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NEW EXPLICIT EXAMPLES OF COMPLETE
SEMI-SYMMETRIC HYPERSURFACES

OF HYPERBOLIC TYPE

By

Eric BOECKX*

Abstract. We associate to every holomorphic function of one
complex variable a semi-symmetric hypersurface in the four-
dimensional Euclidean space. Under simple explicit conditions for
this function the resulting Riemannian space is complete and of
hyperbolic type (in the terminology of Szab\’o).

1. Introduction and main theorem

Riemannian manifolds $(M,g)$ whose Riemannian curvature tensor $R$ satisfies
the algebraic condition $R_{XY}\cdot R=0$ for all vector fields $X$ and $Y$ on $M$ are called
semi-symmetric spaces. This condition means that, at each point $p\in M$ , the
curvature tensor $R_{p}$ is the same as that of a symmetric space. This space may
vary with the point $p$ . Trivial examples are symmetric spaces and all two-
dimensional Riemannian manifolds.

A hypersurface $M\subset R^{n+1}$ is said to be semi-symmetric if it is a semi-
symmetric space with respect to the induced Riemannian metric. In 1968, K.
Nomizu ([K]) proved that a connected and complete semi-symmetric
hypersurface of the Euclidean space $R^{n+1}$ whose type number is greater than two
in at least one point, is of the form $S^{k}\times R^{n-k}$ where $S^{k}$ is a hypersphere in a
Euclidean subspace $R^{k+1}$ of $R^{n+1}$ and $R^{n-k}$ is a Euclidean subspace orthogonal to
$R^{k+1}$ . This result inspired his conjecture that every irreducible, complete semi-
symmetric space of dimension greater than or equal to three is locally symmetric.
But this conjecture was refuted in 1972 by H. Takagi who constructed a
connected and complete hypersurface in $R^{4}$ which satisfies the above curvature
condition, but which is not locally symmetric ([T]). See also [Se], $[TrV]$ for

*Research Assistant of the National Fund for Scientific Research (Belgium)
J991 Mathematics Subject Classification: $53A07,53C20,53C25,53C35$ .
Keywords and phrases: semi-symmetric hypersurfaces.
Received January 21, 1994. Revised May 31, 1994



22 Eric BOECKX

other counterexamples.

A systematic treatment of complete semi-symmetric hypersurfaces in
Euclidean spaces was presented by Szab\’o ([Sz2]). He considered hypersurfaces
whose type number is smaller than or equal to two everywhere. Using the Gauss
equation, it is easily seen that all these spaces are semi-symmetric. He
distinguished three classes: hypersurfaces of trivial type, of parabolic type and of
hyperbolic type. He gave a full classification for these three classes and also an
explicit construction. Moreover, he showed, using his general construction
procedure, that the example by Takagi is of hyperbolic type.

To our knowledge, the example of Takagi has been, up to now, the only
explicit example of a complete semi-symmetric hypersurface of hyperbolic type.
Nevertheless, the procedure by Szab\’o can be used to construct a large family of
such hypersurfaces of dimension three (which is the only case worth studying, cf.
Theorem 3.2). Indeed, we will prove:

MAIN THEOREM. Let $F(z)$ be a holomorphic function of one complex variable
$z$ defined on the whole complex plane and such that $F^{\prime\prime}(z)\neq 0$ everywhere. Let
$P(x,y),Q(x,y)$ be the real functions of the two real variables $x$ and $y$ defined by
$F(x+iy)=P(x,y)+iQ(x,y)$ . Define the function $f(X,Y,Z)$ by

(1.1) $f(X, Y,Z)=P(\frac{X+YZ}{1+Z^{2}},\frac{Y-XZ}{1+Z^{2}})-ZQ(\frac{X+1Z}{1+Z^{2}},\frac{Y-XZ}{1+Z^{2}})$ .

