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1. Introduction

In this paper, we determine the infinitesimal deformations of an Einstein-
Hermitian structure of a homogeneous vector bundle in several cases. In
particular, we get the tangent space at the homogeneous structure of the
moduli space of Einstein-Hermitian structures as the representation space of a
compact Lie group.

A compact simply connected homogeneous K\"ahler manifold is called a
Kahler C-space. Such a manifold can be written as $G/K$ where $G$ is a compact
semisimple Lie group and $K$ is the centralizer of a toral subgroup of $G$ ([10]).

Let $G^{C}$ be the complexification of $G$ and $K^{C}$ the complexification of $K$ in $G^{C}$ .
We denote by $L$ the parabolic subgroup of $G^{C}$ which contains $K^{C}$ . $G/K$ is
diffeomorphic to $G^{C}/L$ . Thus $G/K$ admits a holomorphic structure from the
holomorphic structure of $G^{C}/L$ . Moreover it admits a G-invariant K\"ahler

metric.
Let $(\rho, V)$ be a complex representation of $K$. Then $(\rho, V)$ can be extended

to a holomorphic representation $(\rho_{L}, V)$ of $L$ . The homogeneous vector bundle
$E_{\rho}=G\times_{\rho}V$ is isomorphic to the homogeneous holomorphic vector bundle
$E_{\rho L}=G^{C}\times_{\rho L}V$ as $C^{\infty}$-vector bundles. Thus the homogeneous vector bundle $E_{\rho}$

has a nat\‘ural holomorphic structure from the holomorphic structure of $E_{\rho L}$

([3]). Moreover if $(\rho, V)$ is irreducible, then $E_{\rho}$ has a unique G-invariant
Einstein-Hermitian structure up to a homothety ([8]).

An irreducible complex representation $(\rho, V)$ is determined by the highest
weight. Then a homogeneous vector bundle $E_{\rho}$ is determined by the highest
weight of $(\rho, V)$ , if $(\rho, V)$ is irreducible. It is natural to ask how we describe
the deformations of the holomorphic structure and the Einstein-Hermitian
structure by the highest weight. Also we ask how we describe moduli spaces
of holomorphic structures and Einstein-Hermitian structures by the highest
weight.
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In the deformation theory of complex structures of complex manifolds,

the complex structure of a K\"ahler C-space is locally stable ([3]). But the
holomorphic structure of a homogeneous vector bundle generally is not locally

stable. Here the local stability means that any deformation space is trivial.
So there is a problem to find sufficient conditions for the local stability of the
holomorphic structure of a homogeneous vector bundle.

Let End $(E_{\rho})$ be the endomorphism bundle of $E_{\rho}$ and $S\mathfrak{l}(E_{\rho})$ the subbundle
of End $(E_{\rho})$ which consists of trace free endomorphisms. It is well known that
the Dolbeault cohomology group $H^{01}(G/K, End(E_{\rho}))$ is the tangent space of the
moduli space of holomorphic structures if $H^{0.0}(G/K, S\mathfrak{l}(E_{\rho}))=H^{0.2}(G/K, 5\mathfrak{l}(E_{\rho}))$

$=\{0\}$ . The moduli space of Einstein-Hermitian structures is an open subset of
the moduli space of holomorphic structures. Under the same conditions,
$H^{0.1}(G/K, End(E_{\rho}))$ is also the tangent space of the moduli space of Einstein-
Hermitian structures ([7], [6] and [9]). So we think that it is important to
compute these cohomologies for our problems.

In this paper, for a first step of problems above we investigate K\"ahler

C-spaces $G/K$ with rank $G=2$ . In \S 2 we shall review a construction of K\"ahler

C-spaces and some properties of vector bundles over them. We shall state our
results in \S 3 and prove them in \S 4. Our main results are Theorems 4, 5 and
Corollary 6. In the case of rank $G=2$ , we compute $H^{0,p}(G/K, End(E_{\rho}))$ and
$H^{0.p}$ ( $G/K$, @1(E\rho )) from the highest weight of $(\rho, V)$ (Theorems 4 and 5). Then
we get dimension of the moduli space of Einstein-Hermitian structures of a
homogeneous vector bundle in several cases (Corollary 6). The following
theorem is an immediate consequence of these results.

THEOREM 1. Let $G/K$ be a Kahler C-space where $G$ is of type $A_{2}$ or $B_{2}$ .
Let $(E, h)$ be an irreducible Einstein-Hermitian homogeneous vector bundle over
$G/K$ with rank $E=r$ . Then the dimension of the moduli space of irreducible
Einstein-Hermitian structures of $E$ is as follows:

(1) If $G$ is of type $A_{2}$ or $B_{2}$ and if $K$ is a maximal torus, then the dimen-
sion of the moduli space is $0$ .

