TSUKUBA J. MATH.
Vol. 19 No. 2 (1995), 329—345

REMARKS ON d-GONAL CURVES

By

Naonori IsHII

§0. Introduction.

Let M be a compact Riemann surface and f be a meromorphic function on
M. We denote the principal divisor associated to f by (f) and the polar divisor
of f by (e If d=degree of the divisor (f)., we call f a meromorphic
function of degree d. If d is the minimal integer in which a non-trivial
meromorphic function f of degree d exists on M, then we call M a d-gonal
curve. In this case the complete linear system |(f)~| has projective dimension
one. Moreover if f defines a cyclic covering M—P; over a Riemann sphere
P,, then we call M a cyclic d-gonal curve.

Now we assume that M is a p-gonal curve of genus g with a prime
number p. Then Namba has shown that M has a unique linear system gjp of
projective dimension one and degree p provided g>(p—1)* ([6]). For example
if M is defined by an equation y?—(x—a,)"t - (x—a,)"s=0 with (p, r))=1,
Sr;=0 (mod p) and s=2p+1, then M is p-gonal and having a unique g} ([7].

In this paper we treat a compact Riemann surface M defined by an equation ;

yi—(x—a)" - (x—ay) =0 %)
with X7r;=0 modd and 1=r;<d,

where d is not necessarily a prime number.

In §2, we will show that M is d-gonal with the function x of degree d if
there are enough 7;’s relatively prime to p for each prime number p dividing
d. In this case we call M a cyclic d-gonal curve. We will also show that M
has a unique g} if there are more sufficient such r;’s as above (§ 2).

In §3, let M be a cyclic d-gonal curve defined by %) having a unique g%
and M’ be a compact Riemann surface defined by y¢—(x—b,)’t --- (x —bs)*s=0.
We will study the relations among a;, b;, r; and t; (1<7/<s) in the case M and
M’ are conformaly equivalent. Namba [7] and Kato have already studied
this problem in the case d is a prime number. We will give similar results for
an arbitrary d (§ 3).

Received August 31, 1993.



330 Naonori IsHII

In §4, we consider a covering map n’: M’—M, where M is a cyclic d-gonal
curve with a unique g% and M’ is a d’-gonal curve. In the case d=d’, we can
apply the same methods in [3], and we will see that M’ is also cyclic d-gonal.
Moreover if n’ is normal and d=d’, then the covering group of z’ is isomorphic
to cyclic, dehedral, tetrahedral, octahedral or icosahedral. For a general case
d<d’, we will show some relations between d and d’ (§4).

In §5, we will give some remarks about coverings M—N with a cyclic
d-gonal curve M having a unique gj.

Finally we determine the equation *), which defines the curve M (with a
unique g4) having an automorphism V (&<T)) of order N, where T is the
automorphism defined by T*x=x and T*y=e?""/¢y (§6).

§ 1. Preliminaries

At first we give several results on the existence of meromorphic functions
on a compact Riemann surface M of genus g following Accola and Namba.

LEMMA 1.1. (Accola [1]) Let M be a compact Riemann surface of genus g.
Let f, and f, be two meromorphic functions on M of degree n, and n, respectively.
If f, and f, generate the full field C(M) of meromorphic functions on M, then
g=(n—1)(n,—1).

The following lemma by Namba is easily obtained from Lemma 1.1.

LEMMA 1.2 (Namba [6]) Let M be a compact Riemann surface of genus g
and f be a meromorphic function of degree p on M with a prime number p.

1) If h is a meromorphic function of degree n on M satisfying
(p—D(n—1)£g—1, then p divides n and h=r(f), where r(x) is a rational
function of degree n/p.

2) If (p—1)*=g—1, then M is p-gonal and having a unique linear system
gp of degree p and dimension 1.

PROOF. (1) By lemma 1.1, the subfield C(f, g) of C(M) generated by f
and & is not equal to C(M). As p=[C(M):C(f)] is a prime number,

C(f)=C(f, g). (2 If h is any meromorphic function of degree p, then
C(h)=C(f) by (1). O

Next we give some results concerning covering maps. Let #: M'—>M be an
arbitrary covering with compact Riemann surfaces M and M’. For a divisor
D=3n,Q; (n,eZ, Q,M’) we define a divisor Nm,D=NmD by Xn;n(Q,;). On
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the other hand, for a meromorphic function f on M’ we denote by Nm[f] the
meromorphic function on M obtained by the norm map Nm: C(M)—C(M). It
is well known that the equation of principal divisors Nm.(f)=(Nm[f]) holds
([2Z]). When the divisor Nm(f) is trivial, we can choose a constant ¢ such that
the divisor Nm(f-+c) is non trivial. This means that d’>=d if M’ and M are
d’-gonal and d-gonal respectively.

