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REMARKS ON $d$-GONAL CURVES

By

Naonori ISHII

\S $0$ . Introduction.

Let $M$ be a compact Riemann surface and $f$ be a meromorphic function on
$M$. We denote the $pr\dot{l}ncipal$ divisor associated to $f$ by $(f)$ and the polar divisor
of $f$ by $(f)_{\infty}$ . If $d=degree$ of the divisor $(f)_{\infty}$ , we call $f$ a meromorphic

function of degree $d$ . If $d$ is the minimal integer in which a non-trivial
meromorphic function $f$ of degree $d$ exists on $M$, then we call $M$ a d-gonal

curve. In this case the complete linear system $|(f)_{\infty}|$ has projective dimension
one. Moreover if $f$ defines a cyclic covering $M\rightarrow P_{1}$ over a Riemann sphere
$P_{1}$ , then we call $M$ a cyclic d-gonal curve.

Now we assume that $M$ is a p-gonal curve of genus $g$ with a prime

number $p$ . Then Namba has shown that $M$ has a unique linear system $g_{p}^{1}$ of
projective dimension one and degree $p$ provided $g>(p-1)^{2}$ ([6]). For example

if $M$ is defined by an equation $y^{P}-(x-a_{1})^{r_{1}}\cdots(x-a_{s})^{r_{S}}=0$ with $(p, r_{i})=1$ ,

$\Sigma r_{i}\equiv 0(mod p)$ and $s\geqq 2p+1$ , then $M$ is p-gonal and having a unique $g_{p}^{1}$ ([7]).

In this paper we treat a compact Riemann surface $M$ defined by an equation;

$y^{d}-(x-a_{1})^{r_{1}}\cdots(x-a_{s})^{r_{s}}=0$ $*$ )

with $\Sigma r_{i}\equiv 0mod d$ and $1\leqq r_{i}<d$ ,

where $d$ is not necessarily a prime number.
In \S 2, we will show that $M$ is d-gonal with the function $x$ of degree $d$ if

there are enough $r_{i}\prime s$ relatively prime to $p$ for each prime number $p$ dividing
$d$ . In this case we call $M$ a cyclic d-gonal curve. We will also show that $M$

has a unique $g_{d}^{1}$ if there are more sufficient such $r_{i}\prime s$ as above (\S 2).

In \S 3, let $M$ be a cyclic d-gonal curve defined by $*$ ) having a unique $g_{d}^{1}$

and $M^{\prime}$ be a compact Riemann surface defined by $y^{d}-(x-b_{1})^{t_{1}}\cdots(x-b_{s})^{l_{S}}=0$ .
We will study the relations among $a_{i},$ $b_{i},$

$r_{i}$ and $t_{i}(1\leqq i\leqq s)$ in the case $M$ and
$M^{\prime}$ are conformaly equivalent. Namba [7] and Kato [5] have already studied
this problem in the case $d$ is a prime number. We will give similar results for
an arbitrary $d$ (\S 3).
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In \S 4, we consider a covering map $\pi^{\prime}$ : $M^{\prime}\rightarrow M$, where $M$ is a cyclic d-gonal

curve with a unique $g_{d}^{1}$ and $M^{\prime}$ is a d’-gonal curve. In the case $d=d^{\prime}$ , we can
apply the same methods in [3], and we will see that $M^{\prime}$ is also cyclic d-gonal.
Moreover if $\pi^{\prime}$ is normal and $d=d^{\prime}$ , then the covering group of $\pi^{\prime}$ is isomorphic
to cyclic, dehedral, tetrahedral, octahedral or icosahedral. For a general case
$d\leqq d^{\prime}$ , we will show some relations between $d$ and $d^{\prime}$ (\S 4).

In \S 5, we will give some remarks about coverings $M\rightarrow N$ with a cyclic
d-gonal curve $M$ having a unique $g_{d}^{1}$ .

Finally we determine the equation $*$ ), which defines the curve $M$ (with a
unique $g_{d}^{1}$ ) having an automorphism $V(\not\in\langle T\rangle)$ of order $N$, where $T$ is the
automorphism defined by $T^{*}x=x$ and $T^{*}y=e^{2\pi i/d}y$ (\S 6).

\S 1. Preliminaries

At first we give several results on the existence of meromorphic functions
on a compact Riemann surface $M$ of genus $g$ following Accola and Namba.

LEMMA 1.1. (Accola [1]) Let $M$ be a compact Riemann surface of genus $g$ .
Let $f_{1}$ and $f_{2}$ be two meromorphic functions on $M$ of degree $n_{1}$ and $n_{2}$ respectively.

If $f_{1}$ and $f_{2}$ generate the full field $C(M)$ of meromorphic functions on $M$, then
$g\leqq(n_{1}-1)(n_{2}-1)$ .

The following lemma by Namba is easily obtained from Lemma 1.1.

LEMMA 1.2 (Namba [6]) Let $M$ be a compact $R\iota emann$ surface of genus $g$

and $f$ be a meromorphic function of degree $p$ on $M$ with a prime number $p$ .
(1) If $h$ is a meromorphic function of degree $n$ on $M$ satisfying

$(p-1)(n-1)\leqq g-1$ , then $p$ divides $n$ and $h=r(f)$ , where $r(x)$ is a rational

function of degree $n/p$ .
(2) If $(p-1)^{2}\leqq g-1$ , then $M$ is p-gonal and having a unique linear system

$g_{p}^{1}$ of degree $p$ and dimension 1.

PROOF. (1) By lemma 1.1, the subfield $C(f, g)$ of $C(M)$ generated by $f$

and $h$ is not equal to $C(M)$ . As $p=[C(M):C(f)]$ is a prime number,

$C(f)=C(f, g)$ . (2) If $h$ is any meromorphic function of degree $p$ , then
$C(h)=C(f)$ by (1). $\square $

Next we give some results concerning covering maps. Let $\pi:M^{\prime}\rightarrow M$ be an
arbitrary covering with compact Riemann surfaces $M$ and $M^{\prime}$ . For a divisor
$D=\Sigma n_{i}Q_{i}(n_{i}\in Z, Q_{i}\in M^{\prime})$ we define a divisor $Nm_{\pi}D=NmD$ by $\Sigma n_{i}\pi(Q_{i})$ . On
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the other hand, for a meromorphic function $f$ on $M^{\prime}$ we denote by $Nm[f]$ the

meromorphic function on $M$ obtained by the norm map $Nm:C(M^{\prime})\rightarrow C(M)$ . It

is well known that the equation of principal divisors $Nm.(f)=(Nm[f])$ holds
([2]). When the divisor $Nm(f)$ is trivial, we can choose a constant $c$ such that

the divisor $Nm(f+c)$ is non trivial. This means that $d^{\prime}\geqq d$ if $M^{\prime}$ and $M$ are
$d^{\prime}$ -gonal and d-gonal respectlvely.