(2) If $G/K\cong SU(3)/S(U(1)\times U(2))\cong P_{2}C$ , then the dimension of the moduli
spoce is

$\frac{1}{2}\sum_{k=1}^{r-1}(2k+1)(k+2)(k-1)$ .

(3) If $G/K\cong Sp(2)/(U(1)\times Sp(1))\cong P_{3}C$ , then the dimension of the moduli
space is

1 $r-1$

$-\Sigma(2k+3)(2k+1)(2k-1)$ .3 $k\Leftarrow 1$
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(4) If $G/K\cong SO(5)/(U(1)\times SO(3))\cong Q_{3}(C)$ , then the dimension of the moduli
space is

$\frac{1}{2}\sum_{k=1}^{r-1}(2k-1)(k+2)(k-1)$ .

The author would like to express his gratitude to Professor Mitsuhiro Itoh
and Professor Hiroyuki Tasaki for their valuable advices and encouragement.

2. Preliminaries

In this section, we review a construction of Kahler C-spaces and some
properties of homogeneous bundles over them. We refer the reader to the
books [1] and [5] for the representation theory of compact Lie group.

Following Wang ([10]), we call a compact simply connected homogeneous
K\"ahler manifold a Kahler C-space. A vector bundle $E$ over a homogeneous
space $G/K$ is said to be homogeneous if it is associated to the principal K-bundle
$G\rightarrow G/K$.

Let $G$ be a compact simply connected semisimple Lie group. Let $T_{0}$ be a
toral subgroup of $G$ and $K$ the centralizer of $T_{0}$ in $G$ . Then $G/K$ is a compact
simply connected homogeneous manifold. Let $T$ be a maximal torus of $G$ which
contains $T_{0}$ . Then $T$ is contained in $K$ and we put $l=\dim T$ . We denote by
$\Delta$ the set of nonzero roots of $G$ relative to $T$ . Let $\Pi=\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{l}\}$ be a
fundamental system of $\Delta$ . We may assume that $\Pi$ is the system of simple
roots of $\Delta$ for a suitable order of the Lie algebra of $T$ . In this order, we
denote the set of positive roots by $\Delta^{+}$ . Let $\Delta_{\Pi_{1}}$ be the set of nonzero roots of
$K$ relative to $T$ and $\Pi_{1}=\{\alpha_{i_{1}}, \alpha_{i_{2}}, \cdots , \alpha_{i_{r}}\}$ the subset of $\Pi$ which generates
$\Delta_{\Pi_{1}}$ . If we denote the set of positive roots of $\Delta_{\Pi_{1}}$ by $\Delta_{\Pi_{1}}^{+}$ , then we have
$\Delta_{\Pi_{1}}^{+}=\Delta^{+}\cap\Delta_{\Pi_{1}}$ .

Let $G^{C}$ and $K^{C}$ be complexifications of $G$ and $K$, respectively. Let $L$ be
the parabolic subgroup of $G^{c}$ such that its Lie algebra is generated by the Lie
algebra of $K^{C}$ and $\{E_{\alpha};\alpha\in\Delta^{+}\backslash \Delta_{\Pi_{1}}^{+}\}$ . Here $E_{\alpha}$ denotes the root vector of
$\alpha\in\Delta$ . Then we see

$G/K\cong G^{C}/L$

as $C^{\infty}$-manifolds. So $G/K$ is a homogeneous complex manifold by this holo-
morphic structure. Moreover it has a G-invariant K\"ahler metric ([2]). Thus
we get a K\"ahler C-space $G/K$. Conversely every K\"ahler C-space can be
described as above. Also we can construct the K\"ahler C-space from a pair
$(\Pi, \Pi_{1})$ , where $\Pi$ is a fundamental system of roots and $\Pi_{1}$ is a subset of $\Pi$

([10] and [2]).



500 Masaro TAKAHASHI

Let $(\rho, V)$ be an irreducible finite dimensional complex representation of $K$

with highest weight $\hat{\rho}$ . We denote by $\{\varpi_{1}, \varpi_{2}^{J}, \cdots, \varpi_{l}\}$ the system of funda-
mental weights of $\Pi$ . Then the highest weight $\hat{\rho}$ of $(\rho, V)$ can be written as
follows:

$\hat{\rho}=n_{1}\varpi_{I}^{\prime}+n_{2}\varpi_{2}+\cdots+n_{l}\varpi_{l}^{\prime}$ ,

where $n_{1},$ $n_{2},$ $\cdots,$ $n_{l}$ are integers and if $\alpha_{i}\in\Pi_{1}$ then $n_{i}\geqq 0$ .
In this case we can uniquely extend $(\rho, V)$ to a holomorphic representation