Then $W=f(X, Y,Z)$ determines a complete semi-symmetric hypersurface of
hyperbolic type in $R^{4}$

We remark that each function $F(z)$ from the Main Theorem can be
constructed as follows: choose an arbitrary holomorphic function $\phi(z)$ defined on
the whole complex plane and take $F(z)$ as a two-step primitive function of $\exp$

$(\psi(z))$ ( $[R$ , Theorem 13.11]). Furthermore, for an arbitrary holomorphic function
$F(z)$ of one complex variable, the hypersurface $W=f(X, Y,Z)$ , where $f$ is given
by (1.1), still defines a semi-symmetric hypersurface.

For more information and more examples of semi-symmetric spaces we refer
to the fundamental papers by Z. I. Szab\’o ([Szl], [Sz3]) and to the recent results
in [B], [BKV] and [K]. (We mention that the terminology used in the recent

papers differs from that introduced by Szab\’o and that, in fact, new types of semi-
symmetric spaces appear if the completeness assumption is dropped.)
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The paper is organized as follows. In Section 2 we give the basic definitions
conceming complete immersed semi-symmetric hypersurfaces and in Section 3
we briefly review Szab\’o’s construction for complete semi-symmetric
hypersurfaces of hyperbolic type. In Section 4 we apply this construction to prove
the above theorem.

The author wishes to thank $0$ . Kowalski and L. Vanhecke for their help and
for useful discussions.

2. Complete immersed semi-symmetric hypersurfaces

In this section, we review briefly the basic definitions and results about
complete immersed semi-symmetric hypersurfaces. For a more detailed treatment
and for further references we refer to the article by Szab\’o ([Sz2]).

Let $(M^{n},g)$ be a complete semi-symmetric manifold which is isometrically
immersed in Euclidean space $R^{n+1}$ . We denote by $\nabla$ (resp. $D$ ) the Levi Civita
connection of $M^{n}$ (resp. of $R^{n+1}$ ). For the curvature tensor $R$ of $M^{n}$ we use the
sign convention $R_{XY}Z=\nabla_{1X.Y1}-[\nabla_{X},\nabla_{Y}]$ . Then we have

$R_{XY}Z=g(A(X), Z)A(Y)-g(A(Y),Z)A(X)$

where $A$ is the shape operator of the hypersurface $M$ with respect to a local unit
normal vector field $u$ to $M$ in $R^{n+1}$ , i.e., $A(X)=-D_{X}u$ for $X\in TM$ . The rank of $A$

at a point $p\in M$ is called the type number at $p$ and is denoted by $k(p)$ . Because
of Nomizu’s result mentioned in the introduction we suppose that $k(p)\leq 2$

everywhere. If this number is $0$ or 1 at a point $p$ , then clearly $R_{p}=0$ . So, in what

follows we consider an (open) subset of $M$ on which the type number is equal to
two. On this open set, the tangent space to $M$ at a point $p\in M$ can be decomposed

as
$T_{p}M=\tilde{V}_{p}^{0}+\tilde{V}_{p}^{1}$

where $\tilde{V}_{p}^{0}$ is the nullity vector space of the curvature tensor, i.e., $\tilde{V}_{p}^{0}=\{X\in T_{p}M|$

$R_{XY}Z=0$ for all $Y,Z\in T_{\rho}M$}, and $\tilde{V}_{p}^{1}$ is its orthogonal complement. $\tilde{V}_{p}^{0}$ has

dimension $n-2$ and $\tilde{V}_{p}^{1}$ has dimension 2. The distributions $\tilde{V}^{0}$ and $\tilde{V}^{1}$ defined in

this way are differentiable on the open set. Moreover, $\tilde{V}^{0}$ is integrable and its
integral manifolds are totally geodesic and locally Euclidean submanifolds. They
are open subsets of (n-2)-dimensional Euclidean subspaces of $R^{n+1}$ The
distribution $\tilde{V}^{1}$ is not integrable in general, but it is parallel along the integral
manifolds of $\tilde{V}^{0}$

Consider now a local system of smooth unit vector fields $\{m_{1},\cdots,m_{n-2}\}$ tangent
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to $\tilde{V}^{0}$ which are pairwise orthogonal and such that $\nabla_{m_{\alpha}}m_{\beta}=0$ . For $X\in\tilde{V}^{1}$ we
have