When M and M’ are both d-gonal, we have the following lemma :

LEMMA 1.3 (Ishii [3]) Let n': M'—M be a covering map that both M and
M’ are d-gonal. Then;

(1) there exists a covering map n: P{— P, with Riemann spheres P{ and P,
satisfying the following diagram;

4

M P/
< | |= com=can ® ey, CODNCPH=CPy,
M .l)1 C(Pl)

Nmly]

where ¢’ is a morphism of degree d,

(2) if M’ has a unique g% and =’ is normal, them = is also normal
and Gal(M'/M)=Gal(P{/P,) (i.e., cyclic, dehedral, tetrahedral, octahedral, or
isosahedral).

§2.

‘Let M be a compact Riemann surface of genus g that has two meromorphic
functions 7 and h’ of degree d and d’ respectively. Let C(h, h’) be a subfield
of C(M) generated by h and h’, and M be the compact Riemann surface of
genus g whose function field is isomorphic to C(h, A’). Put [C(M): C(h, h')]=L.
Then M has meromorphic functions of degree d/t and d’/t induced by h and
h’ respectively. By Lemma 1.1 we have;

LEMMA 2.1. g=(d/t—1)d’/t—1).
From now on we assume;

M is defined by the equation x), 7 is the automorphism of M .defined
by (x, v)——(x, {qy), where {,=exp(2ri/d), and h is the canonical map
M—M/{T>=P,. '

We denote by g, the genus of the quotient compact Riemann surface M/<T*>
for a positive integer £ dividing d and k=d. Moreover if k=¢ is a prime
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number, we denote by s, the number of branch points of the canonical map
M/KTH->M/KT>=P;,. s, is equal to the number of 7»,’s prime to ¢ and we
have g,=(¢—1)(sq—2)/2 (". 2r;=0 mod d).

LEMMA 2.2. Assume that M has a meromorphic function h’ of degree d’.
Let q, be the smallest prime number dividing G.C.D. (d, d’)=(d, d’). If d’
satisfies the inequalities:

2> (d/go—1)(d"/go—1)++ v vv- 4%
for any prime q dividing G.C.D.(d, d’),

then t=d or 1. FEspecially when (r;, d)=1 for all 1<i<s, t=d or 1 provided
8qy>(d/go—1)(d’/go—1).

PROOF. Assume t+#d, 1. As <T?*') is a unique subgroup of order ¢ in
<T>, M should be isomorphic to M/<{T?%*) and g=g,,;.. For any prime number
g dividing d/t (#1), we have <T9HDT?**) and g—1=g,—1=(d/q,—1)(d’/gq,—1)
=>(d/t—1)d’/t—1). This contradicts to Lemma 2.1. If (r;, d)=1 for all
1=1, ---, s, then s=s,=s, and g,=g,, for any prime number ¢ dividing (d, d’).
Thus the latter part of this lemma is reduced to the first part. O

PROPOSITION 2.3. Assume M is a compact Riemann surface of genus g
defined by the equation x). Let d’ be a positive integer satisfying the inequal-
ities *x) in lemma 2.2 and (d—1)(d’'—1)=g—1. Then;

(1) If d does not divide d’, then there is no meromorphic function of
degree d’.

(2) If d divides d’, then every meromorphic function h’ of degree d’ is
obtained by r(h), where r is some rational function of degree d’/d and h is the
canonical map M—M/<T>.

PROOF. Let h’ be a meromorphic function of degree d’. (d—1)(d’'—1)<g—1
means {#1 by lemma 1.1. Thus C(h, h’)=C(h) by lemma 2.2 and h’=#»(h) for
some rational function r. 0O

REMARK. If d=p is a prime number, this proposition is exactly same as
Lemma 1.2(1).

THEOREM 2.4. Let M be a compact Riemann surface of genus g defined by
x) and q, be the smallest prime number dividing d.

(1) Assume (d—1)(d—2)<g—1 and (d/q,—1)(d/q,—2)<gq—1 for any prime
q dividing d. Then M is d-gonal.
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(2) Assume (d—1)?<g—1 and (d/q,—1)*<g,—1 for any prime q dividing d.
Then M is d-gonal and having a unique g.