$(\rho_{L}, V)$ of $L$ ([3]). We put
$E_{\rho\rho}=G\times V$ ,

$E_{\rho L\rho L}=G^{C}\times V$ .
Then

$E_{p}\cong E_{\rho L}$

as $C^{\infty}$-vector bundles. We regard $E_{\rho}$ as a holomorphic vector bundle by the
isomorphism above unless otherwise stated. Also if $(\rho, V)$ is irreducible, there
is a unique G-invariant Hermitian structure $h$ up to a homothety and $(E_{\rho}, h)$

is an irreducible Einstein-Hermitian vector bundle ([8]). Therefore we consider
$E_{\rho}$ as an irreducible Einstein-Hermitian vector bundle if $(\rho, V)$ is irreducible.
For more details about an Einstein-Hermitian vector bundle, we refer the reader
to [7].

By End $(E_{\rho})$ we denote the endomorphism bundle of $E_{\rho}$ . Let $S\mathfrak{l}(E_{\rho})$ be the
subbundle of $E_{\rho}$ which consists of trace free endomorphisms. By definition of
End$(E_{\rho})$ and $S\mathfrak{l}(E_{\rho})$ ,

(1) End$(E_{\rho})\cong Gx_{\rho\emptyset\rho*}End(V)$ ,

(2) $S\mathfrak{l}(E_{\rho})\cong G\chi_{\rho\Theta\rho^{*}}\S \mathfrak{l}(V)$ ,

where End(V) is the linear space of endomorphisms and 61(V) is the subspace
of End(V) consisting of trace free endomorphisms. Thus

(3) End(V) $=V\otimes V*$ ,

where $V^{*}$ is the dual space of $V$ . And $K$ acts End(V) by the tensor product
representation $(\rho\otimes\rho^{*}, V\otimes V^{*})$ where $(\rho^{*}, V^{*})$ is the dual representation of
$(\rho, V)$ . By the way $61(E)$ is invariant by $K$ . Thus $K$ acts @1(V) via the action
for End(V).

Finally we denote the Dolbeault cohomology groups of End $(E_{\rho})$ and $\S \mathfrak{l}(E_{\rho})$

by $H^{p.q}(G/K, End(\rho))$ and $H^{p.q}$( $G/K$, @1(E\rho )), respectively. We set

$h^{p,q}(End(E_{\rho}))=\dim H^{p.q}(G/K, End(E_{\rho}))$ ,

$h^{p.q}(\S \mathfrak{l}(E_{\rho}))=\dim H^{p.q}(G/K, sl(E_{\rho}))$ .
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3. Main Results

We continue with the notation and the situation in \S 2. Let $G/K$ be a
K\"ahler C-space where $G$ is a compact simply connected semisimple Lie group
and $K$ is the centralizer of a toral subgroup of $G$ .

LEMMA 2. Let $(\rho, V)$ be an irreducible complex representation of K. Then
the restriction of $(\rho\otimes\rho^{*}, V\otimes V^{*})$ to the center of $K$ is trivial.

PROOF. Let $Z_{K}$ be the center of $K$ and $K^{\prime}$ the semisimple part of $K$. Then

$\varphi:Z_{K}\times K^{\prime}\rightarrow K$ , $(z, k)\leftarrow zk$

is a Lie group homomorphism with kernel $Z_{K}\cap K^{\prime}$ . Then $(\rho^{o}\varphi, V)$ is a repre-
sentation of the direct product Lie group $Z_{K}\times K^{\prime}$ on $V$ . We note that

$\rho\circ\varphi|_{Z_{K}}=\rho|_{Z_{K}}$ , $\rho\circ\varphi|_{K^{\prime}}=\rho|_{K^{\prime}}$ .

Because of irreducibility of $(\rho, V),$ $(\rho\circ\varphi, V)$ is also irreducible. So there
are irreducible representations $(\rho_{Z_{K}}, V_{Z_{K}})$ of $Z_{K}$ and $(\rho_{K^{\prime}}, V_{K^{l}})$ of $K^{\prime}$ such that

$(\rho_{z_{K}}\otimes\rho_{K^{\prime}}, V_{Z_{K}}\otimes V_{K^{\prime}})\cong(\rho\circ\varphi, V)$ ,

where $(\rho_{Z_{K}}\otimes\rho_{K^{\prime}}, V_{Z_{K}}\otimes V_{K^{\prime}})$ denotes the exterior tensor product representation
of $(\rho_{Z_{K}}, V_{z_{K}})$ and $(\rho_{K^{\prime}}, V_{K^{\prime}})$ . By irreducibility of $(\rho_{Z_{K}}, V_{Z_{K}})$ , $V_{Z_{K}}$ is a one
dimensional space. Then the tensor product $(\rho_{Z_{K}}\otimes\rho_{Z_{K}}^{*}, V_{Z_{K}}\otimes V_{Z_{K}}^{*})$ is iso-
morphic to the trivial representation. Q.E.D.