$\nabla_{X}m_{\alpha}=\tilde{B}_{\alpha}(X)+a$ linear combination of $m_{1},\ldots,m_{n+2}$

where $\tilde{B}_{\alpha}(X)\in\tilde{V}^{1}$ . We extend the endomorphisms $\tilde{B}_{\alpha}$ to the whole tangent space
by defining $\tilde{B}_{\alpha}(Y)=0$ for all $Y\in\tilde{V}^{0}$ . Concerning the fields of endomorphisms $\tilde{B}_{\alpha}$ ,

Szab\’o shows that there are two possibilities: either they are all zero along an
integral manifold of $\tilde{V}^{0}$ or there exists a system of unit vector fields $\{\overline{m}_{1},\cdots,\overline{m}_{n-2}\}$

tangent to $\tilde{V}^{0}$ satisfying $\nabla_{\overline{m}_{\alpha}}\overline{m}_{\beta}=0$ such that $\tilde{B}_{1}\neq 0$ and $\tilde{B}_{2}=\ldots=\tilde{B}_{n- 2}=0$ along

this integral manifold. In the latter case, either $\tilde{B}_{1}$ has only zero eigenvalues or it
has two imaginary eigenvalues. (Here the completeness of $(M^{n},g)$ plays an
essential role.)

We can now give some definitions. Let $M^{n}$ be a connected complete immersed
hypersurface in $R^{n+1}$ such that $k(p)\leq 2$ for every point $p\in M$ . Let $v_{1}$ be the open
set on which $k(p)=2$ . Then in the interior $v_{0}$ of $M\backslash v_{1}$ the Riemann curvature

tensor vanishes. Let $v_{2}\subseteq v_{1}$ be the open set where not all $\tilde{B}_{\alpha}$ are zero. Then all
tensors $\tilde{B}_{\alpha}$ vanish in the interior $v_{t}$ of $v_{1}\backslash v_{2}$ . The open set $v_{l}$ is called the pure
trivial part of $M$ . Finally, let $v_{h}\subseteq v_{2}$ be the open set where the unique non-zero
endomorphism field $\tilde{B}_{1}$ has two imaginary eigenvalues. $v_{h}$ is called the pure
hyperbolic part of $M$ and $v_{p}$ , the interior of $v_{2}\backslash v_{h}$ , the pure parabolic part of $M$ .
On $v_{\rho}$ the endomorphism field $\tilde{B}_{1}$ has only zero eigenvalues but is non-trivial. It
is clear that the open set $v_{0}\cup v_{f}\cup v_{\rho}\cup v_{h}$ is everywhere dense in $M$ . Moreover,

the open sets $v_{l},v_{\rho}$ and $v_{h}$ always contain the integral manifolds of $\tilde{V}^{0}$ passing

through their points, and these integral manifolds are complete.
We can now define three different types of complete immersed hypersurfaces

$M$ with type number smaller than or equal to two (and hence semi-symmetric).

DEFINITION 2.1. A complete immersed hypersurface $M^{n}$ with type number
everywhere smaller than or equal to two is said to be of
1) trivial type if $ v_{2}=\emptyset$ , i.e., $M^{n}$ contains only $v_{0}$ and possibly a pure trivial part;
2) parabolic type if $ v_{t}=v_{h}=\emptyset$ and $ v_{p}\neq\emptyset$ , i.e., $M^{n}$ contains only $v_{0}$ and a non-

empty pure parabolic part;
3) hyperbolic type if $M^{n}=v_{h}$ , i.e., $M^{n}$ contains only the pure hyperbolic part.

Szab\’o ([Sz2]) studies these three classes of manifolds in detail and presents

general procedures to construct explicit examples of such spaces. Moreover,he

gives the full classification of complete semi-symmetric hypersurfaces inthe

Euclidean space $R^{ll+1}$
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REMARK. It is possible to generalize the notions of trivial, parabolic and
hyperbolic type to complete semi-symmetric spaces which are foliated by
Euclidean spaces of codimension two and which are not necessarily imbedded as
hypersurfaces in some Euclidean space (see [Sz3]). The metrics for the spaces of
parabolic type (in this generalized sense) are given explicitly in [BKV].