Proor. (1) Assume that there is a meromorphic function h’ of degree d’
with d’<d—1. By (d—1)(d—2)<g—1 and lemma 1.1, t=[C(M): C(h, h)]+1.
As t|(d,d’) and d’<d, we have d’'<d—t Thus d'/¢,=<d/¢g,—1 and
(d/go—1)(d"/go—1)=(d/qe—1)(d/go—2)< gq—1 for any prime number ¢ dividing
d. Hence the assumptions in Proposition 2.3 are satisfied. This is a con-
tradiction. (2) Let A’ be a meromorphic function of degree d. By the same
way as in (1) and Proposition 2.3(2), we have C(h, h’)=C(h). Thus M has a
unique gi. O

When (7;, d)=1 for all i=1, ---, s, we can restate Theorem 2.4 as follows;

THEOREM 2.4’. (1) If (d—1)(d—2)<g—1 and (d/q—1)d/g—2)<gq,—1,
then M is d-gonal.

(2) If (d—1<g—1 and (d/q—1)*<gq,—1, then M is d-gonal and having a
unique gy.

PrROOF. Use the latter part of Lemma 2.2. O

EXAMPLE 2.5. Let M be a compact Riemann surface defined by
Y —x(x—a,)(x —a,)(x —a5){(x —a)(x—as)(x—aes)(x—a,)}*=0, where a; Sy
are distinct non-zero numbers, then g=7. Put N=M/<{T?*). N is defined by
yi—x(x—a)(x —a,)(x—as)=0, i.e., g;=1. M satisfies the conditions of Theorem
2.4(1), and then M is 4-gonal. On the other hand M has infinitely many gi.
In fact if g} and g}’ are two distinct linear systems on N, then n*g; and m*g3’
are distinct linear systems of degree 4 and dimension 1 on M, where n: M—N
is a canonical map. Thus M has infinitely many gi.

EXAMPLE 2.6. For prime numbers p and g with p=g¢, let M be defined by
YPl—(x—a,) (x—ay) % (x—a,)"s=0 with 2r,=0 mod pg and (r;, pg)=1,
1<i<s. If s satisfies s=2pg—1 and (p—1)(p—2)<(¢g—1)(s—2)/2, then M is
pg-gonal. If s satisfies s=2pg-+1 and (p—1)2<(¢g—1)(s—2)/2, then M is pg-gonal
and having a unique gpq.

PROOF. These results are easily from g=(pg—1)(s—2)/2, g,=(p—1)(s—2)/2,
g,=(g—1)(s—2)/2, and Theorem 2.4. O

EXAMPLE 2.7. Let M be defined by vy*—x%x—a,)(x—a,)(x —as)=0, where
a,, a,, a, are distinct non-zero numbers. The covering map x: M—P; is
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completely ramified at A,, A,, A; and @ with x(A;)=a; (i=1, 2, 3) and x(Q)=oc
respectively. Also x is ramified at two points P, and P, with ramification
index 2 and x(P)=x(P,)=0. Thus g=4(<(4—1)4—2)) and g,=1. Then this
M does not satisfy the conditions in Theorem 2.4(1). In fact M is trigonal
with a principal divisor (x/y)=P,+P,+Q—A,—A,— A;, and not a hyperelliptic
curve by Lemma 1.2(1).

REMARK. M in Example 2.7 does not satisfy the condition of Lemma 1.2(2)
for p=3. But M has unique g}, because M has a canonical divisor (dx/y)=
2A,+2A,+2A, and by [4] (II.8.7).

§ 3.

In the following sections we give some applications of our results in §2.
At first we will prove the following Theorem, which have been obtained by
Namba and improved by Kato in the case d=p a prime number.

THEOREM 3.1. Let M and M’ be defined by the following equations;

yd_(x_al)rl...(x_ax)rs:() .............. l)
and
j}"i_._(f_bl)tl (i_bs)ts:O .............. ll)

respectively, where 1<r;<d—1, 1=t;,<d—1, Zr;=2t;=0 modd. Assume M
satisfies the conditions in Theorem 2.4(2), and M and M’ are birationally equiv-
alent. Then, by changing the indeces suitably, we have;

(1) there exists A< Aut(P,) satisfying b,=Aa; (1Z5i<s), and

){ ordpti=ordyr; if ordyr,<ord,d or

#

ordyt;=zordpyd if ordprizord,d (1=i<s)
for each prime number p dividing d.

