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ON THE SOLVABILITY OF CONVOLUTION
EQUATIONS IN X

By

D. H. PaHk and B. K. SOHN

Abstract. Let X} be the space of distributions on R™ which grow
no faster than e¥*® for some £#>0 where M is an increasing con-
tinuous function on R™, and let @;(Kjy ; KXu) be the space of con-
volution operators in Kjy%. We show that, for S€0s( Ky ; KXi),
Sx K y=K) is equivalent to the following: Every distribution v
O(Ky; Ky) with Sxues Ky is in Ky.

1. Introduction.

Let X} be the space of distributions on R™ which grow no faster than
eM*® for some k>0, where M is an increasing continuous functions on R"; X}
is the dual space of K,, which we describe later. We denote by O¢( Ky ; Ku)
the space of convolution operators in Xj.

In [1], S. Abdullah proved that, if S is a distributions in O¢(KXjy ; Kx) and
S is its Fourier transform, the following conditions are equivalent:

(a) There exist positive constants A, C and a positive integer N such that

- C n
sup |5(2+E)|ém, §ER

1215421 log (2+1§1))
where Q7! is the inverse of 2, which is the dual to M in the sense of Young.
(b) SxKy=Ky.

In this paper we prove that, for S€0¢(Ky ; Ku), the statements (a) and (b)
are equivalent to the following: Every distribution ue@s( Xy ; KXu) satisfying
Sxues Ky is in Ky.

The motivation for this problem comes from the paper [5]. Here S. Sznaider
and Z. Zielezny proved that, if S is a distribution in O¢(X{; K1) and S is its
Fourier transform, the following statements are equivalent:
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(1) There exist positive constants N, r, C such that

A C
I AT ILE

(i) SxK{=X}
(iii) If ue0c(K1; K1) and Sxues X,, then ues K,.

=R,

In view of this result it is natural to think the property (iii) in the space
Ku of distributions on R™ which grow no faster than exp (M(kx)) for some
k>0. Before presenting our theorems we recall briefly the basic facts about
the spaces K3, Oc(Ki; Xy) and Kj, for further details, we refer to [3].

The space X}. Let pu(£)0<&<) denote a continuous increasing function
such that p(0)=0, p(wo)=c. For x=0, we define

M=\ p@de.

The functions M(x) is an increasing, convex and continuous function with
M(0)=0, M(0c)=c. For x<0, we define M(x) to be M(—x) and for x=
(%1, -+, xa)ER™, n=2, we define M(x) to be M(x,)+ - +M(x,).

Now we list some properties of M(x) which will be used later;

(1) Mx)+My)=M(x+y) for all x, y=0
(ii) M(x+y)SMQ2x)+M2y) for all x, y=0.

Let Xy be the space of all C*-functions ¢ in R™ such that

vk(¢)=fg[5‘e”‘”’lD“¢(x)} <o, k=01, 2, ---,
la sk
where D*=D¢:1--- Dg» and D;=i"%(d/dx;). Provided with the topology defined
by the seminorms v., KX, is a Frechet space. The dual X} of X is the
space of all continuous linear functionals on X,. Then a distribution u is in
K3 if and only if there exist meN™, k=N and a bounded continuous function
f(x) on R™ such that
u=D™(e"* f(x)).

Ky is endowed with the topology of uniform convergence on all bounded sets
in Ky
The space O¢(Ky ; Ky). If ue KXy and g= K, then the convolution u* ¢

is a C>=-function defined by

ux@(x)=<u,, ¢x—y).
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where <{u, ¢>=u(g).

The space O¢(K)y ; Ki) of convolution eperators in K3 consists of distri-
butions S& X) such that Sxue Xj for every ue Kj, where {S*u, ¢>=<u, §*¢>
for every ¢= K. Then the space is the set of distributions S which satisfy
the following equivalent conditions [3]:

(i) The distributions S, =7,S, k=1, 2, --- are in tempered distribution
space, where y,=e¥*®,
(ii) For every integer k=0, there exists an integer m=0 such that

S= 3 D% .

lajsm

where f, are continuous functions in R” whose products with e*** are bounded.
(iii) For every ¢ Ky, the convolution S*¢ is in K.