Furthermore, it is proved there that these spaces are characterized by the
property that their scalar curvature is constant along each integral manifold of the
nullity distribution $\tilde{V}^{0}$

3. Szab\’o’s construction for complete semi-symmetric
hypersurfaces of hyperbolic type

In this section we focus on complete semi-symmetric hypersurfaces of
hyperbolic type, and, in particular, on Szab\’o’s procedure for the construction of
such spaces. For the proofs and for more details we refer once again to [Sz2].

First we mention

$PROPOSlT10N3.1$ . The sectional curvature $K_{\sigma}$ of a plane section $\sigma$ in a
hypersurface of hyperbolic type is always non-positive. So every complete and
simply connected immersed hypersurface $M^{n}$ of hyperbolic type is diffeomorphic
to $R^{n}$

Next, as concems the construction of hypersurfaces of hyperbolic type, we
note that we have to consider only three-dimensional hypersurfaces because of
the following theorem.

THEOREM 3.2. Every connected, simply connected and complete immersed
hypersurface $M^{n}$ of hyperbolic type is of the form $M^{n}=M^{3}\times R^{n-3}$ , where $M^{3}$ is
an immersed hypersurface of hyperbolic type in $a$ Euclidean subspace $R^{4}$ and
$R^{n-3}$ is $a$ Euclidean subspace orthogonal to $R^{4}$

Related to the three-dimensional hypersurfaces of hyperbolic type is the
notion of a plane-uncoverable line-fibration of a simply connected open set $U$ of
$R^{3}$

Let $U$ be an open set of $R^{3}$ which is simply connected. We suppose that a
one-fold covering of $U$ with straight lines exists such that the unit vector field $u$

tangent to these lines is differentiable. Such a covering will be called a line-
fibration of $U$ . For every point $p\in U$ , let $V_{p}^{1}$ be the orthogonal complement of $u_{p}$



26 Eric BOECKX

and $V_{\rho}^{()}$ the one-dimensional subspace of $T_{\rho}M$ spanned by $u_{\rho}$ . Define the field $B$

of endomorphisms of the distribution $V^{1}$ by $B(X)=D_{X}u$ , where $D$ is the usual

covariant derivative of $R^{3}$ . Then either $B^{2}=0$ holds along a line of the fibration
or $B$ has two imaginary eigenvalues along that line. If $B^{2}=0$ holds for every line

of the line-fibration, then there exists a one-parameter family of planes such that
the lines of the fibration all lie in some plane of this family and the lines lying in
the same plane are parallel. Conversely, if through every line $l$ of a line-fibration
there exists a plane $H$ such that $H$ covers parallel lines from the fibration around
$l$ , then the equation $B^{2}=0$ holds for the line-fibration. These observations lead to

DEFINITION 3.3. If $B^{2}=0$ holds for every line of a line-fibration of a simply
connected open set $U$ of $R^{3}$ , then the line-fibration is called plane-coverable. If
the endomorphism $B$ has two imaginary eigenvalues along every line of the
fibration, then the line-fibration is called plane-uncoverable.

Now consider a complete three-dimensional hypersurface $M^{3}$ of hyperbolic
type in $R^{4}$ . The integral curves of $\tilde{V}^{0}$ in $M^{3}$ are straight lines in $R^{4}$ . Fix such a
line $\tilde{l}$ and take a three-dimensional Euclidean subspace $S$ of $R^{4}$ which is not
orthogonal to $\tilde{l}$ . The orthogonal projection $\pi:M^{3}\rightarrow S$ then maps an open
neighbourhood $\tilde{U}$ of $\tilde{l}$ diffeomorphically onto an open set $U$ of $S$ such that the
projections of the integral curves of $\tilde{V}^{0}$ form a line-fibration of $U$ . This fibration
is called the projected line-fibration. Szab\’o proves

$PROPOSlT10N3.4$ . If $M^{3}$ is of hyperbolic type, then the projected line-
fibration is plane-uncoverable.