(2) if (r, d)=1, then r,/t,=(Z/dZ)* and (r,/t)t;=r; mod d (1Zi<s).
(3) if d is square free, then rit;=t,r; modd (2<i<s).

ProoOF. (1) The proof owes to the uniqueness of g% (Theorem 2.4(2)), and
goes almost same way as in the proof of Theorem 1.1 in [6]. Let ¢: M—M’
be the birational map. As M has unique g}, there exists A< Aut P, satisfying
a commutative diagram ;
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M—"
x l l x
P, P,.
A
Thus we may assume Aa;=b; for i=1, -, s. Let M” be a curve defined by

24— (u—A"b)" - (u—A"'by)s=0 and ¢4=¢ be a birational map from M’ to
M defined by (%, §)—(u, z2)=(A"'%, ¢j/(F—7)*"), where ¢ 1s a suitable constant,
y=A(c) and k’=(2t,)/d ([6]). Put w=z-¢-¢, which is a meromorphic function
on M. Then M is also defined by

wd._.(x__al)tl ...(x___as)ts_—_-o ............ i’)'

As both i) and i’) define the ramification type of the same cyclic covering
x: M—P, we can see #) by considering a covering map M/<T?°"*?*>P,
induced by x.

(2), (3) Put v=w71/y%, then we have;

vd__(x__a2)7'152""2t1 (x__as)Tlts""sH:() -+ - - i),

Put [C(M): C(x, v)]=t. As C(M)DC(x, v)DC(x) are cyclic extensions, v*/* is
in C(x) and rit;—t;7;=0 mod ¢ (2<:<s) by iii). Moreover we can see that s
numbers (r.t;—t7;)/t (2<i<s) and d/t have no common divisor and
G.C.D.(r1, t,, d)=(ry, t;, d) divides t. On the other hand C(x, v) is the function
field of the curve M/{(T?%/*>. Assume d=+t, and take a prime number ¢ dividing
d/t. Then the curve M/{T?) is defined by the following two equations simul-
taneously ;

YI—(x— @) 1 e (K= @) 80 sevrerrrreneaiaennn. A)
and

pI—(xx —@,) M1t T2t L (g — g ) TitsTTstDIt=() .. . . B),
Now we will show 7,50 mod g. In fact this is obvious when (r,, d)=1. Next
we consider the case d is square free. From #) we have (ry, t,, d)=(r1, d).
As d is square free and (ry, t, d)|t, (d/t, 1, d)=(d/t, r.)=1 and (r;, ¢9)=1.
Thus a, is a branch point of the covering x: M/<T%—P, by A). But this
contradicts to B). So we have t=d and

rt;—t7r;=0 modd (2=iZs).
When (r,, d)=1, then (¢, d)=1 by #, and we get (2). O

REMARK. Conversely if there exists A= Aut(P,) as in (1) and we have
(ri/tOt;=7; mod d (2=£i<s), then M and M’ are birationally equivalent ([6]).
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§ 4.

Next we consider a covering map n’: M’—>M with a cyclic d-gonal curve
M defined by *) of genus g and a d’-gonal curve M’ of genus g’.

THEOREM 4.1. Assume d=d’. Then;

(1) M is also a cyclic d-gonal curve.

(2) If M satisfies the conditions of Theorem 2.4(2) aud ©’' is normal, then
the Galois group af =’ is cyclic, dehedral, tetrahedral, octahedral or isosahedral.

PrROOF. (1) Easily from Lemma 1.3(1). (2) Let T (resp. T’) be the auto-
morphism of order d on M (resp. M’) as in § 2. By the commutative diagram
in Lemma 1.3 and the uniqueness of g on M we may assume that 7’ induces
T. For each prime number ¢ dividing d, we have a commutative diagram;

MI

M /<T"%

M

M/LT?.

Let g; be genus of M’'/<T’%. As g=g’ and g,=<g; M’ is also satisfying the
conditions in Theorem 2.4(2). Then M’ has a unique gi. By Lemma 1.3(2)
we have our results. O

THEOREM 4.2. Assume d<d’. If d and d’ satisfy the conditions of Prop-
osition 2.3. on M, then d divides d’.

