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ON LIGHT MAPPINGS WITHOUT
PERFECT FIBERS ON COMPACTA

By

Roman POL(*)

Abstract. We give some conditions ensuring that a light mapping
$f:X\rightarrow Y$ between compacta must be injective on a non-trivial
continuum and we discuss related questions concerning the
invariance of strong infinite-dimensionality.

1. Introduction.

We shall consider in this paper only separable metrizable spaces, and a
compactum is such a compact space. A perfect space is a non-empty
compactum without isolated points.

A mapping $f:X\rightarrow Y$ between compacta is light if $f$ is continuous and all
fibers $f^{-1}(y)$ are zero-dimensional.

Our terminology concerning continua, or dimension follows Kuratowski [7]

and Nagata [8].

We shall prove (in sec. 2) the following‘ results, originally motivated by
some questions about strongly infinite-dimensional spaces, discussed in sec. 4.

1.1 THEOREM. Let $f:X\rightarrow Y$ be a light mapping between compacta such
that for each zero-dimensional set $A\subset X$ the set of points $x\in X$ with
$f^{-1}f(x)\backslash A$ non-perfect contains a compactum of dimension $\geq 2$ . Then $f$ is
injective on a non-trivial continuum in $X$ .

1.2. COROLLARY. Let $f:X\rightarrow Y$ be a continuous mapping with countable
fibers defined on a compactum $X$ of dimension at least 2. Then there is a non-
trivial continuum in $X$ on which $f$ is injective.

Torunczyk [11], [12] obtained deep results related to this topic, assuming $Y$
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is finite-dimensional. In sec. 3 we combine one of the Torunczyk’s theorems
with Corollary 1.2. We use also in this section a striking curve constructed by
H. Cook [3] to illustrate necessary restrictions on the assumptions. However, in
case of infinite-dimensional range $Y$ , some natural questions are left open, cf.
Remark 3.6.

The main tool in the proof of Theorem 1.1 is a fundamental result of R. H.
Bing [2] concerning hereditarily indecomposable continua, i.e. such continua $C$

that, whenever two subcontinua of $C$ meet, one of them is contained in the
other, cf. [7].

Since the indecomposability does not enter the statements of the results in
this paper, it would be interesting to clarify, to what extent its appearance in
this context is accidental.

2. Proof of Theorem

1.1. The proof consists of two steps. In the first one we obtain the assertion
assuming in addition that the range of $f$ is a hereditarily indecomposable
continuum (we can assume less about $f$ in this situation). Then, in the next step,
we pass to a general situation using a theorem of R. H. Bing [2].

We consider $X$ with a fixed metric, and dist $(x, S)$ is the distance of a point $x$

from a set $S$ in $X$ , cf. $[7;21.IV]$ .
Recall that, since the fibers of $f$ are zero-dimensional, $f$ maps non-trivial
continua to non-trivial continua.

(I) Let $L\subset Y$ be a hereditarily indecomposable continuum, let $K=f^{-1}(L)$

and let $K_{(0)}$ be the union of all one-point components of K. If the set of points $x$

in $K$ for which the closure of the set $f^{-1}f(x)\backslash K_{t0)}$ is not perfect contains a non-
trivial continuum $H$ , then $f$ is injective on some non-trivial continuum in K.

PROOF. (I). Aiming at a contradiction, let us assume that $f$ is not injective
on any non-trivial continuum in $K$ . We shall find $z\in f(H)$ such that
(1) $f^{-1}f(x)\backslash K_{t0|}$ has no relatively isolated points.
Since $ H\cap K_{t0)}=\emptyset$ , the set in (1) is nonempty and therefore its closure would
be perfect, contradicting the choice of $H$ .