Conversely, it holds

THEOREM 3.5. Let $U\subset R^{3}$ be an $ ope\eta$ set with a plane-uncoverable line-

fibration. Then around every line of the fibration there exists a differentiable
function $f(x,y,z)$ such that the points $(x,y,zf(x,y,z))$ represent a hypersurface of
hyperbolic type and the lines of the fibration correspond to the integral curves of
the distribution $\tilde{V}^{0}$ on this hypersurface.

Starting from a plane-uncoverable line-fibration with unit tangent vector field
$u$ on some simply connected open subset $U$ of $R^{3}$ , one must construct the
appropriate function $f(x,y,z)$ on $U$ . Szab\’o deduces the following necessary and
sufficient conditions for the function $f$:
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LEMMA 3.6. The hypersurface $(x,y,zf(x,y,z))$ is of hyperbolic type with
respect to the line-fibration of $U$ if and only if
(3.1) $D.df=0$ ,

(3.2) rank $D^{2}f=2$ .

Take a plane $M^{2}$ in $R^{3}$ not containing any straight line of the fibration. Let
$\partial$

$(x,y)$ be a Cartesian coordinate system of $M^{2}$ and let $t$ be such that $--=u$ anda
$M^{2}$ is given by $t=0$ . Then $(x,y,t)$ is a coordinate system on a neighbourhood of
$M^{2}$ in $U$ . Condition (3.1) implies in particular $u(uf)=0$ , so $f$ must be of the form

(3.3) $f(x,y,t)=\rho(x,y)t+\lambda(x,y)$

in this coordinate neighbourhood, where $\rho$ and $\lambda$ are functions of the variables $x$

and $y$ only.
Expressing the condition (3.1) in terms of the functions $\rho$ and $\lambda$ , one finds

that the partial differential equations

(3.4) $a_{1}^{1}\frac{\partial^{2}\lambda}{\partial \mathfrak{r}^{2}}+2a_{2}^{I}\frac{\partial^{2}\lambda}{\partial \mathfrak{r}\phi}+a_{2}^{2}\frac{\partial^{2}\lambda}{\phi^{2}}=0$ ,

$\frac{\partial p}{\&}+(B_{1}^{1}\Phi_{1}+B_{1}^{2}\Phi_{2})\rho=B_{1}^{1}\frac{\partial\lambda}{\&}+B_{1}^{2}\frac{\partial\lambda}{\phi}$ ,

(3.5)
$\frac{\partial p}{\phi}+(B_{2}^{1}\Phi_{1}+B_{2}^{2}\Phi_{2})\rho=B_{2}^{1}\frac{\partial\lambda}{\&}+B_{2}^{2}\frac{\partial\lambda}{\phi}$

must be satisfied. Here the $B_{j}^{i}$ determine the field of endomorphisms $B$ at the

points of $M^{2}$ by

$B(\frac{\partial}{\&})=D_{\frac{\partial}{\partial X}}u_{(x,y,0)}=B_{1}^{1}\frac{\partial}{\&}+B_{1}^{2}\frac{\partial}{\phi}-(B_{1}^{1}\Phi_{1}+B_{1}^{2}\Phi_{2})u$ ,

(3.6)
$B(\frac{\partial}{\phi})=D_{f,\partial\backslash }u_{(x,y,0)}=B_{2}^{1}\frac{\partial}{\&}+B^{\frac{\gamma}{2}}\frac{\partial}{\phi}-(B_{2}^{1}\Phi_{1}+B_{2}^{2}\Phi_{2})u$

and $\Phi_{1}$ and $\Phi_{2}$ are given by

(3.7) $\Phi_{1}=\langle\frac{\partial}{\&},u\rangle_{(x,y,0)},$ $\Phi_{2}=\langle\frac{\partial}{\phi},u\rangle_{(x,y,0)}$ .