PrROOF. Let D’ be a positive divisor of degree d’ on M’ such that [D’|
has projective dimension 1. Assume Nm,D’ has some common point with Nm.E
for each E<|D’|. Then each E<|D’| has some common point with #*NmD’.
On the other hand if E and E’ in |D’| have common points, then E=FE’ by
the minimality of d’. Hence |D’| should be a finite set. This is a contradic-
tion. Thus there is a meromorphic function 2 of degree d’ on M’ and Nm[h]
is also of degree d’ on M’. By Proposition 2.3 we have d|d’. O

COROLLARY 4.3. Let ©n’: M">M be an unrami fied covering of degree q with
a cyclic p-gonal curve M of genus g, where p and q are distinct prime numbers.
Assume g>p?q—2p+1. Then;
(a) M’ is a pg-gonal curve with a unique gpq.
(b) Let ¢: M'— Py be the covering map defined by gpe in a), then;
(b-i) ¢ is not cyclic (i.e., M’ is not a cyclic pg-gonal curve).
(b-ii) 7f p ¥ g—1, then ¢ is not normal.
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PROOF. (a) Let A: M—P, be the covering map of degree p, then hox’ is
a meromorphic function of degree pgon M’. For g>p2q—2p+1>(pg—1)(p—1),
M’ is pm-gonal (1=m=<g—1) or pg-gonal by Theorem 4.2. (see the remark of
Proposition 2.3). Now we assume that M’ is pg-gonal. Let ¢ be a meromorphic
function of degree pg on M’. Put K=C(¢, hon’) and [C(M"): K]=t. As the
genus g’ of M’ is g(g—1)+1, we have g’>(pg—1)? and t+1. Consider the
following diagram ;
CM")DKDC(¢)
) U
C(M)DC(hez").
If t=¢q, then [K:C(h-n’)]=p and genus of K=g (.- =n’ is unramified and
(p, 9=1). For g>(p—1)%, K=C(h-x’). This is a contradiction. If ¢t=p, then
KDC(hon') is an unramified extension. As C(hon’) is of genus 0, this is a
contradiction. Thus we have t=pg and M’ has a unique gh,. If M is
pm-gonal (1=m=<g—1) and ¢ is a meromorphic function of degree pm on M’,
then [C(M"): C(¢, hon’)]=p by (p, gg=1 and g’>(pm—1)(pg—1). This is a
contradiction.
(b-i) We may assume h-n’=¢ by (a). If ¢ is cyclic, then there exists an
automorphism 7’ on M’ of order p, and we have a commutative diagram ;

M’—-—-’M’/(T’>

- |-

M ———>M/KT>=P,, where ©’ is unramified.
h

For (p, 9=1, = is unramified. This is a contradiction. (b-ii) Assume ¢ is
normal with galois group G. If p<qg and p ) ¢—1, it is well known that G is
cyclic. But this can not be happened by (a). If p>¢q, then G has a unique
normal subgroup <7”’) of index ¢ generated by 7’. Thus we have a same
commutative diagram as in the proof of (b-i). This is also a contradiction. 0O

§5.

We consider a covering n’: M—N, where M is cyclic d-gonal and N is
e-gonal. Put deg r=n and d’=ne.

THEOREM b5.1. Assume d and d’ satisfy the conditions of Proposition 2.3.
Then e divides d. Moreover if u: M—M/<{T%°> is the canonical map, then there
exists a covering map v: M/{T*¢>—N satisfying =n’=v-u. Especially when
d=d’=ne, N is isomorphic to M/{T %),
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PROOF. Let ¢n: N—P, be the covering over Riemann sphere P, of degree
e. Then ¢yen’ is a meromorphic function on M of degree d’=ne. By Prop-
osition 2.3, d divides ne=d’, and we have a commutative diagram;

M " P,=M/T>
Tt,l lﬁ
N Pl »
Y

with a rational function # of degree d’/d and the canonical map h. The
function fields C(N) and C(P,) are linearly independent over C(P,) for the
minimality of e. Then there exists a e-gonal curve M with a function field
C(A7I) isomorphic to C(P,) ® C(N). By the universal property of C(JVI) we

Cc (P
have the following commutative diagram;

\\

M 2 Pi=M/<T>

RV

N—58

N

where deg ¢d=e¢ and deg #=ne/d. We can see that e divides d. As h is a
cyclic extension, M=M/{T?. O

EXAMPLE 5.2. Let M be the cyclic pg-gonal curve defined in Example 2.6
with p=gq, s=2pg+1 and (p—1)°<(¢g—1)(s—2)/2. Then any covering =: M—N
of degree p (resp. q) with a ¢ (resp. p)-gonal curve N is birational to the
cyclic ¢ (resp. p)-gonal curve defined by y?—(x—a,)"t - (x—a,)"*=0 (resp.