COROLLARY 3. Let $G$ be a compact semisimple Lie group and $K=T$ be a
maximal torus of G. Let $(\rho, V)$ be an irreducible complex representation of $T$ .
Then

End$(E_{\rho})\cong G/T\times C$ ,

$@\mathfrak{l}(E_{\rho})\cong G/T\times\{0\}$ .
In particular,

$h^{0,p}(End(E_{\rho}))=\left\{\begin{array}{l}1, forp=0\\0, forp\geqq 1,\end{array}\right.$

$h^{0,p}(\S \mathfrak{l}(E_{\rho}))=0$ , for $p\geqq 0$ .

PROOF. We note that any irreducible complex representation space of a
torus is one dimensional. From Lemma 1 it is easy to see that End $(E_{\rho})$ is
trivial. And also it is easy to see that Hodge numbers of End $(E_{\rho})$ and @1(E\rho )

are as stated above (for example, by means of Bott’s generalized Borel-Weil
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theorem ([3, Theorem IV’]). Q. E. D.

Next we consider the case of rank $G=2$ . In this case the fundamental
system of roots $\Pi$ is $\{\alpha_{1}, \alpha_{2}\}$ . And if $G/K$ is a K\"ahler C-space then the
corresponding $\Pi_{1}$ as in section 2 is $\{\alpha_{1}, \alpha_{2}\},$ $\{\alpha_{1}\},$ $\{\alpha_{2}\}$ or $\phi$ . Furthermore a
compact simple Lie group $G$ is of type $A_{2},$ $B_{2}$ , or $G_{2}$ in this case. If $G$ is of
classical type then corresponding Kahler C-spaces are

$G/K\cong SU(3)/S(U(2)\chi U(1))\cong P_{2}C$ if $G=A_{2}$ and $\Pi_{1}=\{\alpha_{1}\}$ ,

$G/K\cong SU(3)/S(U(1)\times U(2))\cong P_{2}C$ if $G=A_{2}$ and $\Pi_{1}=\{\alpha_{2}\}$ ,

$G/K\cong Sp(2)/(U(1)\times Sp(1))\cong P_{3}C$ if $G=B_{2}$ and $\Pi_{1}=\{\alpha_{1}\}$ ,

$G/K\cong SO(5)/(U(1)\times SO(3))\cong Q_{3}(C)$ if $G=B_{2}$ and $\Pi_{1}=\{\alpha_{2}\}$ .
It is clear that the first case is isomorphic to the second one in the above. And
we note that if $\Pi_{1}=\{\alpha_{1}, \alpha_{2}\}$ then $K=T$ is a maximal torus of $G,$ $i.e.$ , it is the
case of Corollary 3. Also if $\Pi=\phi$ then $K=G,$ $i.e.,$ $G/K$ consists of a one
point $\{0\}$ .

Then we state the main theorem.

THEOREM 4. Let $G$ be a compact simply connected simple Lie group with
rank $G=2$ . Let $\Pi=\{\alpha_{1}, \alpha_{2}\}$ be a fundamental system of roots relative to a
maximal torus $T$ of G. We put $\Pi_{1}=\{\alpha_{i}\}(i=1,2)$ . We denote by $K$ the analytic
subgroup of $G$ with maximal rank which corresponds to $\Pi_{1}$ . Let $(\rho, V)$ be an
irreducible complex representation of $K$ with highest weight $\hat{\rho}=n_{1}\varpi_{1}^{t}+n_{2}\varpi_{2}$ ,

where $\{\varpi_{1}, W_{2}\}$ is the system of fundamental weights. Then the Hodge number
$h^{0.p}(End(E_{\rho}))$ is as follows:
(I) If $G$ is of type $A_{2}$ and $\Pi_{1}=\{\alpha_{2}\}$ then

$h^{0.p}(End(E_{\rho}))=\left\{\begin{array}{l}1, ifp=0,\\\frac{1}{2}\sum_{k=1}^{n2}(2k+1)(k+2)(k-1), ifp=1,\\0, ifp\geqq 2.\end{array}\right.$

(11) If $G$ is of type $B_{2}$ and $\Pi_{1}=\{\alpha_{1}\}$ then

$h^{0.p}(End(E_{\rho}))=\left\{\begin{array}{l}1, ifp=0,\\\frac{1}{3}\sum_{k\Rightarrow 1}^{1}(2k+3)(2k+1)(2k-1)n ifp=1,\\0, ifp\geqq 2.\end{array}\right.$
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(m) If $G$ is of type $B_{2}$ and $\Pi_{1}=\{\alpha_{2}\}$ then

$h^{0.p}(End(E_{\rho}))=\left\{\begin{array}{l}1, ifp=0,\\\frac{1}{2}\sum_{k=1}^{n2}(2k-1)(k+2)(k-1), ifp=1,\\0, ifp\geqq 2.\end{array}\right.$