Further, the matrix field $(a_{j^{i}})$ on $M^{2}$ is given by

(3.8) $(a_{j}^{i})=(_{(-B_{2}^{2_{2}})/2}B_{1}^{-B^{1}}$ $(B_{1}^{1}-B_{2})/2-B_{1}^{2^{2}}$
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As the line-fibration is plane-uncoverable, the discriminant $\Delta$ of the
characteristic equation $\mu^{2}-trB\mu+\det B=0$ is negative. Hence $\det(a_{j}^{i})$

$=-B_{2}^{1}B_{1}^{2}-(1/4)(B_{1}^{1}-B_{2}^{2})^{2}=-\Delta>0$ , which implies that the matrix field $(a:)$ is
definite everywhere.

Finally, the condition (3.2) is equivalent to

(3.9) rank $(_{\partial\lambda/\&\phi^{2}}\partial_{2^{2}}\lambda/\&$ $\partial_{\partial^{2_{2}}\lambda/\phi^{2}}\lambda/\&\phi=2$ .

(Without this condition the resulting hypersurface may admit points $p$ with type
number $k(p)$ smaller than two. Then it is of mixed type and $v_{0}\cup v_{h}$ is an
everywhere dense open subset of $M.$ )

The conditions (3.4), (3.5) and (3.9) are necessary and sufficient to ensure
that the function $f$ given by formula (3.3) in terms of the coordinates $(x,y,t)$

determines a hypersurface of hyperbolic type in $R^{4}$ . The last step then requires
expressing $f$ in the standard Euclidean coordinates on $R^{3}$ . Indeed, as $u$ is not
orthogonal to $M^{2}$ everywhere, the coordinates $(x,y,t)$ are not Cartesian
coordinates. We take the standard (Cartesian) coordinates (X $Y,Z$ ) on $R^{3}$ as
follows: the plane $t=0$ is given by $Z=0$ and on this plane the coordinates (X, Y)

and $(x,y)$ are the same.
Note that the above procedure works in general only locally. Nevertheless, as

we will see in the next section, it is possible to obtain complete explicit examples
using the above correspondence between plane-uncoverable line-fibrations of $R^{3}$

and hypersurfaces of hyperbolic type in $R^{4}$

4. The new examples: proof of the main theorem

In this section we construct the new examples given in the Main Theorem,
following Szab\’o’s procedure as explained in the previous section.

The first thing to do is to find a plane-uncoverable line-fibration of $R^{3}$ . For
that purpose, we foliate $R^{3}$ by the one-parameter family of one-sheeted
hyperboloids given by

$K_{k}$ : $x^{2}+y^{2}=k^{2}(1+z^{2})$ , $k\in R^{+}$ ,

to which one has to add the z-axis, corresponding to $k=0$ . All surfaces $K_{k}$ are
ruled surfaces. We now determine the straight lines through a point $(x_{0},y_{0},0)$

where $x_{0}^{2}+y_{0^{2}}\neq 0$ contained in the hyperboloid $K_{k_{\{0}}$ with $k_{0}=(x_{0}^{2}+y_{0^{2}})^{1/2}$

These straight lines are given by the intersection of $K_{k_{0}}$ with the tangent plane to
$K_{k_{\triangleleft}}$ at the point $(x_{0},y_{0},0)$ :
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$x^{2}+y^{2}=k_{0}^{2}(1+z^{2})$ ,

$x_{0}x+y_{0}y=k_{0}^{2}$ .

Their directions $(\alpha,\beta,\gamma)$ satisfy
$\alpha^{2}+\beta^{2}=k_{0}^{2}\gamma^{2}$ ,

$x_{0}\alpha+y_{0}\beta=0$ ,

and hence they are given by $(-y_{0},x_{0},1)$ and $(-y_{0},x_{0},-1)$ . In the case $x_{0}=y_{0}=0$ ,

the corresponding pair of lines coincides with the z-axis. We choose the family of
straight lines corresponding to the first of the above directions. It is clear that they
form a line-fibration of $R^{3}$ . Moreover, this line-fibration is plane-uncoverable.
This will follow from Definition 3.3 and the explicit calculation of the tensor field
$B$ further on.