—(x—a,)"1 - (x—ay)":=0).

§ 6.

Let M be a cyclic d-gonal curve with a unique g; defined by
yi—(x—a)"1 - (x—ay)"s=0, 2Xr;=0modd,------ *)
(r;, d)=1 for all 7, here we can take oo as one of a;’s.

Let T be the automorphism of order d as in §2, and ¢: M—M/{T)> be the
canonical map. We will determine the equation %), which defines M having an
automorphism V (&<(T>) of order N.
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For the uniqueness of gi, we have V{(T)V'=<(T)> and V induces an
automorphism V on M/<(T>=P,(x). Let C(x) and C(u) be the function fields
of M/<T> and M/{V, T) respectively. Then =n’: M/<{T>—M/<T, V) is a cyclic
covering of order N’ (N’|N) and we may assume z’*u=x""

Before considering generally, we study the following two cases;

Case 1) <(TO>"\KVy=<LT>, Case 2) (IT>"\Vy={1}.

Case 1) <TOrV)y=<T)

We can see that d|N and N’=N/d. We may assume V?¥/¢=T and
V*x =8 x with a primitive N’-th root {’ of 1. We denote the set {fixed point
of ¥} by F(¥). Then #F(V)=2.

Case 1-a) #F(P)Ni{a,, -, as}=2
We may assume that two elements of the above set are a,.,=0 and a,=oo.
As V acts on {a,, -+, as_,} faithfully, M can be defined by;

d A — Il YN a1
A) yi=x4 I TI(x—&"7"lc)mNid-a-D+ip,

t=1 j=1

k N/d

1+ :=21 jamzv/d-(z_nuic"o mod d,

where (m«, d)=1, and ¢, (#0) are distinct complex numbers satisfying
{7 1S 7EN/d}N{L7 e[ 1= 7= N/d} =0 for t#s.

By acting V* on both sides of A), we have;
k N/d
B) (Tryyr=g#{ 1T TE (x—¢ comara-w-vaslx,
t=1 j=1

k N/d
where M=1+§j§mma.u_n+i~

By the proof of Theorem 3.1 and comparing A) with B), there exists a posi-
tive integer v (1Sv<d, (v, d)=1) satisfying v -my/a.t-1)+;=Mnysa.t-1+s+1 mod d
(1=j<N/d-1), and vmy;a.e=Mny/a.:-1y+1 mod d. But in this case, v-1=1 mod d.

Thus we have v=1 and 7y /¢. 1= - =Musat =r: (t=1=<t<Fk). The equation
A) is;
B N/ k
) yi=x{ I T (=L e ef=x- T (V1 —boy,

As V*yé={’y% and V is of order N, we have V*y=7xy, where 7% satisfies
n?=¢’ and 5"’ is a primitive N/N’ (=d)-th root of 1.
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PROPOSITION 6.1a). Case 1-a happens if and only if M is defined by 1)
with d|N, (r., d)=1 (t=1, ---, k) and N/dé re+12£0 mod d. V is defined by

V*x-_:c/x and V*y—_—ny’ ...................... 1)
where ' is a primitive N'-th root of 1, 7 satisfies n®={’ and n"' is a primitive

d-th root of 1 (for example, n=e*~"'"" and {’'=e***'/"’ satisfy these conditions).

Case 1-b) #F(¥)N{a,, -, a}=1

We may assume that the element of the above set is a,. There exists a
point PEM such that ¢(P)é&{ay, -, a;} and V(P)e<{T>P=(V¥/¢}P. Then
Ve¢P)=P. If (d, N/d)=r+1, then T¢7pP=V¥/¢drpP=P  This contradicts
to ¢(P)&{a,, -+, a;}. Thus (d, N/d)=1 and <V (V¥/¢5={1}. We have
C(M)=C(M/V¥I%y) & C(M/V?), Assume ¢(P)=co, a,=0 and zn'*u=x"/?,

C (M KV

As M/KVEH—-M/KV>=Py(u) is cyclic of degree d, C(M/<{V%)) is defined by
ydzu;[[:(u—-bt)"t, with (n,, d)=1 (=1, ---, e¢) and 1+n;+ - +n,%0 mod d.