The complement of $K_{|0)}$ is $\sigma$ -compact $[Ku;V.47.VI]$ and one can choose a
sequence $ S_{1},S_{-},,\ldots$ of compact sets disjoint from $K_{(0|}$ such that each point in
$K\backslash K_{(0)}$ belongs to $S_{j}$ for infinitely many $i$ and the diameters of $S_{j}$ converge to

0. Let

$U_{j}=\{x\in K:dist(x,S_{i})<1/i\}$ .
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We shall define inductively non-trivial continua
$ f(H)\supset C_{1}\supset C_{2}\supset\ldots$

such that, for each $i$ ,

(2) either $ f(S_{j})\cap C_{l}=\emptyset$ , or for each $y\in C_{j}$ the set $f^{-1}(y)\cap(U_{j}\backslash K_{(0)})$ contains
at least two points. To begin with we set $C_{0}=f(H)$ , with $ S_{0}=U_{0}=\emptyset$ , and
assume that $C_{j}$ has been already defined.
If $C_{j}$ is not contained in $f(S_{i+1})$ , let $C_{i+1}$ be any non-trivial continuum in
$C_{i}\backslash f(S_{l+1})$ .

Suppose that $C_{j}\subset f(S_{i+1})$ . Then, by our assumption, $f$ can not be injective on
the compactum $f^{-1}(C_{j})\cap S_{i+1}$ , which $f$ maps onto the continuum $C_{j}$ , and
therefore there exist $c\in C_{j}$ and distinct points a $,$

$b\in S_{l+1}$ with $c=f(a)=f(b)$ .
Since a $,$

$b\not\in K_{(0)}$ , one can find disjoint non-trivial continua $T_{c1},$ $T_{b}$ contained in
$U_{i+1}$ with $a\in T_{a},b\in T_{b}$ . The non-trivial subcontinua $f(T_{c},),f(T_{b})$ and $C_{j}$ of $L$

contain the point $c$ , and since $L$ is hereditarily indecomposable, the intersection
$C_{i+1}=f(T_{\iota\prime})\cap f(T_{b})\cap C_{j}$

is a non-trivial continuum.
For each $y\in C_{i+1}$ the fiber $f^{-1}(y)$ intersects both $T_{tl},$ $T_{b}$ and since

$T$. $\cup T_{b}\subset U_{i+1}\backslash K_{(0)}$ the inductive step is completed.
We shall check that any point $z\in C_{1}\cap C_{2}\cap\ldots\subset f(H)$ satisfies (1). Let

$x\in f^{-}$ $(z)\backslash K_{(0)}$ and let $U$ be any open set in $K$ containing $x$ . One can find $i$ with
$x\in S_{j}$ and $U_{j}\subset U$ . Since $z\in f(S_{i})\cap C_{j}$ , the second part of condition (2)

guarantees that $U_{j}$ , and hence also $U$ , intersects $f^{-1}(z)\backslash K_{(0)}$ in at least two
points. This demonstrates (1), and ends the proof of (I).

(II). We shall combine now (I) with a theorem of Bing [2] which provides a
sequence $ B_{1},B_{2},\ldots$ of compacta in $Y$ such that
(3) any pair of disjoint closed sets in $Y$ is separated by some $B_{j}$ ,
(4) each non-trivial continuum in $B_{l}$ is hereditarily indecomposable.

Let

$E_{1}=f^{-1}(B_{1})$ , $E_{l+1}=f^{-1}(B_{i+1}\backslash (B_{1}\cup\ldots\cup B_{j}))$ ,

and let
(5) $G=\cup G_{j}j$ , where $G_{j}=$ { $x:\{x\}$ is the component of $x$ in $E_{j}$ }.

Since the sets $E_{1}\cup\ldots\cup E_{j}=f^{-1}(B_{1}\cup\ldots\cup B_{l})$ are compact, the sets $G_{j}$ , and also
their union $G$ , are zero-dimensional. Let us set (where cl stands for the closure)

$A=G\backslash \cup\{cl(f^{-1}f(x)\backslash G):x\in X\}$ .
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Then $A$ is zero-dimensional, and for each $x\in X$ ,

(6) $f^{-1}f(x)\backslash A=cl(f^{-1}f(x)\backslash G)$ .