When $M$ and $M^{\prime}$ are both d-gonal, we have the following lemma:

LEMMA 1.3 (Ishii [3]) Let $\pi^{\prime}$ : $M^{\prime}\rightarrow M$ be a covering map that both $M$ and
$M^{\prime}$ are d-gonal. Then;

(1) there exists a covering map $\pi:P_{1}^{\prime}\rightarrow P_{1}$ with Riemann spheres $P_{1}^{\prime}$ and $P_{1}$

satisfying the followmg diagram;
$\psi^{\prime}$

$M^{\prime}-P_{1}^{\prime}$

$\pi^{\prime}\downarrow$ $\downarrow\pi$ , $C(M^{\prime})=C(M)\otimes C(P_{1}^{\prime})$ , $C(M)\cap C(P_{1}^{\prime})=C(P_{1})$ ,
$C(P_{1})$

$M-P_{1}$
$Nm[\psi^{\prime}]$

where $\psi^{\prime}$ is a morphism of degree $d$ ,

(2) if $M^{\prime}$ has a unique $g_{d}^{1}$ and $\pi^{\prime}$ is normal, then $\pi$ is also normal

and $Gal(M^{\prime}/M)\cong Gal(P_{1}^{\prime}/P_{1})$ (i.e., cyclic, dehedral, tetrahedral, octahedral, $or$

isosahedral).

\S 2.

Let $M$ be a compact Riemann surface of genus $g$ that has two meromorphic

functions $h$ and $h^{\prime}$ of degree $d$ and d’ respectively. Let $C(h, h^{\prime})$ be a subfield

of $C(M)$ generated by $h$ and $h^{\prime}$ , and $\tilde{M}$ be the compact Riemann surface of
genus $\tilde{g}$ whose function field is isomorphic to $C(h, h^{r})$ . Put $[C(M):C(h, h^{\prime})]=t$ .
Then $\tilde{M}$ has meromorphic functions of degree $d/t$ and $d^{\prime}/t$ induced by $h$ and
$h^{\prime}$ respectively. By Lemma 1.1 we have;

LEMMA 2.1. $\tilde{g}\leqq(d/t-1)(d^{\prime}/t-1)$ .

From now on we assume;

$M$ is defined by the equation $*$), $T$ is the automorphism of $M$ defined

by $(x, y)\vdash\rightarrow(x, \zeta_{d}y)$ , where $\zeta_{d}=\exp(2\pi i/d)$ , and $h$ is the canonical map
$M\rightarrow M/\langle T\rangle=P_{1}$ .

We denote by $g_{k}$ the genus of the quotient compact Riemann surface $ M/\langle T^{k}\rangle$

for a positive integer $k$ dividing $d$ and $k\neq d$ . Moreover if $k=q$ is a prime
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number, we denote by $s_{q}$ the number of branch points of the canonical map
$M/\langle T^{q}\rangle\rightarrow M/\langle T\rangle\cong P_{1}$ . $s_{q}$ is equal to the number of $r_{i}\prime s$ prime to $q$ and we
have $g_{q}=(q-1)(s_{q}-2)/2$ $(. \Sigma\gamma_{i}\equiv 0mod d)$ .

LEMMA 2.2. Assume that $M$ has a meromorphic function $h^{\prime}$ of degree $d^{\prime}$ .
Let $q_{0}$ be the smallest prime number dividing G.C.D. $(d, d^{\prime})=(d, d^{\prime})$ . If $d^{\prime}$

satisfies the inequalities:

$g_{q}>(d/q_{0}-1)(d^{\prime}/q_{0}-1)\cdots\cdots\cdot\cdot**)$

for any prime $q$ dividing G.C.D. $(d, d^{\prime})$ ,

then $t=d$ or 1. Especially when $(r_{i}, d)=1$ for all $1\leqq i\leqq s,$ $t=d$ or 1 provided
$g_{q_{0}}>(d/q_{0}-1)(d^{\prime}/q_{0}-1)$ .

PROOF. Assume $t\neq d,$ $1$ . As $\langle T^{d/l}\rangle$ is a unique subgroup of order $t$ in
$\langle T\rangle,\tilde{M}$ should be isomorphic to $ M/\langle T^{d/l}\rangle$ and $\tilde{g}=g_{d/t}$ . For any prime number
$q$ dividing $d/t(\neq 1)$ , we have $\langle T^{q}\rangle\supset\langle T^{d/l}\rangle$ and $\tilde{g}-1\geqq g_{q}-1\geqq(d/q_{0}-1)(d^{\prime}/q_{0}-1)$

$\geqq(d/t-1)(d^{\prime}/t-1)$ . This contradicts to Lemma 2.1. If $(r_{i}, d)=1$ for all
$i=1,$ $\cdots,$ $s$ , then $s=s_{q}=s_{q_{0}}$ and $g_{q}\geqq g_{q_{0}}$ for any prime number $q$ dividing $(d, d^{\prime})$ .
Thus the latter part of this lemma is reduced to the first part. $\square $

PROPOSITION 2.3. Assume $M$ is a compact Riemann surface of genus $g$

defined by the equation $*$ ). Let d’ be a positive integer satisfying the inequal-
ities $**$ ) in lemma 2.2 and $(d-1)(d^{\prime}-1)\leqq g-1$ . Then;

(1) If $d$ does not divide $d^{\prime}$ , then there is no meromorphic function of
degree $d^{\prime}$ .

(2) If $d$ divides $d^{\prime}$ , then every meromorphic function $h^{\prime}$ of degree d’ $is$

obtained by $r(h)$ , where $r$ is some rational function of degree $d^{\prime}/d$ and $h$ is the
canonical map $ M\rightarrow M/\langle T\rangle$ .

PROOF. Let $h^{\prime}$ be a meromorphic function of degree $d^{\prime}$ . $(d-1)(d^{\prime}-1)\leqq g-1$

means $t\neq l$ by lemma 1.1. Thus $C(h, h^{\prime})=C(h)$ by lemma 2.2 and $h^{\prime}=r(h)$ for
some rational function $r$ . $\square $

REMARK. If $d=p$ is a prime number, this proposition is exactly same as
Lemma 1.2(1).

THEOREM 2.4. Let $M$ be a compact Riemann surface of genus $g$ defined by
$*)$ and $q_{0}$ be the smallest prime number dividing $d$ .

(1) Assume $(d-1)(d-2)\leqq g-1$ and $(d/q_{0}-1)(d/q_{0}-2)\leqq g_{q}-1$ for any prxme
$q$ dividing $d$ . Then $M$ is d-gonal.
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(2) Assume $(d-1)^{2}\leqq g-1$ and $(d/q_{0}-1)^{2}\leqq g_{q}$ 1 for any prime $q$ dividing $d$ .
Then $M$ is d-gonal and having a unique $g_{d}^{1}$ .

PROOF. (1) Assume that there is a meromorphic function $h^{\prime}$ of degree $d^{\prime}$

with $d’\leqq d-1$ . By $(d-1)(d-2)\leqq g-1$ and lemma 1.1, $t=[C(M):C(h, h)]\neq 1$ .
As $t|(d, d^{\prime})$ and $d^{\prime}<d$ , we have $d^{\prime}\leqq d-t$ . Thus $d^{\prime}/q_{0}\leqq d/q_{0}-1$ and
$(d/q_{0}-1)(d^{\prime}/q_{0}-1)\leqq(d/q_{0}-1)(d/q_{0}-2)\leqq g_{q}-1$ for any prime number $q$ dividing
$d$ . Hence the assumptions in Proposition 2.3 are satisfied. This is a con-
tradiction. (2) Let $h^{\prime}$ be a meromorphic function of degree $d$ . By the same
way as in (1) and Proposition 2.3(2), we have $C(h, h^{\prime})=C(h)$ . Thus $M$ has a
unique $g_{d}^{1}$ . $\square $

When $(r_{i}, d)=1$ for all $i=1,$ $\cdots,$
$s$ , we can restate Theorem 2.4 as follows;

THEOREM 2.4’. (1) If $(d-1)(d-2)\leqq g-1$ and $(d/q_{0}-1)(d/q_{0}-2)\leqq g_{q_{0}}-1$ ,

then $M$ is d-gonal.
(2) If $(d-1)^{2}\leqq g-1$ and $(d/q_{0}-1)^{2}\leqq g_{q_{0}}-1$ , then $M$ is d-gonal and having a

unique $g_{d}^{1}$ .