Then M is defined by y¢=xV/¢(x¥/¢—p)™ ... (x¥/2—b,)"*. For (d, N/d)=1,
M can be defined by the following equation ;

m) yi=yx-(x¥/¢—b)1--- (x¥/8—p)"k, with 14+2r,#0 mod d.
After all, we have; V
PROPOSITION 6.1b). Case 1-b) happens if and only if (N/d, d)=1 and M is

defined by W) with (r., d)=1 and 1+:21 r:#*0 mod d. V is defined by;

V*x.__:c’x and V*y:ﬂy, ...................... 2)
where T’ is a primitive N’-th root of 1, 0 satisfies p*={’ and "' is a primitive

d-th root of 1.

Case 1-c) #F(P)N\{a,, -, as} =0
By the same way as in Case 1-b), we have;

PROPOSITION 6.1c). Case 1-c) happens :f and only if \N/d, d)=1 and M is
defined by ;

119) ye=(x N8 —by) 1 (x VI8 —by)T

with (re, d)=1 and t‘_ﬁ‘{ re=0 mod d. V is defined by;
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V*x=C'x and V*y :C”y’ .................... 3)

where C’' (resp. {”) is a primitive N’ (resp. d)-th root of 1.

Case 2) <TONV>={l}
The automorphism ¥ on M/(T> induced by V is of order N, and we may
assume that V*x={x with a primitive N-th root { of 1.

Case 2-a) #{ay, -, a}N"F(V)=2 and
Case 2-b) #{a,, -, a;}NF(V)=1
By the same way as in Case 1-a), M can be defined by

v) yd:x‘IiIl(x”-bt)”, with (r;, N)=L.

k .
In Case 2-a) (resp. 2-b), N Z}l r¢+1%£0 (resp. =0) modd. As V satisfies V*y¢
={-y% and V is of order N, V is defined by;
‘,*X:::CX: aIld L/*)’::E'J“ ...................... 4)

where & is a N-th root of 1 satisfying &*={. .. (d, N)=1 and & is also a
primitive N-th root of 1. After all we have;

PROPOSITION 6.2. Case 2-a) (resp. 2-b)) happens if and only if (N, d)=1
and M is birational to the curve defined by IV) with (r,, N)=1 and Nt_él re+1=20
(resp. =0)mod d. V is defined by 4) with a primitive N-th root & of 1 and {=£&°.

Case 2-c) #{a,, =, as) NF(P)=0
By the same way as in Case 1-a), M is birational to the curve defined by

k N k N
ydz{ﬂ }’I(x-—C"‘lbc)mN(t—nH} with 3} 3 my/a.u-pes=0 mod d
t=1 1 t= =

and (my, d)=1. Moreover there exists a positive integer v (1=v=d—1, (v, d)=1)
satisfying vmy -1 +i=My_n+j01 mod d 1<7<N—1), and vmy.;=my_1y+1 mod d.
We see v¥=1 modd. Thus M is defined by

V) pe=T0 I (=g’

k N
with positive integers n, satisfying 3} >} n277'=0 mod d and (7%, d)=1. Put

t=1 j=1
R=3n, and S=3v’"*. Then RS=0 mod d. By acting V* on the both sides
of V again, we have
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*ay\E — k N __ri-1 )ntvj"l
(V*y) =11 jI}l(Cx &b

1

—FRS ko __ri-e ntvj'
CF I T (e =8 77b)

grSyvey f[l(x—cN“be)"tw”*”, LRS£1  (if RS%£0 mod N).
= or

yve/ ;I: (x—L¥1h,)ne @V -1 (if RS=0 mod N).

Then we have;
n{BSIdyv/ t]i(x —L¥-1pym @ -bid (if RS#0 mod N)----V-i)
V*y={ or
0y T (x— LY by -vra, (if RS=0 mod N)- - --V-ii).

where 7 is some d-th root (not necessarily primitive) of 1.
Assume RS0 mod N. Using V-i) repeatedly, we have;

V*Ny :‘ylsc(Rsld)syvN/[{ljj: z]f[l (Clx"“CN-Ibt)"t}vN_l-l](vN—l)/d

N-1 &k oN-1-l7wN-1),4
N N -2 N-34... —yp0 -1
_T]SC(RS/d)Syv /cR(v +2v +e(N=)v )[{ln_o tH_l(x (N l lbz)"‘} ]

=7]SC(RS/d)S—R(Sz—NS)/dyvN/(yd)(vN—l)/dzvSCRNS/dyzﬂSy ( RSEO mod d).
For V*¥y=y, »5=1 should be held.
When RS=0 mod N, by the same way as above, we have;

V*Ny ZnSC-Rtsg—NS)/dyvN(yd)(vN—l)/d:ﬂSC-Rszldy .