Now, we shall define a smooth unit vector field $u$ tangent to the given line-
fibration. So, take $(x,y,z)\in R^{3}$ . Then there is a unique point $(x_{0},y_{0},0)$ lying on
the same line of the fibration. Hence, for some $T\in R$ ,

$x=x_{0}-y_{0}T$,

$y=y_{0}+x_{0}T$,

$z=$ $T$,

or
$x_{0}=(x+yz)/(1+z^{2})$ ,

$y_{0}=(y-xz)/(1+z^{2})$ .

Then we put

$u_{(x,y,z)}=u_{(x_{0},y_{0},0)}=(x_{0}^{2}+y_{0^{2}}+1)^{-1/2}(-y_{0}\frac{\partial}{\&}+x_{0}\frac{\partial}{\phi}+\frac{\partial}{\&})$

$=(1+z^{2})^{-1/2}(x^{2}+y^{2}+z^{2}+1)^{-1/2}$

$((xz-y)\frac{\partial}{\&}+(yz+x)\frac{\partial}{\phi}+(1+z^{2})\frac{\partial}{\&})$ .

This unit vector field appears also in $[Sz2]$ and it is shown to belong to Takagi’s
example.

The next step in Szab\’o’s construction is to take a plane $M^{2}$ in $R^{3}$ with a
Cartesian coordinate system such that $u$ is never tangent to $M^{2}$ and to calculate
the associated tensor field $B$ and the associated functions $\Phi_{1}$ and $\Phi_{2}$ . In our
present situation we can take the plane $z$ $=0$ as $M^{2}$ with $(x,y)$ as Cartesian
coordinates. The functions $\Phi_{1},$ $\Phi_{2}$ from (3.7) are given on $M^{2}$ by
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$\Phi_{1}=-y(x^{2}+y^{2}+1)^{-1/2}$ , $\Phi_{2}=x(x^{2}+y^{2}+1)^{-1/2}$ .

For the tensor field $B$ on $M^{2}$ given by (3.6) we note that we have

$D_{\frac{\partial}{(k}}u_{(x.y,0)}=-x(x^{2}+y^{2}+1)^{-1}u_{(x,y,0)}+(x^{2}+y^{2}+1)^{-1/2}\underline{\partial}$

$\partial y_{\langle x.y,0)}$

$D_{\frac{\partial}{a}}u_{(x,y,0)}=-y(x^{2}+y^{2}+1)^{-1}u_{\langle x,y,0)}-(x^{2}+y^{2}+1)^{-1/2}\underline{\partial}$

$\partial y_{(x,y.0)}$

and so $B$ is given in matrix form by

$B=(x^{2}+y^{2}+1)^{-1/2}\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$ .

(The formula given in [Sz2] is incorrect.) We see that $B$ has only imaginary
eigenvalues which proves that the line-fibration is plane-uncoverable. The matrix
field $(a_{j}^{i})$ from (3.8) is then given by

$(a_{j}^{i})=(x^{2}+y^{2}+1)^{-1/2}\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ .

By Szab\’o’s construction, it suffices now to find solutions of the following
system of partial differential equations:

(4.1) $\frac{\partial^{2}\lambda}{a^{2}}+\frac{\partial^{2}\lambda}{\phi^{2}}=0$ ,

$\frac{\partial\rho}{\&}+\frac{X}{x^{2}+y^{2}+1}\rho=\frac{1\partial\lambda}{\sqrt{x^{2}+y^{2}+1}\phi}$ ,

(4.2)

$\frac{\partial\rho}{\phi}+\frac{y}{x^{2}+y^{2}+1}p=-\frac{1}{\sqrt{x^{2}+y^{2}+1}}\frac{\partial\lambda}{\&}$ .