From the assumptions about $f$, applied to $A$ , and property (6), we conclude that
there is a compactum $Z$ in $X$ of dimension $\geq 2$ such that for each $x\in Z$ the
closure $cl(f^{-1}f(x)\backslash G)$ is not perfect.

Condition (3) implies that $Y\backslash \cup B_{j}j$ is zero-dimensional, and so is its

preimage under the zero-dimensional map $f-$ the set $X\backslash \bigcup_{i}E_{j}$ . Therefore

$Z\cap\cup E_{j}j$ has positive dimension, and since the sets $E_{1}\cup\ldots\cup E_{i}$ are compact,

there exists $i$ such that $Z\cap E_{j}$ contains a non-trivial continuum $H$ . Notice that
$ H\cap G_{j}=\emptyset$ (cf. (5)), and hence

(7) $H\subset(Z\backslash G)\cap E_{j}$ .

Let $L$ be the maximal continuum in $B_{j}$ containing the non-trivial continuum
$f(H)$ and let $K=f^{-1}(L)$ . Then $L$ is hereditarily indecomposable, by (4). Let
$K_{(0)}$ be the set defined in (I). Any continuum in $f^{-1}(B_{j})$ intersecting $K$ is
contained in $K$ , and since $E_{j}$ is open in $f^{-1}(B_{j})$ , it follows that (cf. (5))

(8) $K_{(0)}\cap E_{j}=G\cap E_{j}$ .

For every $x\in H$ , by (7), (8) and the choice of $Z$ , the closure of the set
$f^{-1}f(x)\backslash K_{t0)}$ is not perfect. Therefore, one can use the statement (I) to
conclude that $f$ is injective on some non-trivial continuum in $K$ .

3. A Corollary to Torunczyk’s Theorem on Light Mappings with finite-
Dimensional Range.

The following result was proved by H. Torunczyk [11], Theorem 1 (cf. also
[12]).

3.1. THEOREM (Torunczyk). Let $f:X\rightarrow Y$ be a light mapping of a
compactum $X$ into a finite-dimensional compactum Y. Then there is a zero-
dimensional set $A$ in $X$ such that $f$ restricted to $X\backslash A$ is finite-to-one.

If $X$ is a compactum of dimension at least 3, then the complement of any
zero-dimensional set in $X$ contains a compactum of dimension at least 2. Thus,

the theorem of Torunczyk and Corollary 1.2 yield the following conclusion.
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3.2. COROLLARY. Let $f:X\rightarrow Y$ be a light mapping of a compactum $X$ of
dimension at least 3 into a finite-dimensional compactum Y. Then $f$ is injective
on a non-trivial continuum in $X$ .

3.3. REMARK. Torunczyk [11], Corollary 2 proved also that, under the
assumptions of Theorem 3.1, $f$ is injective on a compactum of dimension at
least equal to

$\dim X-$ ( $1+the$ integer part of $\frac{1}{2}\dim Y$)

This gives the assertion of Corollary 3.2, whenever this integer is positive.
Using a curve defined by Cook [3] one can obtain the following two

examples which shed some light on the assumptions in Theorem 1.1 and
Corollary 3.2.

3.4. EXAMPLE. There exists a light mapping $f:S\rightarrow I^{2}$ from a 2-
dimensional Cantor manifold $S$ onto the unit square which is not injective on
any non-trivial continuum in $S$ .

3.5. EXAMPLE. There exists a light mapping without perfect fibers
$g:T\rightarrow I^{4}$ defined on a 2-dimensional Cantor manifold $T$ which is not injective
on any non-trivial continuum in $T$ .

More specifically, Cook [3] defined a one-dimensional continuum $M$ with
the following properties:
(1) $M$ is hereditarily indecomposable,
(2) each non-trivial continuum in $M$ contains a continuum which can be mapped
onto a continuum which is not a continuous image of any plane continuum.