PROOF. Use the latter part of Lemma 2.2. $\square $

EXAMPLE 2.5. Let $M$ be a compact Riemann surface defined by

$y^{4}-x(x-a_{1})(x-a_{2})(x-a_{3})\{(x-a_{4})(x-a_{5})(x-a_{6})(x-a_{7})\}^{2}=0$ , where $a_{i}(1\leqq i\leqq 7)$

are distinct non-zero numbers, then $g=7$ . Put $ N=M/\langle T^{2}\rangle$ . $N$ is defined by

$y^{2}-x(x-a_{1})(x-a_{2})(x-a_{3})=0$ , i.e., $g_{2}=1$ . $M$ satisfies the conditions of Theorem
2.4(1), and then $M$ is 4-gonal. On the other hand $M$ has infinitely many $g_{4}^{1}$ .

In fact if $g_{2}^{1}$ and $g_{2}^{1\prime}$ are two distinct linear systems on $N$, then $\pi^{*}g_{2}^{1}$ and $\pi^{*}g_{2}^{1\prime}$

are distinct linear systems of degree 4 and dimension 1 on $M$, where $\pi;M\rightarrow N$

is a canonical map. Thus $M$ has infinitely many $g_{4}^{1}$ .

EXAMPLE 2.6. For prime numbers $p$ and $q$ with $p\geqq q$ , let $M$ be defined by

$y^{pq}-(x-a_{I})^{r_{1}}(x-a_{2})^{r_{2}}\cdots(x-a_{s})^{r_{S}}=0$ with $\Sigma r_{i}\equiv 0mod pq$ and $(r_{i}, pq)=1$ ,

$1\leqq i\leqq s$ . If $s$ satisfies $s\geqq 2pq-1$ and $(p-1)(p-2)<(q-1)(s-2)/2$ , then $M$ is

pq-gonal. If $s$ satisfies $s\geqq 2pq+1$ and $(p-1)^{2}<(q-1)(s-2)/2$, then $M$ is pq-gonal

and having a unique $g_{pq}^{1}$ .

PROOF. These results are easily from $g=(pq-1)(s-2)/2,$ $g_{p}=(p-1)(s-2)/2$ ,

$g_{q}=(q-1)(s-2)/2$, and Theorem 2.4’. $\square $

EXAMPLE 2.7. Let $M$ be defined by $y^{4}-x^{2}(x-a_{1})(x-a_{2})(x-a_{3})=0$ , where
$a_{1},$ $a_{2},$ $a_{3}$ are distinct non-zero numbers. The covering map $x:M\rightarrow P_{1}$ is
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completely ramified at $A_{1},$ $A_{2},$ $A_{3}$ and $Q$ with $x(A_{i})=a_{i}(i=1,2,3)$ and $ x(Q)=\infty$

respectively. Also $x$ is ramified at two points $P_{1}$ and $P_{2}$ with ramification
index 2 and $x(P_{1})=x(P_{2})=0$ . Thus $g=4(<(4-1)(4-2))$ and $g_{2}=1$ . Then this
$M$ does not satisfy the conditions in Theorem 2.4(1). In fact $M$ is trigonal
with a principal divisor $(x/y)=P_{1}+P_{2}+Q-A_{1}-A_{2}-A_{3}$ , and not a hyperelliptic
curve by Lemma 1.2(1).

REMARK. $M$ in Example 2.7 does not satisfy the condition of Lemma 1.2(2)

for $p=3$ . But $M$ has unique $g_{3}^{1}$ , because $M$ has a canonical divisor $(dx/y)=$

$2A_{1}+2A_{2}+2A_{3}$ and by [4] (M. 8.7).

\S 3.

In the following sections we give some applications of our results in \S 2.
At first we will prove the $fo$][$0Wlng$ Theorem, which have been obtained by

Namba [7] and improved by Kato [5] in the case $d=p$ a prime number.

THEOREM 3.1. Let $M$ and $M^{\prime}$ be defined by the following equations;

$y^{d}-(x-a_{1})^{r_{1}}\cdots(x-a_{g})^{r_{s}}=0\cdots\cdots\cdots\cdots\cdot\cdot i)$

and
$\tilde{y}^{d}-(\tilde{x}-b_{1})^{t_{1}}\cdots(\tilde{x}-b_{s})^{t_{s}}=0$ . . . . . . . . . . . . . . ii)

respectively, where $1\leqq r_{i}\leqq d-1$ , $1\leqq t_{i}\leqq d-1$ , $\Sigma r_{i}\equiv\Sigma t_{i}\equiv 0mod d$ . Assume $M$

satisfies the conditions in Theorem 2.4(2), and $M$ and $M^{\prime}$ are birationally equiv-
alent. Then, by changing the indeces suitably, we have;

(1) there exists $A\in Aut(P_{1})$ satisfying $b_{i}=Aa_{i}(1\leqq i\leqq s)$ , and

$\#)\left\{\begin{array}{l}ord_{p}t_{i}=ord_{p}r_{i} if ord_{p}r_{i}<ord_{p}d\\ord_{p}t_{i}\geqq ord_{p}d if ord_{p}r_{i}\geqq ord_{p}d\end{array}\right.$ $(1\leqq i\leqq s)or$

for each prime number $p$ dividing $d$ .
(2) if $(r_{1}, d)=1$ , then $r_{1}/t_{1}\in(Z/dZ)^{x}$ and $(r_{1}/t_{1})t_{i}\equiv r_{i}mod d(1\leqq i\leqq s)$ .
(3) if $d$ is square free, then $r_{1}t_{\iota}\equiv t_{1}r_{i}mod d(2\leqq i\leqq s)$ .

PROOF. (1) The proof owes to the uniqueness of $g_{d}^{1}$ (Theorem $2.4(2)$), and
goes almost same way as in the proof of Theorem 1.1 in [6]. Let $\varphi:M\rightarrow M^{\prime}$

be the birational map. As $M$ has unique $g_{d}^{1}$ , there exists $A\in AutP_{1}$ satisfying
a commutative diagram;
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$MM^{\prime}\underline{\varphi}$

$x\downarrow P_{1}-P_{1}\downarrow\tilde{x}$

.
$A$

Thus we may assume $Aa_{i}=b_{i}$ for $i=1,$ $\cdots,$ $s$ . Let $M^{\prime\prime}$ be a curve defined by

$z^{d}-(u-A^{-1}b_{1})^{t_{1}}\cdots(u-A^{-1}b_{s})^{t_{s}}=0$ and $\psi_{A}=\psi$ be a birational map from $M^{\prime}$ to
$M^{\prime\prime}$ defined by $(\tilde{x},\tilde{y})\rightarrow(u, z)=(A^{-1}\tilde{x}, c\tilde{y}/(\tilde{x}-\gamma)^{k^{\prime}})$ , where $C1S$ a suitable constant,

$\gamma=A(\infty)$ and $k^{\prime}=(\Sigma t_{\nu})/d$ ([6]). Put $ w=z\cdot\psi\cdot\varphi$ , which is a meromorphic function
on $M$. Then $M$ is also defined by

$w^{d}-(x-a_{I})^{t_{1}}\cdots(x-a_{s})^{\iota_{s}}=0\cdots\cdots\cdots\cdots i^{\prime})$ .