Thus % should satisfy »S={?$*¢,

PROPOSITION 6.3. Case 2-c) happens :f and only if M is birational to the
curve defined by V) with v¥ =1 mod d and RS=0 modd. If RS#0 (resp. RS=0)
mod N, V is defined by V*x={x and V-i) (resp. V-ii) with d-th root 5 of 1
satisfying 7S=1 (resp. pS={*5*?), here % is not necessarily primitive (for
example, n=1 (resp. n=LRS'P) satisfies S=1 (resp. pS=LFS*)),

General case <TON\V’>=(V¥'>=(T?%">.

We can obtain the equations of M and V as follows. We may assume that
N’|N and d’|d, then d/d’=N/N’. The case d’=1 is exactly same as the case
1) (Propositions 6-la~c)).
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When d’>1, put M'=M/<{T>N\{V>.

Then M’ is d’-gonal with a unique
g4 having an automorphism V' (=V mod<V*%’)) of order d’.

We can apply
Proposition 6.2 or 6.3, and M’ is defined by an equation of type IV) or V).
For example, assume M’ is defined by;

’

' k v ] A rj"l
yld :t]-:l; ;I’;Il(x__clj—lb;)ngv

(cf. V)
with (n&, d’)=@’, d’)=1, 1=v'=<d’—1, and R’S’=0 mod d’, where R’:té ni,

N' s . . -
S’:g}lv”‘1 and a primitive N’-th root {’ of 1. Moreover, assume R’S’#0

mod N’. Then V'’ is defined by;
Vixx={x
Vr*y/:ﬂ/C/R'S'/d'yv'/ﬁ(x_c/N'—1bz)ni(v'N'—x)/d' (cf. V-i),
t=1
with d’-th root 7’ (not necessarily primitive) of 1 satisfying 7’*'=1. Put
y’=y%/% we can have the equation of M;

4 k' N’ ri-1pt I,D,j’l
=11 I (x—g7 b

As M is defined by ), we have R’S’=0 mod d, (n%, d)=(@’, d)=1 and v V=
mod d. Thus V on M is defined by;

V*x=L'x
V*y =7]C/R's'/dyv'/ ;Iil (x___C/N'—1b£)n2(v'N’—1)/d’

where 7 satisfies p%/¢' =»¢’.

We can see V*V'y=9%y. As V is of order N,
n’S" should be a primitive N/N’ (=d/d’) root of 1. When (S, d/d"=1, p’'=l1,
and n=exp(2rid’/d) satisfies these conditions,

Considering the other cases, we finally have;

THEOREM 6.4. Let M be a cyclic d-gonal curve with a unique g4 defined by

%) with an automorphism V (&E{T>) or order N. Then M and V are determined
as the following types;

1) Let d’ (>1) and N’ (>1) be two integers satisfying d’|d, N'|N and d/d’
=N/N’"=1.
I1-i) M is a curve defined by the equation
k' N’ ) R
ye=T1 I (Lo
t=1 j=1

with 1<v'<d’—1, (ng, d)=@’, d)=1 and S’R’=0 mod d.
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If S"R’%#£0 mod N’, then V is defined by
V*x=L"x
V*y:ﬁcm's'/dyv’/ ﬁ (x_C/N'—lbt/)ni (v'N'—l)/d’
i=1

where 7 is a d-th root (not necessarily primitive) of 1 such that n*' is a primitive
d/d’-th root of 1. (for example, when (S’, d/d’)=1, e**%'/¢ can be taken as 7).
If S’"R’=0 mod N’, V is defined by

{ V*x={x
k’ ’
VEy=ny*'/ I (x—gY gyt -vre,

where 7 is a d-th root (not necessarily primitive) of 1 such that p{’~®'S'*¢ is a

primitive d/d’-th root of 1. (for example, when (S’, d/d’)=1, we can take

&5y as n, where Lq/q' 1S a primitive d/d’-th root of 1). (¢f. Prop. 6.3)
1-ii) If (d’, N’)=1, we have an additional type;

yémx I (6 b

with (ri, N)=1. In this case V is defined by ;
V¥y=¢&y and V*x=§&%x,

where & is a primitive N-th root of 1. (¢f. Prop. 6.2)

) In case of d|N, in addition to 1), we have other types of M and V as
follows ;

I-i) M and V in Proposition 6.1a).

[I-ii) In addition to M-i), M and V in Proposition 6.1b) and 6.1c), provided
((d, N/d)=1.
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