The properties of $M$ ( $M_{1}$ in Cook’s notation) are stated in Theorem 9 and
the Note at the end of section 3 in [3].

Let us notice that the square $MxM$ also has the property described in (2).

Indeed, let $p:MxM\rightarrow M$ be the projection and let $K$ be a non-trivial
continuum in $MxM$ . If $p(K)$ is a singleton, $K$ can be considered as a
subcontinuum of $M$ . If $p(K)$ is non-trivial, at first one can find a continuum $L$ as
in (2), and next one can use (1) and Theorem 4 in [3] to get a continuum $K^{\prime}$ in
$K$ with $p(K^{\prime})=L$ .

In effect we conclude that
(3) no non-trivial subcontinuum of $MxM$ embeds in the plane.
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Example 3.4 can now be described instantly. Since $M$ is a curve, three is a light
mapping $u:M\rightarrow I$ onto the unit interval, and $f=uxu:MxM\rightarrow I^{2}$ has the
required property, by (3).

Example 3.5 requires a few additional adjustments.
Let $C$ be the Cantor set in $I$. Let us attach $C$ to $u^{-1}(C)$ by the map $u$ , i.e. let

us consider the quotient space $N$ for the upper-semicontinuous decomposition
of $M$ into the compacta $u^{-1}(t)$ with $t\in C$ and singletons $\{x\}$ with $x\not\in u^{-1}(C)$ . Let
$q:M\rightarrow N$ be the quotient mapping. We get the induced mapping $v:N\rightarrow I$ ,

with $u=v\circ q$ . Notice that the map $v$ is injective on the Cantor set $q(u^{-1}(C))$ .
We set $T=N\times N$ . The n\’iapping $g:T\rightarrow I^{4}$ is the composition

$g=(d\times d)\circ(v\times v)$ where $d$ is a continuous finite-to-one mapping $d:I\rightarrow I^{2}$ such
that $d(C)=I^{2}$ (to get such $d$ , one can start with any finite-to-one continuous
mapping to $C$ onto $I^{2}$ extending successively this map over the open
contigeous intervals of $C$ in $I,$ $J_{1},$ $ J_{2},\ldots$ , so that each $d(J_{j})$ is a polygonal line
which avoids the points of intersections of the polygonal lines already defined
and intersects their union in at most finitely many points).

3.6. REMARK. We conjecture that without some additional assumptions on
$Y$ , the assertion of Corollary 3.2 is not true.

4. Countable-to-One Mappings on Infinite-Dimensional Compacta.

A separable metrizable space $X$ is a C-space (a weakly infinite-dimensional
space) if for each sequence of open covers (two-element open covers,
respectively) $ j_{1}j\parallel\prime_{2},\cdots$ of $X$ there exist disjoint open $families\nearrow_{1}^{o},\nearrow_{2}^{c},\cdots$ such that
each 9 refines $\mathscr{K}_{1}^{\prime}$ and the union $\bigcup_{j}\nearrow_{i}$ covers $X$ , cf. [1].

The compacta which are not weakly infinite-dimensional, we shall call them
strongly infinite-dimensional, are exactly the compacta which can be mapped
essentially onto the Hilbert cube $I^{\infty}$ . Evidently, C-spaces are weakly infinite-
dimensional (it is not known if the converse is true). The Hilbert cube is
strongly infinite-dimensional, cf. [8].

D. W. Henderson [6] proved that every strongly infinite-dimensional
compactum contains a non-trivial continuum, each non-trivial subcontinuum of
which is strongly infinite-dimensional. We shall see in a moment that analogous
result is also true for C-spaces. In effect, using Corollary 1.2 we shall get the
following result.

4.1. THEOREM. Let $f:K\rightarrow L$ be a countable-to-one mapping between
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compacta. If $K$ is strongly infinite-dimensional, or it is not a C-space, then so is
$L$ , and moreover, $f$ is injective on a continuum which is strongly infinite-
dimensional, or is not a C-space, respectively.