As both i) and $i^{\prime}$ ) define the ramification type of the same cyclic covering

$x$ : $M\rightarrow P_{1}$ , we can see $\#$ ) by considering a covering map $M/\langle T^{p^{ord}p^{d}}\rangle\rightarrow P_{1}$

induced by $x$ .
(2), (3) Put $v=w^{r_{1}}/y^{t_{1}}$ , then we have;

$ v^{d}-(x-a_{2})^{r_{1}t_{2}-r_{2}t_{1}}\cdots(x-a_{s})^{r_{I}\iota_{s}-r_{S}t_{1=0}}\cdots$ . iii).

Put $[C(M):C(x, v)]=r$ . As $C(M)\supset C(x, v)\supset C(x)$ are cyclic extensions, $v^{d/t}$ is

in $C(x)$ and $r_{1}t_{i}-t_{1}r_{i}\equiv 0mod t(2\leqq i\leqq s)$ by iii). Moreover we can see that $s$

numbers $(r_{1}t_{i}-t_{1}r_{i})/t$ $(2\leqq i\leqq s)$ and $d/t$ have no common divisor and
G.C. $D.(r_{1}, t_{1}, d)=(r_{1}, t_{1}, d)$ divides $t$ . On the other hand $C(x, v)$ is the function
field of the curve $ M/\langle T^{d/t}\rangle$ . Assume $d\neq t$ , and take a prime number $q$ dividing
$d/t$ . Then the curve $ M/\langle T^{q}\rangle$ is defined by the following two equations simul-
taneously;

$y^{q}-(x-a_{1})^{r_{1}}\cdots(x-a_{s})^{r_{S}}=0\cdots\cdots\cdots\cdots\cdots\cdots\cdot\cdot A)$

and
$v^{q}-(x-a_{2})^{(r_{1}l_{2}-r_{2}t_{1})/f}$ ... $(x- as)^{(r_{1}t_{s}-r_{S}t_{1})}/l_{=0}$ . . . . B).

Now we will show $r_{1}\not\equiv 0mod q$ . In fact this is obvious when $(r_{1}, d)=1$ . Next
we consider the case $d$ is square free. From $\#$ ) we have $(r_{1}, t_{1}, d)=(r_{1}, d)$ .
As $d$ is square free and $(r_{1}, t_{1}, d)|t,$ $(d/t, r_{1}, d)=(d/t, r_{I})=1$ and $(r_{I}, q)=1$ .
Thus $a_{1}$ is a branch point of the covering $x;M/\langle T^{q}\rangle\rightarrow P_{1}$ by A). But this
contradicts to B). So we have $t=d$ and

$r_{1}t_{i}-t_{1}r_{i}\equiv 0mod d$ $(2\leqq i\leqq s)$ .

When $(r_{1}, d)=1$ , then $(t_{1}, d)=1$ by $\#$ , and we get (2). $\square $

REMARK. Conversely if there exists $A\in Aut(P_{1})$ as in (1) and we have
$(r_{1}/t_{1})t_{i}\equiv r_{i}mod d(2\leqq i\leqq s)$ , then $M$ and $M^{\prime}$ are birationally equivalent ([6]).
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\S 4.

Next we consider a covering map $\pi^{\prime}$ : $M^{\prime}\rightarrow M$ with a cyclic d-gonal curve
$M$ defined by $*$ ) of genus $g$ and a d’-gonal curve $M^{\prime}$ of genus $g^{\prime}$ .

THEOREM 4.1. Assume $d=d^{\prime}$ . Then;
(1) $M^{\prime}$ is also a cyclic d-gonal curve.
(2) If $M$ satisfies the conditions of Theorem 2.4(2) $aud\pi^{\prime}$ is normal, then

the Galois group $af\pi^{\prime}$ is cyclic, dehedral, tetrahedral, octahedral or isosahedral.

PROOF. (1) Easily from Lemma 1.3(1). (2) Let $T$ (resp. $T^{\prime}$ ) be the auto-
morphism of order $d$ on $M$ (resp. $M^{\prime}$ ) as in \S 2. By the commutative diagram
in Lemma 1.3 and the uniqueness of $g_{d}^{1}$ on $M$ we may assume that $T^{\prime}$ induces
$T$ . For each prime number $q$ dividing $d$ , we have a commutative diagram;

$MMM^{\prime}\downarrow=M^{\prime}/^{/_{\langle T\rangle^{q}}}\downarrow^{\langle T_{q}^{\prime}\rangle}$

Let $g_{q}^{\prime}$ be genus of $ M^{\prime}/\langle T^{\prime q}\rangle$ . As $g\leqq g^{\prime}$ and $g_{q}\leqq g_{q}^{\prime},$
$M^{\prime}$ is also satisfying the

conditions in Theorem 2.4(2). Then $M^{\prime}$ has a unique $g_{d}^{1}$ . By Lemma 1.3(2)

we have our results. $\square $

THEOREM 4.2. Assume $d\leqq d^{\prime}$ . If $d$ and d’ satisfy the conditions of Prop-
osition 2.3. on $M$, then $d$ divides $d^{\prime}$ .

PROOF. Let $D^{\prime}$ be a positive divisor of degree d’ on $M^{\prime}$ such that $|D^{\prime}|$

has projective dimension 1. Assume Nm.D’ has some common polnt with Nm.E
for each $E\in|D^{\prime}|$ . Then each $E\in|D^{\prime}|$ has some common point with $\pi^{*}NmD^{\prime}$ .
On the other hand if $E$ and $E^{\prime}$ in $|D^{\prime}|$ have common points, then $E=E^{\prime}$ by

the minimality of $d^{\prime}$ . Hence $|D^{\prime}|$ should be a finite set. This is a contradic-

tion. Thus there is a meromorphic function $h$ of degree $d^{\prime}$ on $M^{\prime}$ and $Nm[h]$

is also of degree d’ on $M^{\prime}$ . By Proposition 2.3 we have $d|d^{\prime}$ . $\square $

COROLLARY 4.3. Let $\pi^{\prime}$ : $M^{\prime}\rightarrow M$ be an unramified covering of degree $q$ with
a cyclic p-gonal curve $M$ of genus $g$ , where $p$ and $q$ are distinct prime numbers.
Assume $g>p^{2}q-2p+1$ . Then;

(a) $M^{\prime}$ is a pq-gonal curve with a unique $g_{pq}^{1}$ .
(b) Let $\psi:M^{\prime}\rightarrow P_{1}^{\prime}$ be the covering map defined by $g_{pq}^{1}$ in a), then;

(b-i) $\psi$ is not cyclic (i.e., $M^{\prime}$ is not a cyclic pq-gonal curve).

