ON THE SOLVABILITY OF CONVOLUTION EQUATIONS IN $\mathcal{K}'_{\mathit{M}}$

By

D. H. PAHK and B. K. SOHN

Abstract. Let \mathcal{K}'_M be the space of distributions on R^n which grow no faster than $e^{M(kx)}$ for some k>0 where M is an increasing continuous function on R^n , and let $\mathcal{O}'_C(\mathcal{K}'_M; \mathcal{K}'_M)$ be the space of convolution operators in \mathcal{K}'_M . We show that, for $S \in \mathcal{O}'_C(\mathcal{K}'_M; \mathcal{K}'_M)$, $S*\mathcal{K}'_M = \mathcal{K}'_M$ is equivalent to the following: Every distribution $u \in \mathcal{O}'_C(\mathcal{K}'_M; \mathcal{K}'_M)$ with $S*u \in \mathcal{K}_M$ is in \mathcal{K}_M .

1. Introduction.

Let \mathcal{K}'_{M} be the space of distributions on R^{n} which grow no faster than $e^{M(kx)}$ for some k>0, where M is an increasing continuous functions on R^{n} ; \mathcal{K}'_{M} is the dual space of \mathcal{K}_{M} , which we describe later. We denote by $\mathcal{O}'_{C}(\mathcal{K}'_{M}; \mathcal{K}'_{M})$ the space of convolution operators in \mathcal{K}'_{M} .

In [1], S. Abdullah proved that, if S is a distributions in $\mathcal{O}'_{\mathcal{C}}(\mathcal{K}'_{M}; \mathcal{K}'_{M})$ and \hat{S} is its Fourier transform, the following conditions are equivalent:

(a) There exist positive constants A, C and a positive integer N such that

$$\sup_{\substack{z\in\mathcal{C}^n\\|z|\leq A\mathcal{Q}^{-1}(\log(2+|\xi|))}}|\hat{S}(z+\xi)|\geq \frac{C}{(1+|\xi|)^N}, \quad \xi\in \mathbb{R}^n$$

where Ω^{-1} is the inverse of Ω , which is the dual to M in the sense of Young. (b) $S*\mathcal{K}'_{M} = \mathcal{K}'_{M}$.

In this paper we prove that, for $S \in \mathcal{O}'_{\mathcal{C}}(\mathcal{K}'_{M}; \mathcal{K}'_{M})$, the statements (a) and (b) are equivalent to the following: Every distribution $u \in \mathcal{O}'_{\mathcal{C}}(\mathcal{K}'_{M}; \mathcal{K}'_{M})$ satisfying $S*u \in \mathcal{K}_{M}$ is in \mathcal{K}_{M} .

The motivation for this problem comes from the paper [5]. Here S. Sznaider and Z. Zielezny proved that, if S is a distribution in $\mathcal{O}'_{\mathcal{C}}(\mathcal{K}'_1; \mathcal{K}'_1)$ and \hat{S} is its Fourier transform, the following statements are equivalent:

This research is partly supported by GARC, KOSEF and BRSI, Ministry of Education. Received December 10, 1993. Revised July 28, 1994.

(i) There exist positive constants N, r, C such that

$$\sup_{z\in C^{n},|z|\leq r}|\hat{S}(\xi+z)|\geq \frac{C}{(1+|\xi|)^{N}},\qquad \xi\in R^{n},$$

- (ii) $S*\mathcal{K}'_1 = \mathcal{K}'_1$
- (iii) If $u \in \mathcal{O}'_{\mathcal{C}}(\mathcal{K}'_1; \mathcal{K}'_1)$ and $S*u \in \mathcal{K}_1$, then $u \in \mathcal{K}_1$.

In view of this result it is natural to think the property (iii) in the space \mathcal{K}'_{M} of distributions on R^{n} which grow no faster than $\exp(M(kx))$ for some k>0. Before presenting our theorems we recall briefly the basic facts about the spaces \mathcal{K}'_{M} , $\mathcal{O}'_{C}(\mathcal{K}'_{M}; \mathcal{K}'_{M})$ and K'_{M} , for further details, we refer to [3].