Then the graph of the function $f(x,y,t)=\rho(x,y)t+\lambda(x,y)$ , i.e., $W=f(x(X, Y,Z)$ ,

$y(X, Y, Z),t(X, Y, Z))$ , is a semi-symmetric hypersurface of the Euclidean space
$R^{4}$ with standard Euclidean coordinates (X, $Y,Z,$ $W$). The relation between the
coordinate system $(x,y,t)$ on $R^{3}$ and the standard Euclidean coordinates (X, $Y,Z$)

on $R^{3}$ is given by

$t=Z(1+Z^{2})^{-1/2}(X^{2}+Y^{2}+Z^{2}+1)^{1/2}$ ,

(4.3) $x=(X+YZ)/(1+Z^{2})$ ,

$y=(Y-XZ)/(1+Z^{2})$ .

If the harmonic function $\lambda(x,y)$ is defined on the whole of $R^{2}$ , then so is the
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solution $\rho(x,y)=(x^{2}+y^{2}+1)^{-1/2}\int_{x_{0}^{X}}(\partial\lambda/\partial y)dx$ of (4.2) and the associated

hypersurface is complete because it is closed in $R^{4}$ From (3.9) it follows
moreover that the pure hyperbolic part of the hypersurface consists of those points

for which $\det\left(\begin{array}{ll}\partial^{2}\lambda/\partial \mathfrak{r}^{2} & \partial^{2}\lambda/\&\phi\\\partial^{2}\lambda/\&\phi & \partial^{2}\lambda/\phi^{2}\end{array}\right)\neq 0$ .

Now, let $F(z)$ be any holomorphic function of one complex variable $z$ defined
on the whole complex plane. Put $z=x+iy$ and define two real-valued functions
$P(x,y),Q(x,y)$ by $F(x+iy)=P(x,y)+iQ(x,y)$ . $P$ and $Q$ satisfy the Cauchy-Riemann
conditions

$\frac{\partial P}{\&}=\frac{\infty}{\phi}$ , $\frac{\partial P}{\phi}=-\frac{\infty}{\&}$ .

In particular, both $P$ and $Q$ satisfy (4.1) in the whole plane $R^{2}[x,y]$ .
If we put $\lambda(x,y)=P(x,y)$ and $p(x,y)=-(x^{2}+y^{2}+1)^{-1/2}Q(x,y)$ , then the system
(4.1), (4.2) is obviously satisfied on the whole plane $R^{2}$ and we can put
$f(x,y,t)=P(x,y)-(x^{2}+y^{2}+1)^{-1/2}Q(x,y)t$ . Using the transition formulas (4.3), we
find after some calculation

$f(X, Y,Z)=P(\frac{X+YZ}{1+Z^{2}},\frac{Y-XZ}{1+Z^{2}})-ZQ(\frac{X+YZ}{1+Z^{2}},\frac{Y-XZ}{1+Z^{2}})$ ,

which is the desired formula (1.1). Here $f(X, Y, Z)$ is defined on the whole of $R^{3}$

hence the associated hypersurface $W=f(X, Y, Z)$ is complete.

Finally we note that $\det\left(\begin{array}{ll}\partial^{2}\lambda/a^{2} & \partial^{2}\lambda/\&\phi\\\partial^{2}\lambda/\&\phi & \partial^{2}\lambda/\phi^{2}\end{array}\right)\neq 0$ whenever $F^{\prime\prime}(x+iy)\neq 0$ .

This concludes the proof of the Main Theorem.

REMARK 1. We obtain Takagi’s example if we start with the holomorphic
function $F(z)=\frac{i}{2}z^{2}$

REMARK 2. If we take $\lambda(x,y)=Q(x,y)$ , we obtain for the function $f$ the
following expression:

$f(X, Y,Z)=Q(\frac{X+YZ}{1+Z^{2}},\frac{Y-XZ}{1+Z^{2}})+ZP(\frac{X+YZ}{1+Z^{2}},\frac{Y-XZ}{1+Z^{2}})$ .

This solution corresponds to (1.1) by a change of the holomorphic function $F(z)$

to $-iF(z)$ .
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