(IV) If $G$ is of type $G_{2}$ and $\Pi_{1}=\{\alpha_{1}\}$ then

$h^{0,p}(End(E_{\rho}))=\left\{\begin{array}{l}1,\\7,\\21,\\\frac{1}{40}\sum_{k\rightarrow 5}^{n1}(2k+1)(k+5)(k+2)(k-1)(k-4),\\0,\end{array}\right.$ $ifp=2otherwise^{and}ifp=1ifp=1a.ndifp=0,n_{1}^{1}\geqq 3n=2$

,

(V) If $G$ is of type $G_{2}$ and $\Pi_{1}=\{\alpha_{2}\}$ then

$h^{0,p}(End(E_{\rho}))=\left\{\begin{array}{l}1, ifp=0,\\2261, ifp=1,\\\frac{1}{24}\sum_{k=2}^{n2}(21k-2)(18k-1)(13k-1)(8k-1)(3k-l)k,\\ifp=2,\\0, ifp\geqq 3.\end{array}\right.$

THEOREM 5. Under the same assumption of Theorem 4, the Hodge number
$h^{0,p}(\S \mathfrak{l}(E_{\rho}))$ is equal to

$h^{0,p}(5\mathfrak{l}(E_{\rho}))=\left\{\begin{array}{l}0,\\h^{0,p}(End(E_{\rho})),\end{array}\right.$ $ififp=0p\geqq 1$

,

for every cases (I ) $\sim(V)$ in Theorem 4.

We shall prove these theorems in the next section. We state some con-
sequences of these results here. If $h^{0.0}(\S \mathfrak{l}(E_{\rho}))=h^{0.2}(5\mathfrak{l}(E_{\rho}))=0$ , then we can
identify $H^{0,1}(G/K, End(E_{\rho}))$ with the tangent space at the homogeneous struc-
tures of the moduli space of $E_{\rho}$ ([6], [9] and [7, Chapter VII]). Then we get
the following corollary.

COROLLARY 6. Under the same assumption of theorems above, the dimension
of the moduli space of irreducible Einstein-Hermitian structures is as follows:
(I) If $G$ is of type $A_{2}$ and $\Pi_{1}=\{\alpha_{2}\}$ then

$\frac{1}{2}\sum_{k=1}^{n2}(2k+1)(k+2)(k-1)$ .
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(1I) If $G$ is of type $B_{2}$ and $\Pi_{1}=\{\alpha_{1}\}$ then

$\frac{1}{3}\sum_{k=1}^{1}n(2k+3)(2k+1)(2k-1)$ .

(m) If $G$ is of type $B_{2}$ and $\Pi_{1}=\{\alpha_{2}\}$ then

$\underline{1}\sum^{2}^{n}(2k-1)(k+2)(k-1)$ .2 $k=1$

(IV) If $G$ is of type $G_{2}$ and $\Pi_{1}=\{\alpha_{1}\}$ then

$\left\{\begin{array}{l}0, forn_{1}=0or1,\\7, forn_{1}=2,\\21, forn_{1}=3or4.\end{array}\right.$

(V) If $G$ is of type $G_{2}$ and $\Pi_{1}=\{\alpha_{2}\}$ then

$\left\{\begin{array}{l}0, forn_{2}=0,\\261, forn_{2}=1.\end{array}\right.$

Because of Theorem 5, we see that if $G$ is of classical type, then
$/\iota^{0.0}(@\mathfrak{l}(E_{\rho}))=h^{0.2}(5\mathfrak{l}(E_{\rho}))=0$ . Moreover we note that if $\Pi_{1}=\{\alpha_{i}\}$ then rank $E_{\rho}$

$=n_{i}+1$ in theorems and corollary above. Also under the same condition, we
note that the dimension of the moduli space of $E_{\rho}$ depends only on $n_{i}$ . Then
we get Theorem 1 from Corollaries 3 and 6.

4. Proof of Theorems

In this sections, we prove Theorems 4 and 5. The two theorems 4 and 5
are proved at the same time. First we note equations (1) and (2) in \S 2. So
End $(E_{\rho})$ and @1(E\rho ) are defined by representations $(\rho\otimes\rho^{*}, V\otimes V^{*})$ and
$(\rho\otimes\rho^{*}, 61(V))$ , respectively. Because of Lemma 2, $\rho\otimes\rho^{*}$ is trivial on the center
of $K$. The semisimple part of $K$ is of type $A_{1}$ in these cases. Thus we can
apply the Clebsch-Gordan theorem to the representation $\rho\otimes\rho^{*}$ . Therefore we
see that if $\Pi_{1}=\{\alpha_{i}\}$ and the highest weight of $\rho$ is given by $\hat{\rho}=n_{1}\varpi^{\prime}+n_{2}\varpi^{\prime}$ ,

then the highest weight which corresponds to each irreducible component of
$(\rho\otimes\rho^{*}, End(V))$ are given by

(4) $n_{i}\alpha_{i},$ $(n_{i}-1)\alpha_{i},$ $(n_{i}-2)\alpha_{i},$
$\cdots,$ $\alpha_{i},$

$0$ .