The space \mathcal{K}_{M} . Let $\mu(\xi)(0 \le \xi \le \infty)$ denote a continuous increasing function such that $\mu(0)=0$, $\mu(\infty)=\infty$. For $x \ge 0$, we define

$$M(x) = \int_0^x \mu(\xi) d\xi$$
.

The functions M(x) is an increasing, convex and continuous function with M(0)=0, $M(\infty)=\infty$. For x<0, we define M(x) to be M(-x) and for $x=(x_1, \dots, x_n)\in R^n$, $n\geq 2$, we define M(x) to be $M(x_1)+\dots+M(x_n)$.

Now we list some properties of M(x) which will be used later;

- (i) $M(x)+M(y) \leq M(x+y)$ for all $x, y \geq 0$
- (ii) $M(x+y) \leq M(2x) + M(2y)$ for all $x, y \geq 0$.

Let \mathcal{K}_M be the space of all C^{∞} -functions ϕ in \mathbb{R}^n such that

$$\nu_k(\phi) = \sup_{\substack{x \in R \\ |\alpha| \le k}} e^{M(kx)} |D^{\alpha}\phi(x)| < \infty, \qquad k = 0, 1, 2, \dots,$$

where $D^{\alpha} = D_1^{\alpha_1} \cdots D_n^{\alpha_n}$ and $D_j = i^{-1}(\partial/\partial x_j)$. Provided with the topology defined by the seminorms ν_k , \mathcal{K}_M is a Frechet space. The dual \mathcal{K}_M' of \mathcal{K}_M is the space of all continuous linear functionals on \mathcal{K}_M . Then a distribution u is in \mathcal{K}_M' if and only if there exist $m \in \mathbb{N}^n$, $k \in \mathbb{N}$ and a bounded continuous function f(x) on \mathbb{R}^n such that

$$u = D^m(e^{M(kx)} f(x)).$$

 \mathcal{K}'_{M} is endowed with the topology of uniform convergence on all bounded sets in \mathcal{K}_{M} .

The space $\mathcal{O}'_{\mathcal{C}}(\mathcal{K}'_{M}; \mathcal{K}'_{M})$. If $u \in \mathcal{K}'_{M}$ and $\phi \in \mathcal{K}_{M}$, then the convolution $u * \phi$ is a C^{∞} -function defined by

$$u*\phi(x)=\langle u_y, \phi(x-y)\rangle$$
.

where $\langle u, \phi \rangle = u(\phi)$.

The space $\mathcal{O}'_{C}(\mathcal{K}'_{M}; \mathcal{K}'_{M})$ of convolution eperators in \mathcal{K}'_{M} consists of distributions $S \in \mathcal{K}'_{M}$ such that $S * u \in \mathcal{K}'_{M}$ for every $u \in \mathcal{K}'_{M}$, where $\langle S * u, \phi \rangle = \langle u, \check{S} * \phi \rangle$ for every $\phi \in \mathcal{K}_{M}$. Then the space is the set of distributions S which satisfy the following equivalent conditions [3]:

- (i) The distributions $S_k = \gamma_k S$, $k=1, 2, \cdots$ are in tempered distribution space, where $\gamma_k = e^{M(kx)}$.
 - (ii) For every integer $k \ge 0$, there exists an integer $m \ge 0$ such that

$$S = \sum_{|\alpha| \le m} D^{\alpha} f_{\alpha}$$

where f_{α} are continuous functions in R^n whose products with $e^{M(kx)}$ are bounded.

(iii) For every $\phi \in \mathcal{K}_M$, the convolution $S*\phi$ is in \mathcal{K}_M .