(b-ii) if $p\parallel q-1$ , then $\psi$ is not normal.
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PROOF. (a) Let $h:M\rightarrow P_{1}$ be the covering map of degree $p$ , then $h\circ\pi^{\prime}$ is
a meromorphic function of degree $p_{q}$ on $M^{\prime}$ . For $g>p^{2}q-2p+1>(pq-1)(p-1)$ ,
$M^{\prime}$ is pm-gonal $(1\leqq m\leqq q-1)$ or $p_{q}$-gonal by Theorem 4.2. (see the remark of
Proposition 2.3). Now we assume that $M^{\prime}$ is $pq$-gonal. Let $\psi$ be a meromorphic
function of degree $p_{q}$ on $M^{\prime}$ . Put $K=C(\psi, h\circ\pi^{\prime})$ and $[C(M^{\prime}):K]=t$ . As the
genus $g^{\prime}$ of $M^{\prime}$ is $q(g-1)+1$ , we have $g^{\prime}>(pq-1)^{2}$ and $t\neq 1$ . Consider the
following diagram;

$C(M^{\prime})\supset K\supset C(\psi)$

$\cup$ $\cup$

$C(M)\supset C(h\circ\pi^{\prime})$ .
If $t=q$, then $[K:C(h\circ\pi^{\prime})]=p$ and genus of $K=g$ (. $\pi^{\prime}$ is unramified and
$(p, q)=1)$ . For $g>(p-1)^{2},$ $K=C(h\circ\pi^{\prime})$ . This is a contradiction. If $t=p$ , then
$K\supset C(h\circ\pi^{\prime})$ is an unramified extension. As $C(h\circ\pi^{\prime})$ is of genus $0$, this is a
contradiction. Thus we have $t=pq$ and $M^{\prime}$ has a unique $g_{pq}^{1}$ . If $M^{\prime}$ is
pm-gonal $(1\leqq m\leqq q-1)$ and $\psi$ is a meromorphic function of degree $pm$ on $M^{\prime}$ ,

then $[C(M^{\prime}):C(\psi, h\circ\pi^{\prime})]=p$ by $(p, q)=1$ and $g^{\prime}>(pm-1)(pq-1)$ . This is a
contradiction.

(b-i) We may assume $ h\circ\pi^{\prime}=\psi$ by (a). If $\psi$ is cyclic, then there exists an
automorphism $T^{\prime}$ on $M^{\prime}$ of order $p$ , and we have a commutative diagram;

$\pi^{\prime}\downarrow\downarrow\pi M^{\prime-M^{\prime}/\langle T\rangle}M_{\overline{h}}M/\langle T\rangle^{\prime}=P_{1}$

, where $\pi^{\prime}$ is unramified.

For $(p, q)=1$ , $\pi$ is unramified. This is a contradiction. (b-ii) Assume $\psi$ is
normal with galois group $G$ . If $p<q$ and $p$ I $q-1$ , it is well known that $G$ is
cyclic. But this can not be happened by (a). If $p>q$ , then $G$ has a unique
normal subgroup $\langle T^{\prime}\rangle$ of index $q$ generated by $T^{\prime}$ . Thus we have a same
commutative diagram as in the proof of (b-i). This is also a contradiction. $\square $

\S 5.

We consider a covering $\pi^{\prime}$ : $M\rightarrow N$, where $M$ is cyclic d-gonal and $N$ is
e-gonal. Put $deg\pi=n$ and $d’=ne$ .

THEOREM 5.1. Assume $d$ and d’ satisfy the conditions of Proposition 2.3.
Then $e$ divides $d$ . Moreover if $ u:M\rightarrow M/\langle T^{d/e}\rangle$ is the canonical map, then there
exists a covering map $v;M/\langle T^{de}/\rangle\rightarrow N$ satisfying $\pi^{\prime}=v\circ u$ . Especially when
$d=d^{\prime}=ne,$ $N$ is isomorphic to $ M/\langle T^{d/e}\rangle$ .
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PROOF. Let $\psi_{N}$ : $N\rightarrow\tilde{P}_{1}$ be the covering over Riemann sphere $\tilde{P}_{1}$ of degree
$e$ . Then $\psi_{N}\circ\pi^{\prime}$ is a meromorphic function on $M$ of degree $d’=ne$ . By Prop-

osition 2.3, $d$ divides $ne=d^{\prime}$ , and we have $a$ commutative diagram;

$\pi^{\prime}|\downarrow\tilde{\pi}M^{\prime}P_{1}=M/\langle T\rangle\underline{h}$

$N-\tilde{P}_{1}$ ,
$\psi_{N}$

with a rational function $\tilde{\pi}$ of degree $d^{\prime}/d$ and the canonical map $h$ . The

function fields $C(N)$ and $C(P_{1})$ are linearly independent over $C(\tilde{P}_{1})$ for the
minimality of $e$ . Then there exists a e-gonal curve $\tilde{M}$ with a function field
$C(\tilde{M})$ isomorphic to $C(P_{1})\bigotimes_{C(\tilde{P}_{1})}C(N)$

. By the universal property of $C(\tilde{M})$ we

have the following commutative diagram;

where $deg\tilde{\psi}=e$ and $deg\tilde{\pi}=ne/d$ . We can see that $e$ divides $d$ . As $h$ is a
cyclic extension, $\tilde{M}\cong M/\langle T^{d/e}\rangle$ . $\square $

EXAMPLE 5.2. Let $M$ be the cyclic pq-gonal curve defined in Example 2.6

with $p\geqq q,$ $s\geqq 2pq+1$ and $(p-1)^{2}<(q-1)(s-2)/2$ . Then any covering $\pi:M\rightarrow N$

of degree $p$ (resp. q) with a $q$ (resp. p)-gonal curve $N$ is birational to the

cyclic $q$ (resp. p)-gonal curve defined by $y^{q}-(x-a_{1})^{r_{1}}\cdots(x-a_{s})^{r_{s}}=0$ (resp.

$y^{p}-(x-a_{1})^{r_{1}}\cdots(x-a_{s})^{r_{s}}=0)$ .

\S 6.

Let $M$ be a cyclic d-gonal curve with a unique $g_{d}^{1}$ defined by

$y^{d}-(x-a_{1})^{r_{1}}\cdots(x-a_{s})^{r_{s}}=0$ , $\Sigma\gamma_{i}\equiv 0mod d,$ $\cdots\cdots*$ )

$(r_{i}, d)=1$ for all $i$ , here we can take $\infty$ as one of $a_{i}\prime s$ .

Let $T$ be the automorphism of order $d$ as in \S 2, and $\psi:M\rightarrow M/\langle T\rangle$ be the
canonical map. We will determine the equation $*$ ), which defines $M$ having an
automorphism $V(\not\in\langle T\rangle)$ of order $N$.
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For the uniqueness of $g_{d}^{1}$ , we have $ V\langle T\rangle V^{-1}=\langle T\rangle$ and $V$ induces an
automorphism $\tilde{V}$ on $M/\langle T\rangle=P_{1}(x)$ . Let $C(x)$ and $C(u)$ be the function fields

of $ M/\langle T\rangle$ and $ M/\langle V, T\rangle$ respectively. Then $\pi^{\prime}$ : $ M/\langle T\rangle\rightarrow M/\langle T, V\rangle$ is a cyclic

covering of order $N^{\prime}(N^{\prime}|N)$ and we may assume $\pi^{J*}u=x^{N^{\prime}}$ .
Before considering generally, we study the following two cases;

Case 1) $\langle T\rangle\cap\langle V\rangle=\langle T\rangle$ , Case 2) $\langle T\rangle\cap\langle V\rangle=\{1\}$ .

Case 1) $\langle T\rangle\cap\langle V\rangle=\langle T\rangle$

We can see that $d|N$ and $N^{\prime}=N/d$ . We may assume $V^{N}/a=T$ and
$V*x=\zeta^{\prime}x$ with a primitive N’-th root $\zeta^{\prime}$ of 1. We denote the set {fixed point

of $\nu$ } by $F(\nu)$ . Then $\# F(\nu)=2$ .