Also under the same assumption the highest weight which corresponds to
each irreducible component of ( $\rho\otimes\rho^{*}$ , @1(V)) are given by

(5) $n_{i}\alpha_{i},$ $(n_{i}-1)\alpha_{i},$ $(n_{i}-2)\alpha_{i},$
$\cdots,$

$2\alpha_{i},$
$\alpha_{i}$ .
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Let $(\rho_{k}, V_{k})$ be the complex irreducible representation of $K$ with highest weight
$\hat{\rho}_{h}=k\alpha_{i}$ and we put $E_{\rho k}=G\times_{\rho_{k}}V_{k}$ . Then (4) and (5) imply the following,
respectively:

(6) $H^{0.p}(G/K, End(E_{\rho}))=\bigoplus_{k=0}^{n2}H^{0,p}(G/K, E_{\rho_{k}})$ ,

(7) $H^{0.p}$ ( $G/K$, @I(E\rho )) $=\bigoplus_{k=1}^{n2}H^{0,p}(G/K, E_{\rho_{k}})$ .

Next we compute the cohomology one by one. We denote by $\delta$ the half
of the sum of the positive roots, $i$ . $e.$ ,

$\delta=\varpi_{1}^{\prime}+\varpi_{2}^{\prime}$

in these cases. And we denote by $S_{\alpha}$ the reflection with respect to $\alpha\in\Delta$ . We
use the tables of root systems in [4] for the following.

Case (I) In this case $G$ is of type $A_{2}$ and $\Pi_{1}=\{\alpha_{2}\}$ . Then we see

$\delta+\hat{\rho}_{k}=\delta+k\alpha_{2}$

$=-(k-1)\varpi_{1}^{\prime}+(2k+1)\varpi_{2}$ .
From this, we see that

$\delta+\hat{\rho}$ is $\left\{\begin{array}{l}regular ifk\neq 1,\\singu1ar ifk=1\end{array}\right.$

in the sense of [3]. Also we see that

the index of $\delta+\hat{\rho}_{k}=\left\{\begin{array}{l}0, ifk=0,\\1, ifk\neq 0,1.\end{array}\right.$

By the way, we have

$S_{\alpha_{1}}(\delta+\hat{\rho}_{k})=(k-1)\varpi_{1}+(k+2)\varpi_{2}^{\prime}$ .

This implies that $S_{\alpha_{1}}(\delta+\hat{\rho}_{k})$ is contained in the fundamental Weyl chamber.
We put

$\lambda_{k}=(k-2)\varpi_{1}^{J}+(k+1)\varpi_{2}$

and $V_{\lambda_{k}}$ denotes the complex irreducible representation space of $G$ with highest
weight $\lambda_{k}$ . By means of Bott’s generalized Borel-Weil theorem ([3, Theorem
IV’]), we get

(8) $H^{0,p}(G/K, E_{\rho_{k}})\cong\left\{\begin{array}{l}V_{\lambda_{k}}, fork\geqq 1andp=1,\\\{0\}, fork\geqq 1andp\neq 1,\end{array}\right.$

and
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(9) $H^{0.p}(G/K, E_{\rho k})\cong\left\{\begin{array}{l}C, for/?=0andp=0,\\\{0\}, fork=0andp\geqq 1.\end{array}\right.$

as complex G-spaces. We have

$H^{0.p}(G/K, End(E_{\rho}))\cong\left\{\begin{array}{l}C, forp=0,\\\bigoplus_{k=1}^{n2}V_{\lambda_{k}}, forp=1,\\\{0\}, forp\geqq 2,\end{array}\right.$

from equations (6), (8) and (9) and

$H^{0.p}(G/K, 5\mathfrak{l}(E_{\rho}))\cong\left\{\begin{array}{l}\bigoplus_{k=1}^{n_{2}}V_{\lambda_{k}}, forv=1,\\\{0\}, forp\neq 1,\end{array}\right.$

from equations (7), (8) and (9) as complex G-spaces. We can compute
$h^{0.p}(End(E_{\rho}))$ and $h^{0.p}(5\mathfrak{l}(E_{\rho}))$ by Weyl’s dimension formula for a complex
irreducible representation space. Then we obtain theorems in the case (I).