To prove this we need for C-spaces a counterpart to the theorem of
Henderson. To this end we shall explain that a simple proof of this theorem
indicated in [9], sec. 11, can be carried out in a more general setting, including
the property $C$ . It is convenient to distinguish some properties essential for that
reasoning, and having this in mind, we shall call a nonempty class $\mathscr{S}$ of
separable metrizable spaces admissible if $\mathscr{S}$ has the following properties:

(i) if $X\in \mathscr{S}$ and $Y$ is homeomorphic to a closed subset of $X$ , then $Y\in \mathscr{S}$ ;

(ii) a space which is a countable union of members of $\mathscr{S}is$ in $\mathscr{S}$ ;
(iii) if $f:X\rightarrow Y$ is a perfect mapping, $Y$ is zero-dimensional, and all fibers

$f^{-1}(y)$ are in $\mathscr{S}$ , then $X\in \mathscr{S}$ ;
(iv) if $A\subset X,$ $A\in \mathscr{S}$ and all closed in $X$ sets disjoint from $A$ are in $\mathscr{S}then$

$X\in \mathscr{S}$ .

Both C-spaces and weakly infinite-dimensional spaces, form admissible
classes, cf. [4], [5].

4.2. PROPOSITION. Let $\mathscr{S}$ be an admissible class and let $X$ be a
compactum not belonging to $\mathscr{S}$ . Then there is a non-trivial continuum in $X$ all
whose non-trivial subcontinua do not belong to $\mathscr{S}$ .

$PR00F$ . In the proof of Proposition 11.2 in [9] the class of weakly infinite-
dimensional spaces can be replaced by any admissible class of spaces, without
any change of the reasonings (for this part the property (iv) is not necessary). In
effect, for any admissible class $\mathscr{S}$ , we get a subset $A$ of the Hilbert cube $I^{\infty}$

belonging to $\mathscr{S}$ such that A intersects each non-trivial continuum in $I^{\infty}$

belonging to $\mathscr{S}$ .
Let $X$ be any compactum not in $\mathscr{S}$ . We can assume that $X\subset I^{\infty}$ . Since

$A\cap X\in \mathscr{S}$ , property (iv) gives us a compactum $Z\subset X\backslash A$ which does not
belong to $\mathscr{S}$ , then any non-trivial continuum in $Z$ has the required property (let

us notice that all zero-dimensional sets are in every admissible class, by (iii),

and hence $Z$ contains such a continuum).

This completes the proof of Proposition 4.2, and hence also of Theorem 4.1.

Theorem 4.1 can be proved more directly, in the spirit of Sklyarenko’s
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paper [10], but I do not know any reasoning which would avoid the theorem of
Henderson, or its analogues.

5. A Remark on a Theorem of Sklyarenko.

The following observation, related to a theorem of Sklyarenko [10], gives
some additional information associated with Theorems 1.1 and 4.1. We
formulate the result for strongly infinite-dimensional spaces, but the proof
applies to any admissible class, as defined in sec. 4.

5.1. PROPOSITION. Let $f:X\rightarrow Y$ be a continuous mapping between
compacta without any perfect fiber. If $Y$ is strongly infinite-dimensional, then $f$

is injective on a strongly infinite-dimensional continuum in $X$ .

PROOF. We denote by diamA the diameter of a set $A$ with respect to a fixed
metric in $X$ .

Aiming at a contradiction, assume that that $f$ is not injective on any strongly
infinite-dimensional compactum in $X$ . Let $ S_{1},S_{2},\ldots$ be the closures of elements
of any countable base in $X$ .

Inductively, we shall define strongly infinite-dimensional compacta in $Y$,

$ C_{1}\supset C_{2}\supset\cdots\supset C_{n}\supset\cdots$ ,

such that, for any $n$ ,

$(^{*})$ either $ f(S_{n})\cap C_{n}=\emptyset$ , or for each $t\in C_{n}$ , $f^{- 1}(t)\cap S_{n}$ contains at least two points.
To begin with, set $ C_{0}=Y,S_{0}=\emptyset$ , and assume that we have defined $C_{n}$ . Let us
consider

$K=f(S_{n+1})\cap C_{n}$ .