The space K'_M . For $\phi \in \mathcal{K}_M$, the Fourier transform

$$\hat{\phi}(\xi) = \int_{\mathbb{R}^n} e^{-i\langle x, \xi \rangle} \phi(x) dx$$

can be continued in C^n as an entire function of $\zeta = \xi + i\eta$ such that

(1)
$$\omega_k(\hat{\phi}) = \sup_{\zeta \in \mathcal{O}^n} (1 + |\xi|)^k e^{-\Omega(\eta/k)} |\hat{\phi}(\zeta)| < \infty, \qquad k = 1, 2, \dots$$

where $\Omega(y)$ is the dual of M(x) in the sense of Young. If K_M is the space of all entire functions with the property (1) and the topology in K_M is defined by the seminorms ω_k , then the Fourier transform is an isomorphism of \mathcal{K}_M onto K_M . The dual K_M' of K_M is the space of the Fourier transforms of distributions in \mathcal{K}_M' . The Fourier transform \hat{u} of a distribution $u \in \mathcal{K}_M'$ is defined by the Parseval formula

$$\langle \hat{u}, \hat{\phi} \rangle = (2\pi)^n \langle u_x, \phi(-x) \rangle$$
.

Also if $S \in \mathcal{O}'_{\mathcal{C}}(\mathcal{K}'_{M}; \mathcal{K}'_{M})$ and $u \in \mathcal{K}'_{M}$, we have the formula

$$\widehat{S*u} = \widehat{S} \cdot \widehat{u}$$
,

where the product on the right-hand side is defined by

$$\langle \hat{S}\hat{u}, \phi \rangle = \langle \hat{u}, \hat{S}\phi \rangle, \quad \phi \in K_M.$$

The following lemma will be used in the next section. It's proof can be found in [3].

LEMMA (Paley-Wiener type theorem). Let $\zeta = \xi + i\eta \in C^n$. An entire function $F(\zeta)$ is the Fourier transform of a distribution S in $\mathcal{O}'_{\mathcal{C}}(\mathcal{K}'_{\mathcal{M}}; \mathcal{K}'_{\mathcal{M}})$ if and only if for every $\varepsilon > 0$, there exist constants N and C such that

$$|F(\xi+i\eta)| \leq C(1+|\zeta|)^N e^{\Omega(\varepsilon\eta)}$$
.

2. Main Theorem

THEOREM. If S is a distribution in $\mathcal{O}'_{\mathcal{C}}(\mathcal{K}'_{M}; \mathcal{K}'_{M})$ and \hat{S} be its Fourier transform, then the following conditions are equivalent:

(a) There exist positive constants A, C and a positive integer N such that

$$\sup_{\substack{z \in C^n \\ |z| \le A\Omega^{-1}(\log(2+|\xi|))}} |\hat{S}(z+\xi)| \ge \frac{C}{(1+|\xi|)^N}, \quad \xi \in \mathbb{R}^n$$

- (b) $S * \mathcal{K}'_{M} = \mathcal{K}'_{M}$
- (c) If $u \in \mathcal{O}'_{\mathcal{C}}(\mathcal{K}'_{\mathcal{M}}; \mathcal{K}'_{\mathcal{M}})$ and $S*u \in \mathcal{K}_{\mathcal{M}}$, then $u \in \mathcal{K}_{\mathcal{M}}$.

PROOF. It suffices to show that $(b) \Rightarrow (c) \Rightarrow (a)$.

(b) \Rightarrow (c). The proof goes along exactly the same lines as proof of Theorem 1 in [5]. For the completeness we give the proof. If S is a distribution in $\mathcal{O}'_{\mathcal{C}}(\mathcal{K}'_{M}; \mathcal{K}'_{M})$, then so is $T=\check{S}$ and, by (1), the mapping $S^{*}: u \rightarrow S^{*}u$ of \mathcal{K}'_{M} into \mathcal{K}'_{M} is the transpose of the mapping $T^{*}: \phi \rightarrow T^{*}\phi$ of \mathcal{K}_{M} into \mathcal{K}_{M} . Condition (b) is satisfied if and only if T^{*} an isomorphism of \mathcal{K}_{M} onto $T^{*}\mathcal{K}_{M}$ (see e.g., [2, Corollary on p. 92]). In particular the inverse $T^{*}\phi \rightarrow \phi$ must be continuous.