Case l-a) $\# F(V)\cap\{a_{1}, \cdots, a_{s}\}=2$

We may assume that two elements of the above set are $a_{S-1}=0$ and $ a_{S}=\infty$ .
As $\tilde{V}$ acts on $\{a_{1}, \cdots , a_{S-2}\}$ faithfully, $M$ can be defined by;

A) $y^{d}=x\{\prod_{t=1}^{k}\prod_{j\Leftarrow 1}^{N/d}(x-\zeta^{\prime f-1}c_{t})^{m_{N/d\cdot(t-1)+!\}}}$ ,

$1+\sum_{l=1}^{k}\sum_{f=1}^{N/d}m_{N/d\cdot(t-1)}+J\not\equiv 0mod d$ ,

where $(m_{*}, d)=1$ , and $c_{l}(\neq 0)$ are distinct complex numbers satisfying

$\{\zeta^{\prime j-1}c_{t}|1\leqq j\leqq N/d\}\cap\{\zeta^{\prime j-1}c_{\$}|1\leqq j\leqq N/d\}=\emptyset$ for $t\neq s$ .
By acting $V^{*}$ on both sides of A), we have;

B) $(T^{*}y)^{d}=\zeta^{JM}\{\prod_{\iota=1}^{k}\prod_{j=1}^{N/d}(x-\zeta^{Jj-2}c_{l})^{m_{N/d\cdot(l-1)+j\}X}}$ ,

where $ M=1+\sum_{l=1}^{k}\sum_{j=1}^{N/d}m_{N/d\cdot(t-1)j}+\cdot$

By the proof of Theorem 3.1 and comparing A) with B), there exists a posi-

tive integer $v(1\leqq v<d, (v, d)=1)$ satisfying $v\cdot m_{N/d\cdot(\iota-1)}+J\equiv m_{N/d\cdot(l-1)}+j+1mod d$

$(1\leqq j\leqq N/d-1)$ , and $vm_{N/d\cdot t}\equiv m_{N/d\cdot(t-1)1}+mod d$ . But in this case, $v\cdot 1\equiv 1mod d$ .
Thus we have $v=1$ and $m_{N/d\cdot(l-1)1}+=\cdots=m_{N/d\cdot t}^{p}=^{ut}r_{l}(t=1\leqq t\leqq k)$ . The equation
A) is;

1) $y^{d}=x\{\prod_{l\approx 1}^{k}\prod_{j=1}^{N/d}(x-\zeta^{Jj-1}c_{l})^{r_{t}}\}=x\cdot\prod_{l=1}^{k}(x^{N/d}-b_{l})^{r_{t}}$ ,

As $V^{*}y^{d}=\zeta^{\prime}y^{d}$ and $V$ is of order $N$, we have $V^{*}y=\eta y$ , where $\eta$ satisfies
$\eta^{d}=\zeta^{\prime}$ and $\eta^{N^{\prime}}$ is a primitive $N/N^{\prime}$ $(=d)$-th root of 1.
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PROPOSITION 6. $1a$ ). Case l-a happens if and only if $M$ is defined by I)

with $d|N,$ $(r_{t}, d)=1$ ($t=1,$ $\cdots$ , k) and $N/d\sum_{l=1}^{k}r_{t}+1\not\equiv 0mod d$ . $V$ is defined by

$V^{*}x=\zeta^{\prime}x$ and $V^{*}y=\eta y,$ $\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdot 1$ )

where $\zeta^{\prime}$ is a primitive N’-th root of 1, $\eta$ satisfies $\eta^{d}=\zeta^{\prime}$ and $\eta^{N^{\prime}}$ is a primitive

d-th root of 1 (for example, $\eta=e^{2\pi i/}N$ and $\zeta^{\prime}=e^{2\pi i/}N^{\prime}$ satisfy these conditions).

Case $1-b$) $\# F(\nu)\cap\{a_{1}, \cdots, a_{*}\}=1$

We may assume that the element of the above set is $a_{s}$ . There exists a
point $P\in M$ such that $\psi(P)\not\in\{a_{1}, \cdots, a_{s}\}$ and $V(P)\in\langle T\rangle P=\langle V^{N}/a\rangle P$. Then
$V^{d}(P)=P$. If $(d, N/d)=r\neq 1$ , then $T^{d/r}P=V^{N/d\cdot d/r}P=P$. This contradicts
to $\psi(P)\not\in\{a_{1}, \cdots, a_{s}\}$ . Thus $(d, N/d)=1$ and $\langle V^{d}\rangle\cap\langle V^{N/d}\rangle=\{1\}$ . We have

$C(M)=C(M/\langle V^{N/d}\rangle)\bigotimes_{c_{(H/\langle V\rangle}}C(M/V^{d})$ , Assume $\psi(P)=\infty,$ $a_{\iota}=0$ and $\pi^{\prime*}u=x^{Nd}/$ .

As $M/\langle V^{d}\rangle\rightarrow M/\langle V\rangle=P_{1}(u)$ is cyclic of degree $d,$ $C(M/\langle V^{d}\rangle)$ is defined by

$y^{d}=u\prod_{l=1}^{k}(u-b_{l})^{n_{l}}$ , with $(n_{t}, d)=1(t=1, \cdots, e)$ and $1+n_{1}+\cdots+n_{k}\not\equiv 0mod d$ .
Then $M$ is defined by $y^{d}=x^{N/a}(\chi^{N}/d_{-b_{1})^{n_{1}}}\ldots(x^{N/d}-b_{k})^{n_{k}}$ . For $(d, N/d)=1$ ,
$M$ can be defined by the following equation;

11) $y^{d/d}=x\cdot(x^{N}-b_{1})^{r_{1}}\cdots(x^{N/d}-b_{k})^{r_{i}}$ , with $1+\Sigma r_{t}\not\equiv 0mod d$ .
After all, we have;

PROPOSITION 6. $1b$). Case $1-b$) happens if and only if $(N/d, d)=1$ and $M$ is

defined by 11) with $(r_{t}, d)=1$ and $1+\sum_{t=1}^{e}r_{t}\not\equiv 0mod d$ . $V$ is defined by;

$V^{*}x=\zeta^{\prime}x$ and $V^{*}y=\eta y,$ $\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdot 2$)

where $\zeta^{\prime}$ is a primitive N’-th root of 1, $\eta$ satisfies $\eta^{d}=\zeta^{\prime}$ and $\eta^{N^{\prime}}$ is a $p\gamma imitive$

d-th root of 1.

Case $1-c$) $\# F(\nu)\cap\{a_{1}, \cdots, a_{s}\}=\emptyset$

By the same way as in Case $1-b$), we have;

PROPOSITION 6. $1c$). Case $1-c$ ) happens $\iota f$ and only if $(N/d, d)=1$ and $M$ is
defined by;

m) $y^{d}=(x^{N/d}-b_{1})^{r_{1}}\cdots(x^{Nd}/-b_{k})^{r_{k}}$

with $(r_{l}, d)=1$ and $\sum_{l=1}^{k}r_{l}\equiv 0mod d$ . $V$ is defined by;
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$V^{*}x=\zeta^{\prime}x$ and $V^{*}y=\zeta^{\prime\prime}y,$ $\cdots\cdots\cdots\cdots\cdots\cdots\cdot\cdot 3$)

where $\zeta^{\prime}$ (resp. $\zeta^{\prime\prime}$ ) is a primitive $N^{\prime}$ (resp. $d$)-th root of 1.