Case (II) In this case $G$ is of type $B_{2}$ and $\Pi_{1}=\{\alpha_{1}\}$ . Then we see
$\delta+\hat{\rho}_{k}=\delta+k\alpha_{2}$

$=(2k+1)\varpi_{1}-(2k-1)\varpi_{2}$ .

From this, we see $\delta+\hat{\rho}_{k}$ is regular for any $k$ . Also we see

the index of $\delta+\hat{\rho}_{k}=\left\{\begin{array}{l}0,\\1,\end{array}\right.$ $forfork=0k\neq 0’$

.
By the way, we have

$S_{\alpha_{2}}(\delta+\hat{\rho}_{k})=2\varpi_{1}+(2k-1)\varpi_{2}^{J}$ .

This implies that $S_{a_{2}}(\delta+\hat{p}_{K})$ is contained in the fundamental Weyl chamber.
In the same way as in the case (I), we get

$H^{0.p}(G/K, End(E_{\rho}))\cong\left\{\begin{array}{l}C, forp=0,\\\bigoplus_{k=1}^{1}V_{\lambda_{k}}n forp=1,\\\{0\}, forp\geqq 2,\end{array}\right.$

$H^{0p}(G/K, @\mathfrak{l}(E_{\rho}))\cong\left\{\begin{array}{l}\bigoplus_{k=1}^{n_{1}}V_{\lambda_{k}}, forp=1,\\\{0\}, forp\neq 1\end{array}\right.$

as complex G-spaces. Here

$\lambda_{k}=(2k-1)\varpi_{1}^{J}+(2k-2)\varpi_{2}^{\prime}$

and $V_{\lambda_{k}}$ is the irreducible complex representation space of $G$ which corresponds
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to $\lambda_{k}$ . We get $h^{0.p}(End(E_{\rho}))$ and $h^{0,p}(@\mathfrak{l}(E_{\rho}))$ by Weyl’s dimension formula as
before.

Case (III) In this case $G$ is of type $B_{2}$ and $\Pi_{1}=\{\alpha_{2}\}$ . Then we see

$\delta+\hat{\rho}_{k}=\delta+k\alpha_{2}$

$=-(k-1)\varpi_{1}^{\prime}+(2k+1)\varpi_{2}$ .
From this, we see

$\delta+\hat{\rho}_{k}$ is $\left\{\begin{array}{l}regu1ar, ifk\neq 1,\\singular, ifk=1,\end{array}\right.$

and

the index of $\delta+\hat{\rho}_{k}=\left\{\begin{array}{l}0, fork=0,\\1, fork\neq 0,1.\end{array}\right.$

By the way, we have

$S_{\alpha_{1}}(\delta+\hat{\rho}_{k})=(k-1)\varpi_{1}+3\varpi_{2}$ .

This implies that $S_{\alpha_{I}}(\delta+\hat{\rho}_{k})$ is in the fundamental Weyl chamber. As before,

we get

$H^{0,p}(G/K, End(E_{\rho}))\cong\{\bigoplus_{k=1}^{n2}V_{\lambda_{k}}\{0\}C$

,

, $forforforp\geqq 2p=0p=1$ ,

$H^{0,p}(G/K, 5\mathfrak{l}(E_{\rho}))\cong\left\{\begin{array}{l}\bigoplus_{k=1}^{n_{2}}V_{\lambda_{k}},\\\{0\},\end{array}\right.$

$forforp\neq 1p=1$

,

as complex G-spaces. Here

$\lambda_{k}=(k-2)\varpi_{1}^{\prime}+2\varpi_{2}$

and $V_{\lambda_{k}}$ is the irreducible complex representation space of $G$ which corresponds

to $\lambda_{k}$ . We get $h^{0.p}(End(E_{\rho}))$ and $h^{0.p}(\S \mathfrak{l}(E_{\rho}))$ by Weyl’s dimension formula as
before.

Case (IV) In this case $G$ is of type $G_{2}$ and $\Pi_{1}=\{\alpha_{1}\}$ . Then we see

$\delta+\hat{\rho}_{k}=\delta+k\alpha_{2}$

$=(2k+1)\varpi_{1}-(k-1)\varpi_{2}$ .
From this, we see that

$\delta+\hat{\rho}_{k}$ is $\left\{\begin{array}{l}regu1ar, ifk\neq 1and4,\\singuIar, ifk=1or4,\end{array}\right.$

and
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the index of $\delta+\hat{\rho}_{k}=\{201$ , $forforfork\geqq 5k=0k=1’.\prime 2,3$ or 4,

By the way we have,

$S_{\alpha_{2}}(\delta+\hat{\rho}_{i})=-(k-4)\varpi_{1}^{\prime}+(k-1)\varpi_{2}$

and
$S_{\alpha_{1}}\circ S_{\alpha_{2}}(\delta+\hat{\rho}_{k})=(k-4)\varpi_{1}+3W_{2}$ .