Suppose now that $S*u=\phi$ where $u\in\mathcal{O}'_{\mathcal{C}}(\mathcal{K}'_{M};\mathcal{K}'_{M})$ and $\phi\in\mathcal{K}_{M}$. Since $\langle S*u, \varphi \rangle = \langle T*\check{u}, \check{\varphi} \rangle$ for $\varphi\in\mathcal{K}_{M}$, then

$$T*\check{\boldsymbol{u}} = (-1)^n \check{\boldsymbol{\phi}}$$

and for the proof if suffices to show that $\check{u} \in \mathcal{K}_M$. If ψ is a C^{∞} -function with supp $\psi \subset B(0, 1) = \{x \in \mathbb{R}^n : |x| \leq 1\}$ and $\hat{\psi}(0) = 1$, we define $\psi_k(x) = k^n \psi(kx)$, $k = 1, 2, \cdots$. From (2) it follows that

$$T*(\check{u}*\psi_k)=(-1)^n\check{\phi}*\psi_k$$
,

and the convolutions $\check{u}*\psi_k$ and $(-1)^n\check{\phi}*\psi_k$ are in \mathcal{K}_M . Moreover, the sequence $\{\psi_k\}$ converges in $\mathcal{O}'_C(\mathcal{K}'_M; \mathcal{K}'_M)$ to δ , the Dirac measure as the origin. Hence $(-1)^n\check{\phi}*\psi \to (-1)^n\check{\phi}$ in \mathcal{K}_M and $\check{u}*\psi_k \to \check{u}$ in $\mathcal{O}'_C(\mathcal{K}'_M; \mathcal{K}'_M)$. On the other hand, the sequence $\{\check{u}*\psi_k\}$ converges in \mathcal{K}_M , by the assumption that the inverse of T^* is continuous. The limit must be again \check{u} , and so \check{u} is a function in \mathcal{K}_M .

(c) \Rightarrow (a). Let \mathcal{F} be the space all functions $u \in C(\mathbb{R}^n)$ such that

$$\sup_{x\in\mathbb{R}^n}e^{M(kx)}|u(x)|<\infty, \quad \text{for all } k$$

and $S*u \in \mathcal{K}_M$. We provide \mathcal{F} with the topology defined by the seminorms

$$||u||_k = \sup_{x \in \mathbb{R}^n} e^{M(kx)} |u(x)| + \nu_k(S*u), \quad k=0, 1, 2, \dots.$$

Then \mathcal{G} becomes a Frechet space. Further, let \mathcal{G} be the space of all functions $u \in C^1(\mathbb{R}^n)$ such that

$$||u|| = \sup_{x \in \mathbb{R}^n \mid \alpha| \leq 1} |D^{\alpha}u(x)| < \infty$$

with the norm $\| \|$, \mathcal{G} is a Banach space.

By the fact $\mathcal{F}\subset\mathcal{O}'_{\mathcal{C}}(\mathcal{K}'_{\mathcal{M}};\mathcal{K}'_{\mathcal{M}})$ and the assumption (c), each function $u\in\mathcal{F}$ is in \mathcal{G} . Also, the natural mapping $\mathcal{F}\to\mathcal{G}$ is closed and therefore continuous. Consequently there exist an integer $\mu>0$ and a constant \mathcal{C} such that

$$||u|| \le C ||u||_{\mu} = C \{ \sup_{x \in \mathbb{R}^n} e^{M(\mu x)} |u(x)| + \nu_{\mu}(S * u) \}$$

for all $u \in \mathcal{F}$. Since the Fourier transformation is an isomorphism from \mathcal{K}_M onto K_M , there exist another integer $\nu > 0$ and a constant C_0 such that