Case 2) $\langle T\rangle\cap\langle V\rangle=\{1\}$

The automorphism fi on $ M/\langle T\rangle$ induced by $V$ is of order $N$, and we may
assume that $V*x=\zeta x$ with a primitive N-th root $\zeta$ of 1.

Case $2-a$ ) $\#\{a_{1}, \cdots , a_{s}\}\cap F(V)=2$ and
Case $2-b$ ) $\#\{a_{1}, \cdots, a_{g}\}\cap F(\tilde{V})=1$

By the same way as in Case $1-a$ ), $M$ can be defined by

IV) $y^{d}=x\prod_{t\Leftarrow 1}^{h}(x^{N}-b_{t})^{r_{l}}$ , with $(r_{t}, N)=1$ .

In Case $2-a$ ) (resp. $2-b$), $N\sum_{t=1}^{k}r_{l}+1\not\equiv 0$ (resp. $\equiv 0$) $mod d$ . As $V$ satisfies $V^{*}y^{d}$

$=\zeta\cdot y^{d}$ and $V$ is of order $N,$ $V$ is defined by;

$V^{*}x=\zeta x$ and $V^{*}y=\xi\cdot y,$ $\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdot 4$)

where $\xi$ is a N-th root of 1 satisfyin $g\xi^{a}=\zeta.$ . . $(d, N)=1$ and $\xi$ is also a
primitive N-th root of 1. After all we have;

PROPOSITION 6.2. Case $2-a$ ) (resp. $2-b$)) happens if and only if $(N, d)=1$

and $M$ is birational to the curve defined by IV) with $(r_{t}, N)=1$ and $N\sum_{l\Leftrightarrow 1}^{k}r_{t}+1\not\equiv 0$

(resp. $\equiv 0$ ) $mod d$ . $V$ is defined by 4) with a primitive N-th root $\xi$ of 1 and $\zeta=\xi^{d}$ .

Case $2-c$ ) $\#\{a_{1}, \cdots, a_{s}\}\cap F(\tilde{V})=\emptyset$

By the same way as in Case $1-a$), $M$ is birational to the curve defined by

$y^{d}=\{\prod_{t\Leftarrow 1}^{k}\prod_{j=1}^{N}(x-\zeta^{j-1}b_{l})^{m_{N(l-1)+j\}}}$ with $\sum_{t\approx 1}^{k}\sum_{j=1}^{N}m_{N/d\cdot(t-1)+j}\equiv 0mod d$

and $(m_{*}, d)=1$ . Moreover there exists a positive integer $v(1\leqq v\leqq d-1, (v, d)=1)$

satisfying $vm_{N(l-1)}\equiv m_{N(l-1)}mod d(1\leqq j\leqq N-1)$ , and $vm_{N\cdot t}\equiv m_{N(l-1)1}+mod d$ .
We see $v^{N}\equiv 1mod d$ . Thus $M$ is defined by

V) $y^{d}=\prod_{t=1}^{k}\prod_{j=1}^{N}(x-\zeta^{j-1}b_{l})^{n_{l}v^{j-1}}$

with positive integers $n_{l}$ satisfying $\Sigma^{k}\sum n_{l}v^{j-1}\equiv 0Nmod d$ and $(n_{*}, d)=1$ . Put
$l=1j=1$

$R=\Sigma n_{t}$ and $S=\Sigma v^{j-1}$ . Then $RS\equiv 0mod d$ . By acting $V^{*}$ on the both sides
of $V$ again, we have
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$(V^{*}y)^{d}=\prod_{l=1}^{k}\prod_{J=1}^{N}(\zeta x-\zeta^{j-1}b_{l})^{n_{l}v^{j-1}}$

$=\zeta^{RS}\prod_{l=1}^{k}\prod_{J\Leftrightarrow 1}^{N}(x-\zeta^{j-2}b_{l})^{n_{l}v^{j-1}}$

$=\left\{\begin{array}{l}\zeta^{RS}y^{vd}/\prod_{=1}^{k}(x-\zeta^{N-1}b_{t})^{n_{t}(v^{N}-1)},\zeta^{RS}\neq 1 (ifRS\not\equiv 0modN).\\or\\(ifRS\equiv 0modN).\end{array}\right.$

$y^{vd}/\prod_{=l1}^{i}(x-\zeta^{N-1}b_{l})^{n_{l}(v^{N}-1)}$

Then we have;

$V^{*}y=\left\{\begin{array}{l}\eta\zeta^{RS/d}y^{v}/\prod_{t=1}^{k}(x-\zeta^{N- 1}b_{l})^{n_{l}(v^{N}-1)/d}, (ifRS\not\equiv 0modN)\cdots\cdot V-i)\\or\\\eta y^{v}/\prod_{t=1}^{h}(x-\zeta^{N-1}b_{t})^{n_{l}(v^{N}- 1)/d}, (ifRS\equiv 0modN)\cdots\cdot V-ii).\end{array}\right.$

where $\eta$ is some d-th root (not necessarily primitive) of 1.
Assume $RS\not\equiv Omod N$. Using V-i) repeatedly, we have;

$V^{*N}y=\eta^{s}\zeta^{(RS/d)S}y^{v^{N}}/[\{\prod_{\iota=0}^{N-1}\prod_{\iota=1}^{k}(\zeta^{l}x-\zeta^{N-1}b_{l})^{n_{t}}\}^{v^{N-1-\iota}}]^{(v^{N}-1)/d}$

$=\eta^{s_{\zeta^{(RS/d)S}y^{v^{N}}/\zeta^{R(v^{N-2}+2v^{N-3}+\cdots(N-)v^{0})[\{\prod_{l=0}^{N-1}\prod_{l=1}^{k}(x-\zeta^{N-l-1}b_{l})^{n_{l}}\}^{v^{N-1-l}}]^{(v^{N}-1)/d}}}}$

$=\eta^{S}\zeta^{(RS/d)S-R(S^{2}-NS)/d}y^{v^{N}}/(y^{d})^{(v^{N}-1)/d}=\eta^{S}\zeta^{RNS/d}y=\eta^{S}y(. RS\equiv 0mod d)$ .
For $V^{*N}y=y,$ $\eta^{s}=1$ should be held.

When $RS\equiv 0mod N$, by the same way as above, we have;

$V^{*N}y=\eta^{S}\zeta^{-R(S^{2}-NS)/d}y^{v^{N}}(y^{d})^{(v^{N}-1)/d}=\eta^{S}\zeta^{-RS^{2}/d}y$ .

Thus $\eta$ should satisfy $\eta^{S}=\zeta^{RS^{2}/d}$ .

$PROPOSlT10N6.3$ . Case $2-c$) happens $\iota f$ and only if $M$ is birational to the
curve defined by V) with $v^{N}\equiv 1mod d$ and $RS\equiv 0mod d$ . If $RS\not\equiv O$ (resp. $RS\equiv 0$)
$mod N$, $V$ is defined by $V^{*}x=\zeta x$ and V-i) (resp. V-ii) with d-th root $\eta$ of 1
satisfying $\eta^{s}=1$ (resp. $\eta^{S}=\zeta^{RS^{2}/d}$ ), here $\eta$ is not necessarily primitive (for
example, $\eta=1$ (resp. $\eta=\zeta^{RS/d)}$ ) satisfies $\eta^{S}=1$ (resp. $\eta^{S}=\zeta^{RS^{2}/d}$ )).

General case $\langle T\rangle\cap\langle V^{\prime}\rangle=\langle V^{N^{\prime}}\rangle=\langle T^{d^{\prime}}\rangle$ .