If $K$ is weakly infinite-dimensional, choose a strongly infinite-dimensional
compactum $C_{n+1}\subset C_{n}\backslash K$ . Suppose that $K$ is strongly infinite-dimensional and
set

$K_{\rho}=\{y\in K:diam(S_{n+1}\cap f^{-1}(y))\geq 1/p\}$ ,

and $K_{0}=K\backslash \cup\{K_{\rho} : p=1,2,\cdots\}$ . Then, for $p\geq 1,$ $K_{\rho}$ is a compactum, and $f$ is
injective on $S_{n+1}\cap f^{-1}(K_{0})$ . By the assumption, there is no strongly infinite-
dimensional compactum contained in $K_{0}\subset f(S_{n+1})$ , and therefore, there is $p\geq 1$

with $K_{\rho}$ strongly infinite-dimensional (cf. sec. 4, conditions (ii) and (iv) in the
definition of admissible classes). We set $C_{n+1}=K_{p}$ .

Now, to reach a contradiction, we check that for any $ t\in C_{1}\cap C_{2}\cap\ldots$ the
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fiber $f^{-1}(t)$ is perfect. Indeed, if $S$. $\cap f^{-1}(t)\neq\emptyset$ , then $ f(S_{ll})\cap C_{\iota}\neq\emptyset$ and by
$(^{*}),$ $S_{n}$ contains at least two points from $f^{-1}(t)$ , and therefore, $f^{-1}(t)$ has no
relatively isolated points.

Since any strongly infinite-dimensional compactum contains such a
continuum, the proof is completed.

References

[1] D. F. Addis, J. H. Gresham, A class of infinite dimensional spaces. Part I: Dimension Theory
and Aleksandroff’s Problem, Fund Math. 101 (1978), 195-205.

[2] R. H. Bing, Higher-dimensional hereditarily indecomposable continua, Trans. Amer. Math.
Soc. 71 (1951), 267-273.

[3] H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua,
Fund. Math. 60 (1967), 241-249.

[4] D. J. Garity, Property C and closed maps, Topology and Appl. 26 (1987), 125-130.
[5] Y. Hattori, K. Yamada, Closed pre-images of C-spaces, Math. Japonica 34 (1989), 555-561.
[6] D. W. Henderson, Each strongly infinite-dimensional compactum contains a hereditarily

intinite-dimensional compact subset, Amer. Jour. Math. 89 (1967), 122-123.
[7] K. Kuratowski, Topology I, II, Warszawa 1965, 1968.
[8] J. I. Nagata, Modern Dimension Theory, Heldermann Verlag 1983.
[9] R. Pol, Selected topics related to countable dimensional metrizable spaces, in: Proc. Sixth

Prague Topological Symposium 1986, Heldermann Verlag 1988.
[10] E. Sklyarenko, Two theorems on infinite-dimensional spaces, Sov. Math. Dokl. 3 (1962),

547-550.
[11] H. Torunczyk, finite-to-one restrictions of continuous functions, Fund. Math. 125 (1985),

237-249.
[12] H. Torunczyk, finite-to-one restrictions of continuous functions, in: Proc. Sixth Prague

Topological Symposium 1986, Heldermann Verlag 1988.

Roman Pol
Institute of Mathematics
Warsaw University
Banacha 2
02-097 Warsaw
Poland

Added in proof: M.Levin, Fund, Math, 197(1995), 93-98, obtained results
strengthening Proposition 4.2.


	ON LIGHT MAPPINGS WITHOUT ...
	1. Introduction.
	1.1 THEOREM. ...

	3. A Corollary to Torunczyk's ...
	3.1. THEOREM ...

	4. Countable-to-One Mappings ...
	References