(3)
$$||u|| - C \sup_{x \in \mathbb{R}^n} e^{M(\mu x)} |u(x)| \leq C_0 \omega_{\nu}(\hat{S} \cdot \hat{u}), \quad \text{for all } u \in \mathcal{K}_M.$$

Suppose now that the condition (a) is not satisfied. Then there exists a sequence $\{\xi_j\}$ such that $|\xi_i| \to +\infty$ as $j \to \infty$ and

(4)
$$\sup_{\substack{z \in \mathcal{C}^n \\ |z - \xi_j| \le j\Omega^{-1}(\log(2+|\xi_j|))}} |\hat{S}(z)| < \frac{1}{(1+|\xi_j|)^j},$$

For each j, we define k_j to be the greatest integer equal or less than $\alpha_j = \Omega^{-1}(\log(2+|\xi_j|))$. Let $\phi \ge 0$ in C_c^{∞} , supp $\phi \subset B(0, 1)$ and $\hat{\phi}(0)=1$. We also define

$$\phi_j^1(x) = e^{i\langle \xi_j, x \rangle} (\phi_j * \cdots * \phi_j)(x)$$
,

and

$$\psi_j^2(x) = (\phi * (\phi_j * \cdots * \phi_j))(x)$$

where $\phi_j(x) = \alpha_j^n \phi(\alpha_j x)$ and the convolution product in the parenthesis is being taken k_j -times. Now we define

$$\phi_j(x) = (\phi * \phi_j^1)(x)$$

Since supp $\psi_j \subset B(0, 2)$, clearly $\psi_j \in \mathcal{F}$.

Substituting ψ_j 's into the inequality (3), we will show that the left side of (3) goes to ∞ and the right to 0, as $j\rightarrow\infty$, which gives the desired contradiction.

To show this, we first estimate

(5)
$$\|\phi_{j}\| = \sup_{x \in \mathbb{R}^{n}, |\alpha| \leq 1} |D^{\alpha}\phi_{j}(x)|$$

$$\geq \sup_{x \in \mathbb{R}^{n}, |\alpha| = 1} |\phi_{*}\{e^{i\langle x, \xi_{j}\rangle}D^{\alpha}(\phi_{j}* \cdots *\phi_{j})\}$$

$$+ D^{\alpha}(i\langle x, \xi_{j}\rangle)e^{i\langle x, \xi_{j}\rangle}(\phi_{j}* \cdots *\phi_{j})\}(x)|$$

$$\geq \sup_{x \in \mathbb{R}^{n}, |\alpha| = 1} |D^{\alpha}(\langle x, \xi_{j}\rangle)(\phi*(\phi_{j}* \cdots *\phi_{j})\}(x)|$$

$$\geq \frac{|\xi_{j}|}{n} \sup_{x \in \mathbb{R}^{n}} |\phi_{j}^{2}(x)|$$

and since supp ψ_j , supp $\psi_j^2 \subset B(0, 2)$,

(6)
$$\sup_{x \in \mathbb{R}^n} e^{M(\mu x)} |\psi_j(x)| = \sup_{|x| \le 2} e^{M(\mu x)} |\psi_j^2(x)| \le C' \sup_{x \in \mathbb{R}^n} |\psi_j^2(x)|,$$

where $C'=e^{nM(2\mu)}$.

Viewing

$$1 = \int_{\mathbb{R}^n} \psi_j^2(x) dx \le C'' \sup_{x \in \mathbb{R}^n} |\psi_j^2(x)|,$$

where C'' is the volume of B(0, 2), we have

(7)
$$\sup_{x \in \mathbb{R}^n} |\psi_j^2(x)| \ge \frac{1}{C''}.$$

Substituting (5), (6) and (7) into (3), the left hand side of (3) behaves, as $j\rightarrow\infty$,

$$\lim_{j\to\infty} \{ \|\phi_j\| - C \sup_{x\in\mathbb{R}^n} e^{M(\mu x)} |\phi_j(x)| \}$$

$$\geq \lim_{j\to\infty} \left\{ \frac{|\xi_j|}{n} - CC' \right\} \frac{1}{C''} = \infty$$