The space Kj. For ¢=Ky, the Fourier transform

204\ — -z, &
3©=| e ognax
can be continued in C™ as an entire function of {=&-+in such that

@ wk(é)=g$g(l+l&l)”e'g"”’”Isﬁ(C)|<°°, k=1, 2, -

where 2(y) is the dual of M(x) in the sense of Young. If K is the space of
all entire functions with the property (1) and the topology in K, is defined by
the seminorms w;, then the Fourier transform is an isomorphism of X, onto
Ky. The dual K} of K, is the space of the Fourier transforms of distributions
in X). The Fourier transform # of a distribution u< X} is defined by the
Parseval formula
f, $>=Qm)"{uz, ¢(—x)>.
Also if S€0s(KHYy; KXy and ue Ky, we have the formula
Sen=38-1,
where the product on the right—hand side is defined by
Sa, pp=<a, S¢),  pcKu.

The following lemma will be used in the next section. It’s proof can be
found in [3].

LEMMA (Paley-Wiener type theorem). Let {=&+inesC™. An entire func-
tion F({) is the Fourier transform of a distribution S in O¢(Ky ; Ku)if and only
if for every €>0, there exist constants N and C such that
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|F(§+in)| =CA+ LN e .

2. Main Theorem

THEOREM. If S is a distribution in O¢( Ky ; Ky) and S be its Fourier trans-
form, then the following conditions are equivalent :
(a) There exist positive constants A, C and a positive integer N such that
su |S(z+8)| 25 ER"
P o2y ¢

2EC
1215492 1(log (2+1&1))

(b) S*xHy=HKu
(©) If ueO0(Ky; Ku) and Sxucs Ky, then ucs KXy.

PrOOF. It suffices to show that (b)=(c)=(a).

(b)=(c). The proof goes along exactly the same lines as proof of Theorem
1 in [6]. For the completeness we give the proof. If S is a distribution in
Oc(Hy; Ki), then so is T=3S and, by (1), the mapping S*: u—Sxu of K) into
K} is the transpose of the mapping T*: ¢—T*¢ of Ky into K. Condition
(b) is satisfied if and only if T* an isomorphism of Xy onto Tx*JX, (see e.g.,
[2, Corollary on p. 92]). In particular the inverse T*¢—¢ must be continuous.

Suppose now that Sxu=¢ where uc€O¢(Kjy; Ky) and ¢$=K,. Since
(Sxu, p>=(T*u, ¢> for ¢& Ky, then

@) Txi=(—1)"¢

and for the proof if suffices to show that i Xy. If ¢ is a C=-function with
supp C B0, D={x=R": |x|<1} and $0)=1, we define ¢u(x)=k P(kx), k=
1, 2, ---. From (2) it follows that

Tx(iixde)=(—1)"grds ,

and the convolutions #*¢, and (——1)"9:5'*% are in Xy. Moreover, the sequence
{¢s} converges in O¢(Kjy ; Ky) to 6, the Dirac measure as the origin. Hence
(—1)"grp—(—1)"@ in Ky and it*d,—i in O4(K% ; Kix). On the other hand, the
sequence {u*¢,} converges in K, by the assumption that the inverse of T*

is continuous. The limit must be again %, and so # is a function in X .
(c)=(a). Let & be the space all functions u< C(R™) such that

sup e¥*® |y(x)| <oo,  for all &
XER"

and Sxucs X y. We provide & with the topology defined by the seminorms
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flull o= sup e *® |u(x)|+vp(Sxu),  k=0,1,2, .
TERM

Then F becomes a Frechet space. Further, let ¢ be the space of all functions
u = CYR™) such that
Jull= sup |D%u(x)|<eo

xR |a|sl
with the norm | ||, ¢ is a Banach space.
By the fact FCOLH K} ; X)) and the assumption (c), each function u9 is
in g. Also, the natural mapping ¢ — ¢ is closed and therefore continuous.
Consequently there exist an integer >0 and a constant C such that

[ull=Cllul,=C{ Sg&e”‘””’ lu(x)| 4 (S*u)}

for all u=<. Since the Fourier transformation is an isomorphism from X,
onto K, there exist another integer >0 and a constant C, such that

(3) ul|—C sup e |y(x)| < Cow(S-2), for all ue K, .
rER™

Suppose now that the condition (a) is not satisfied. Then there exists a
sequence {&;} such that |§;|—+4o0 as j—oo and

