{3} \times S^{1} \ni(x, y, z, \theta) \rightarrow\left(x, y, e^{z} \cos \theta, e^{z} \sin \theta\right) \in R^{4}-R^{2} \cong S^{4}-S^{2},
$$

we obtain a compactification of the space up to diffeomorphism. But I do not know a conformal compactification without singularities ([4]).

Appendix. Proof of the proposition in the section one.
Firstly I should remark that the manifold $M=S^{1} \times R^{3}$ has been considered as an end-periodic manifold

$$
\begin{equation*}
M^{\prime}=S^{1} \times D_{3 / 2}^{3}{ }^{\cup}\left(S^{1} \times S^{2} \times(1,3)\right)^{\cup}\left(S^{1} \times S^{2} \times(2,4)\right)^{\cup} \ldots \tag{1}
\end{equation*}
$$

The space $S^{1} \times S^{2} \times[1, \infty)$ admits the pull-back metric via $\pi$ of the product metric on the space $S^{1} \times S^{2} \times S^{1}$. By making use of the cut off function $f$ in the section 2 , we connect the natural metric $g_{0}$ in the space $S^{1} \times D^{2}{ }_{3 / 2}$ with the metric $g_{1}$ on the End $M$, and we obtain a metric on the manifold $M^{\prime}$

$$
g=f(r) g_{0}+(1-f(r)) g_{1} .
$$

Then the restriction of the metric $g$ over End $M$ is induced from the conformally flat metric $g_{1}$ on the manifold $Y$. Thus we obtain an end-periodic metric on the manifold $M^{\prime}$.

## References

[1] Adachi, K. and Matsunaga, H., On the moduli of periodic instantons, Tsukuba J. Math. 18(2)(1994),459-467.
[2] Atiyah, M. F. and Jones, J. D. S., Topological aspects of Yang-Mills theory, Commun. Math. Phys. 61 (1978), 97-1 18.
[3] Harrington, B. J. and Shepard, H. K., Periodic euclidean solutions and the finite-temperature Yang-Mills gas, Phys. Review D. 17, 8 (1979), 2122-2125.
[4] Matsunaga, H., Conformal compactification of $R^{3} \times S^{1}$, Mem. Fac. Sci. Shimane Univ. 24 (1990), 17-20.
[5] Segal, G., Configuration spaces and iterated loop spaces, Inventiones Math. 21 (1973), 213-221.
[6] Segal, G., The topology of rational functions, Acta Math. 143 (1979), 39-72.
[7] Taubes, C. H., Gauge theory on asymptotically periodic 4-manifolds, J. Differential Geometry, 25 (1987), 363-430.
[8] Taubes, C. H., Self-dual connections on non-self-dual 4-manifolds, J. Differential Geometry, 17 (1982), 139-170.

Department of Mathematics<br>Naruto University of Education<br>Takashima, Naruto 772 JAPAN