On the other hand,

(8)
$$\omega_{\nu}(\hat{S} \cdot \hat{\psi}_{j}) = \sup_{\zeta \in \mathcal{C}^{n}} (1 + |\zeta|)^{\nu} e^{-\Omega(\eta/\nu)} |\hat{S}(\zeta)| |\hat{\psi}_{j}(\zeta)|$$

$$\leq \sup_{|\zeta - \hat{\xi}_{j}| \leq j\alpha_{j}} (1 + |\zeta|)^{\nu} e^{-\Omega(\eta/\nu)} |\hat{S}(\zeta)| |\hat{\psi}_{j}(\zeta)|$$

$$+ \sup_{|\zeta - \hat{\xi}_{j}| > j\alpha_{j}} (1 + |\zeta|)^{\nu} e^{-\Omega(\eta/\nu)} |\hat{S}(\zeta)| |\hat{\psi}_{j}(\zeta)|,$$

where $\zeta = \xi + i\eta$.

It now sufficies to prove that both terms in the right side of (8) go to 0, as $j\rightarrow\infty$. We first observe that, by the Paley-Wiener theorem for ϕ as element of C_c^∞ with supp $\phi\subset B(0, 1)$, there exist a $C_m\geq 0$, $m=0, 1, 2, \cdots$, such that

(9)
$$|\hat{\phi}(\zeta)| \leq C_m (1 + |\zeta|)^{-m} e^{|\eta|}.$$

Also, we observe that

$$\hat{\varphi}_{j}^{1}(\zeta) = \left[\hat{\phi}_{j}(\zeta - \xi_{j})\right]^{k_{j}} = \left[\hat{\phi}\left(\frac{\zeta - \xi_{j}}{\alpha_{j}}\right)\right]^{k_{j}}$$

and, by (9),

$$|\hat{\varphi}_{j}^{1}(\zeta)| \leq \left[C_{1}\left(1+\left|\frac{\zeta-\xi_{j}}{\alpha_{j}}\right|\right)^{-1}e^{-\eta+\alpha_{j}}\right]^{k_{j}}.$$

Also we observe that Ω grows faster than any linear function of $|\eta|$ as $|\eta|$ goes large and $\hat{\varphi}_j(\zeta) = \hat{\varphi}(\zeta) \cdot \hat{\varphi}_j^1(\zeta)$.

From these observations, the first term of the last estimate in (8) is bounded by

$$\sup_{|\zeta - \xi_{j}| \leq j\alpha_{j}} (1 + |\zeta|)^{\nu} e^{\Omega(\eta/\nu)} |\hat{S}(\zeta)| (C_{1}(1 + |\zeta|)^{-1} e^{|\eta|}) \\
\times \left(C_{1} \left(1 + \left| \frac{\zeta - \xi_{j}}{\alpha_{j}} \right| \right)^{-1} e^{|\eta|/\alpha_{j}} \right)^{k_{j}} \\
\leq C_{2} \sup_{|\zeta - \xi_{j}| \leq j\alpha_{j}} (1 + |\zeta - \xi_{j}|)^{\nu-1} (1 + |\xi_{j}|)^{\nu-1} C_{1}^{k_{j}} \\
\times \left(1 + \left| \frac{\zeta - \xi_{j}}{\alpha_{j}} \right| \right)^{-k_{j}} |\hat{S}(\zeta)| \\
\leq C'_{2} \sup_{|\zeta - \xi_{j}| \leq j\alpha_{j}} (1 + |\xi_{j}|)^{2\nu-2+d} \left(1 + \left| \frac{\zeta - \xi_{j}}{\alpha_{j}} \right| \right)^{\nu-1-k_{j}} |\hat{S}(\zeta)| \\
\leq C'_{2} (1 + |\xi_{j}|)^{2\nu-2+d-j},$$

where we used that $e^{-\Omega(\eta/\nu)+|\eta|+(k_j/\alpha_j)+\eta|}$ is bounded in \mathbb{R}^n and $d=\log C_1$.