1

4) sup 1S (2)] <m,

2EC
(z-€51512-1(log (2+1£;1))

For each ;j, we define %; to be the greatest integer equal or less than a;=
27 '(log (2+1&;1)). Let ¢=0in C?, supp ¢ B(0, 1) and #(0)=1. We also define

P x)=e*C1 (k- xP;)(x),
and

PHx)=(PH(Ps* -+ #¢;))(x)

where ¢ (x)=a%d(a;x) and the convolution product in the parenthesis is being
taken k;-times. Now we define

Oi(x)=(PxP3)(x)

Since supp ¢;C B(0, 2), clearly ¢;,=4.

Substituting ¢,’s into the inequality (3), we will show that the left side of
(3) goes to oo and the right to 0, as j—oo, which gives the desired contra-
diction.

To show this, we first estimate
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®) Ipsi= sup  [D%y(x)]

xER™, 1a sl

= sup |@x{e*T P DU(Psx - %¢y)

ZERT, |a|=1

+D*(i{x, ;)X (hyx -+ P} (x)]
sup | D*Kx, EDNPx(@* -+ xP )} (x)]

ZER®, |1a1=1

|51|

fiv

sup |¢5(x)|

zER™

and since supp ¢;, supp ¢iC B0, 2),

(6) sup e [hy(x)| = sup e ™ |Ji(x)| < C’ sup |i(x)],

reR" 1152
where C’/=e™¥ M,

Viewing
1={_¢3x)dz<C” sup 14501,
TER™

where C” is the volume of B(0, 2), we have

1
(7 sup | ¢i(x)| Zen e
zeRM
Substituting (5), (6) and (7) into (3), the left hand side of (3) behaves, as

J—00,

lim {||¢;]|—C sup e ) | (x)|}

J—oo

2 tim {5 —cC'gr=e0

On the other hand,

8) 0US-§5)= sup (14181 1e 77 | SO FAQ)]
< sup (1+I[gIye 29 |SQ)) 1440
I8-§51sjay
+ sup (1+1ZIye?am SO g4I,
18-§51>7a;

where {=§+17.

It now sufficies to prove that both terms in the right side of (8) go to 0,
as j—oco. We first observe that, by the Paley-Wiener theorem for ¢ as element
of C? with supp ¢C B(0, 1), there exist a Cn=0, m=0, 1, 2, ---, such tha3
9 SIS Cn(l+ |G ™e' !,

Also, we observe that



On the solvability of convolution equations in Kj 451

s0=lasc—e=] 3(*Z)]"
and, by (9),
(10) o[ C(1 [FLH ) e ],

Also we observe that {2 grows faster than any linear function of || as [%]

goes large and ¢,0)=¢()- H3({).
From these observations, the first term of the last estimate in (8) is
bounded by

sup (1+1Z1)*e? @ | SQ)I(C.(1+ 1) e )

18-¢j1sfa;
e+ g omn”
Jj

=C, sup (1+IC—=&1»*A+141 CY
18-é5187a;

x(1+ 2518

2v—2+d E—&s1 V1% &
<Ci sup (H1gDm(14 [0 [)TTIS)

SCi1+ &1,

where we used that e 2@/m+ini+kjiapini jg bounded in R™ and d=log C,.
Therefore the first term of the last part in (8) approaches to 0 as j—oo.
From the lemma for S as element of O¢(Kj ; KXy) and (9), the second

term of the last estimate in (8) is bounded by

sup  Cs,men(1+181)7e 20/ (L4 L)V e rr
18~E1>0a,

X(L+ [E e Men( 1+ [ ffl) rmiies )

sp, Chuvan(l+ 113" aven (14 228 51')

IC ~§71>4
IE—E&1l \-*s
Ch awinCH(1
< 30D, ChanCH(1+=720)
147\~
<C% 2 s
(S

where we used that e 2am+2aie+igi+kjianin js pounded in R®. Here Cgs svin
and Cf, .~ are constants which depend on S, ¢, v and N only.
Hence the second term of the last part in (8) approaches to 0 as j—oo.
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Combining both estimates we have

lim @,(S-$,)=0,

J—oo

which gives the desired contradiction.
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