This implies that $S_{\alpha_{2}}(\delta+\hat{\rho}_{k})$ is contained in the fundamental Weyl chamber if
$k=2,3$ and $S_{\alpha_{1}}\circ S_{\alpha_{2}}(\delta+\hat{\rho}_{k})$ is contained in the fundamental Weyl chamber if
$k\geqq 5$ . As before, we get

$H^{0.p}(G/K, End(E_{\rho}))\cong\left\{\begin{array}{l}C,\\\{0\},\\V_{\lambda_{2}},\\V_{\lambda_{2}}\oplus V_{\lambda_{3}},\\\bigoplus_{k=5}^{n1}V_{\lambda_{k}},\\\{0\},\end{array}\right.$ $i_{f}ifi_{if}^{f}ififp=1andp=0p=1andp=1andp\geqq 3p=2’,n_{1}^{1}=2n_{1}=0n\geqq 3’,$

$1$ ,

$H^{0.p}(G/K, \S \mathfrak{l}(E_{\rho}))\cong\left\{\begin{array}{l}\{0\}, ifp=0,\\\{0\}, ifp=1andn_{1}=0,1,\\V_{\lambda_{2}}, ifp=1andn_{1}=2,\\V_{\lambda_{2}}\oplus V_{\lambda_{3}}, ifp=1andn_{1}\geqq 3,\\\bigoplus_{k=5}^{n1}V_{\lambda_{k}}, ifp=2,\\\{0\}, ifp\geqq 3\end{array}\right.$

as complex G-spaces. Here

$\lambda_{k}=\left\{\begin{array}{l}-(k-3)\varpi_{1}+(k-2)\varpi_{2}^{\prime},\\(k-5)\varpi_{1}+2\varpi_{2},\end{array}\right.$ $forfork\geqq 5k=2,3$

,

And $V_{\lambda_{k}}$ is the irreducible complex representation space of $G$ which corresponds

to $\lambda_{k}$ . We can compute $h^{0.p}(End(E_{\rho}))$ and $h^{0.p}(@1(E_{\rho}))$ by Weyl’s dimension
formula as before.

Case (V) In this case $G$ is of type $G_{2}$ and $\Pi_{1}=\{\alpha_{2}\}$ . Then we see

$\delta+\hat{\rho}_{k}=\delta+k\alpha_{2}$

$=-(3k-1)\varpi_{1}+(2k+1)\varpi_{2}$ .
From this, we see that
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$\delta+\hat{\rho}_{k}$ is $\left\{\begin{array}{l}regu1ar, ifk\frac{\neq}{\prime}2,\\singu1ar, ifk=2.\end{array}\right.$

and

the index of $\delta+\hat{\rho}_{k}=\left\{\begin{array}{l}0, fork=0,\\1, fork=1,\\2, fork\geqq 2.\end{array}\right.$

By the way, we have

$S_{\alpha_{1}}(\delta+\hat{\rho}_{k})=(3k-1)\varpi_{1}+5k\varpi_{2}$ .

This implies that $S_{\alpha_{1}}(\delta+\hat{\rho}_{k})$ is contained in the fundamental Weyl chamber. As
before, we get

$H^{0,p}(G/K, End(E_{\rho}))\cong\left\{\begin{array}{l}C,\\\{0\},\\V_{\lambda_{1}},\\\bigoplus_{k\Rightarrow 2}^{n2}V_{\lambda_{k}},\\\{0\},\end{array}\right.$ $forforforforforp=1\prime andp=0p\geqq 3p=2p=1andn_{2}=0n^{2}\geqq 1$ ,

$H^{0.p}(G/K, S\mathfrak{l}(E_{\rho}))\cong\left\{\begin{array}{l}\{0\}, forp=0,\\\{0\}, forp=1andn_{2}=0,\\V_{\lambda_{1}}, forp=1andn_{2}\geqq 1,\\\bigoplus_{k=2}^{n2}V_{\lambda_{k}}, forp=2,\\\{0\}, forp\geqq 3\end{array}\right.$

as complex G-spaces. Here

$\lambda_{k}=(3k-2)\varpi_{1}+(5k-1)\varpi_{2}^{\prime}$ ,

and $V_{\lambda_{k}}$ is the irreducible complex representation space of $G$ which corresponds

to $\lambda_{k}$ . We can compute $h^{0,p}(End(E_{\rho}))$ and $h^{0.p}(6\mathfrak{l}(E_{\rho}))$ by Weyl’s dimension
formula as before.

Now we complete the proof of Theorems 4 and 5.

REMARK. We only write the dimensions in the statement of Theorems and
Corollary, but we get the cohomology groups and the tangent spaces of moduli
spaces as the representation space of $G$ . Indeed, we have determined the highest
weight of each irreducible component in the proof.
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