Therefore the first term of the last part in (8) approaches to 0 as $j\rightarrow\infty$.

From the lemma for S as element of $\mathcal{O}'_{\mathcal{C}}(\mathcal{K}'_{\mathcal{M}}; \mathcal{K}'_{\mathcal{M}})$ and (9), (10), the second term of the last estimate in (8) is bounded by

$$\sup_{|\zeta - \xi_{j}| > j\alpha_{f}} C_{S, 2\nu + N} (1 + |\zeta|)^{\nu} e^{-\Omega(\eta/\nu)} (1 + |\zeta|)^{N} e^{\Omega(\eta/2\nu)} \\
\times (1 + |\zeta|)^{-(2\nu + N)} e^{|\eta|} \Big(C_{1} \Big(1 + \frac{|\zeta - \xi_{j}|}{\alpha_{j}} \Big)^{-1} e^{|\eta|/\alpha_{j}} \Big)^{k_{j}} \\
\leq \sup_{|\zeta - \xi_{j}| > j\alpha_{j}} C'_{S, 2\nu + N} (1 + |\zeta|)^{\nu + N - (2\nu + N)} C_{1}^{k_{j}} \Big(1 + \frac{|\zeta - \xi_{j}|}{\alpha_{j}} \Big)^{-k_{j}} \\
\leq \sup_{|\zeta - \xi_{j}| > j\alpha_{j}} C'_{S, 2\nu + N} C_{1}^{k_{j}} \Big(1 + \frac{|\zeta - \xi_{j}|}{\alpha_{j}} \Big)^{-k_{j}} \\
\leq C'_{S, 2\nu + N} \Big(\frac{1 + j}{C_{1}} \Big)^{-k_{j}},$$

where we used that $e^{-\Omega(\eta/\nu)+\Omega(\eta/2\nu)+|\eta|+(k_j/\alpha_j)+\eta|}$ is bounded in R^n . Here $C_{S,2\nu+N}$ and $C'_{S,2\nu+N}$ are constants which depend on S, ϕ , ν and N only.

Hence the second term of the last part in (8) approaches to 0 as $j \rightarrow \infty$.

Combining both estimates we have

$$\lim_{j\to\infty} \boldsymbol{\omega}_{\nu}(\hat{S}\cdot\hat{\boldsymbol{\psi}}_{j}) = 0 ,$$

which gives the desired contradiction.

References

- [1] Abdullah, S., Solvability of convolution equations in \mathcal{K}'_{M} , Hokkaido Math. J. 17 (1988), 197-209.
- [2] Dieudonné, J. et Schwartz, L., La dualité dans les espaces (\mathcal{I}) et $(\mathcal{L}\mathcal{I})$, Ann. Inst. Fourier Gremoble 1 (1949), 61-101.
- [3] Pahk, D.H., Structure theorem and Fourier transform for destributions with restricted growth, Kyungpook Math. J. 23(2) (1983), 129-146.
- [4] Pahk, D.H. and Sohn, B.K., Relation between solvability and a regularity of convolution operators in \mathcal{K}'_p , p>1, J. Math. Anal. Appl. 185 (1944), 207-214.
- [5] Sznajder, S. and Zielezny, Z., Solvability of convolution equations in \mathcal{K}'_1 , Proc. Amer. Math. Soc. 57 (1976), 103-106.
- [6] ——, On some properties of convolution operators in \mathcal{K}'_1 and \mathcal{S}' , J. Math. Anal. Appl. 65 (1978), 543-554.

Dae Hyeon Pahk
Department of Mathematics
Yonsei University
Seoul 120-749, Korea

Byung Keun Sohn Department of Mathematics Inje University Kyungnam Kimhae 621-749, Korea