We can obtain the equations of $M$ and $V$ as follows. We may assume that
$N^{\prime}|N$ and d’ $|d$ , then $d/d^{\prime}=N/N^{\prime}$ . The case $d^{\prime}=1$ is exactly same as the case
1) (Propositions $6-la\sim c$)).
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When $d’>1$ , put $ M^{\prime}=M/\langle T\rangle\cap\langle V\rangle$ . Then $M^{\prime}$ is $d^{\prime}$ -gonal with a unique
$g_{d^{\prime}}^{1}$ havin $g$ an automorphism $V^{\prime}(=Vmod \langle V^{d^{\prime}}\rangle)$ of order $d$ ‘. We can apply

Proposition 6.2 or 6.3, and $M^{\prime}$ is defined by an equation of type IV) or V).

For example, assume $M^{\prime}$ is defined by;

$y^{\prime d^{\prime}}=\prod_{l=1}^{k^{\prime}}\prod_{j=1}^{N^{\prime}}(x-\zeta^{\prime j-1}b_{l}^{\prime})^{n_{l}^{\prime}v^{\prime}}j-1$ (cf. V)

with $(n_{*}^{\prime}, d^{\prime})=(v^{\prime}, d^{\prime})=1,1\leqq v^{\prime}\leqq d^{\prime}-1$ , and $R^{\prime}S^{\prime}\equiv 0mod d^{\prime}$ , where $R^{\prime}=\sum_{t=1}^{k^{\prime}}n_{l}^{\prime}$ ,

$S^{\prime}=\sum_{j\approx 1}^{N^{\prime}}v^{\prime j-1}$ and a primitive N’-th root $\zeta^{\prime}$ of 1. Moreover, assume $R^{\prime}S^{\prime}\not\equiv O$

$mod N^{\prime}$ . Then $V^{\prime}$ is defined by;

$\{V^{\prime*}y’=\eta^{X}\zeta^{JR^{\prime}S^{l}/d^{\prime}}y^{v^{l}}/\prod_{l=1}^{k^{\prime}}V^{\prime*}x=\zeta^{\prime}(x-\zeta^{JN^{l}-1}b_{t}^{\prime})^{n_{l}^{\prime}(v}$

‘ $N^{\prime}-1$ ) $/d^{\prime}$ (cf. V-i),

with d’-th root $\eta^{\prime}$ (not necessarily primitive) of 1 satisfying $\eta^{JS}‘=1$ . Put
$y^{\prime}=y^{d/d^{\prime}}$ , we can have the equation of $M$ ;

$y^{d}=\prod_{t=1}^{k^{\prime}}\prod_{j=1}^{N^{\prime}}(x-\zeta^{\prime j-1}b_{l}^{\prime})^{n_{l}^{\prime}v^{r}}j-1$ . . . . . . . . VI)

As $M$ is defined by $*$ ), we have $R^{\prime}S^{\prime}\equiv 0mod d,$ $(n_{*}^{\prime}, d)=(v^{\prime}, d)=1$ and $v^{JN}\equiv 1$

$mod d$ . Thus $V$ on $M$ is defined by;

$\left\{\begin{array}{l}V^{*}x=\zeta^{\prime}x\\V^{*}y=\eta\zeta^{R^{\prime}S^{\prime}/d}y^{v^{\prime}}/\prod_{t=1}^{k^{\prime}}(x-\zeta^{\prime N^{i}-1}b_{t}^{\prime})^{n_{t}^{\prime}(v^{\prime N^{r}}-1)/d},\end{array}\right.$

where $\eta$ satisfies $\eta^{d/d^{\prime}}=\eta^{\prime}$ . We can see $V^{*N^{\prime}}y=\eta^{S^{\prime}}y$ . As $V$ is of order $N$,

$\eta^{\prime S^{l}}$ should be a primitive $N/N^{\prime}(=d/d^{\prime})$ root of 1. When $(S^{\prime}, d/d^{\prime})=1,$ $\eta^{\prime}=1$ ,

and $\eta=\exp(2\pi id^{\prime}/d)$ satisfies these conditions,

Considering the other cases, we finally have;

THEOREM 6.4. Let $M$ be a cyclic d-gonal curve with a unique $g_{d}^{1}$ defined by
$*)$ with an automorphism $V(\not\in\langle T\rangle)$ or order N. Then $M$ and $V$ are determined
as the following types;

I) Let d’ $(>1)$ and $N^{\prime}(>1)$ be two integers satisfying d’ $|d,$ $N^{\prime}|N$ and $d/d^{\prime}$

$=N/N^{\prime}\neq 1$ .
I-i) $M$ is a curve defined by the equation

$y^{d}=\prod_{t=1}^{k^{\prime}}\prod_{j\Leftarrow 1}^{N^{\prime}}(x-\zeta^{\prime j-1}b_{l})^{n_{l}^{\prime}v^{\prime J-1}}$ . . . . . . . . $t^{\prime}I$ )

$ w\iota$ th $1\leqq v^{\prime}\leqq d^{\prime}-1,$ $(n_{*}^{\prime}, d)=(v^{\prime}, d)=1$ and $S^{\prime}R^{\prime}\equiv 0mod d$ .
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If $S^{\prime}R^{\prime}\not\equiv O$ mod $N^{\prime}$ , then $V$ is defined by

$\left\{\begin{array}{l}V^{*}x=\zeta^{\prime}x\\V^{*}y=\eta\zeta^{R^{\prime}S^{\prime}/d}y^{v^{\prime}}/\prod_{l=1}^{k^{\prime}}(x-\zeta^{;N^{\prime}- 1}b_{t}^{\prime})^{n_{t}^{\prime}(v^{\prime N^{\prime}}-1)/d},\end{array}\right.$

where $\eta$ is a d-th root (not necessarily primitive) of 1 such that $\eta^{S^{\prime}}$ is a primitive
$d/d^{\prime}$-th root of 1. (for example, when $(S^{\prime},$ $d/d^{\prime})=1,$ $e^{2\pi id^{\prime}/d}$ can be taken as $\eta$ ).

If $S^{\prime}R^{\prime}\equiv 0$ mod $N^{\prime},$ $V$ is defined by

$\left\{\begin{array}{l}V^{*}x=\zeta^{\prime}x\\V^{*}y=\eta y^{v^{r}}/\prod_{l=1}^{k^{\prime}}(x-\zeta^{\prime N^{\prime}-1}b_{l}^{\prime})^{n_{l}^{\prime}(v^{\prime N^{\prime}}- 1)/d},\end{array}\right.$

where $\eta$ is a d-th root (not necessarily primitive) of 1 such that $\eta\zeta^{J-R^{\prime}S^{\prime 2}/d}$ is a
primitive $d/d^{\prime}$ -th root of 1. (for example, when $(S^{\prime}, d/d^{\prime})=1$ , we can take
$\zeta^{\prime R^{i}S^{\prime}/d}\zeta_{d/d^{\prime}}$ as $\eta$ , where $\zeta_{d/d^{\prime}}$ is a primitive $d/d^{\prime}$-th root of 1). (cf. Prop. 6.3)

I-ii) If $(d^{\prime}, N^{\prime})=1$ , we have an additional type;

$y^{d}=x\prod_{l=1}^{k}(x^{N^{\prime}}-b_{t})^{r_{l}}$

with $(r_{l}, N)=1$ . In this case V is defined by;

$V^{*}y=\xi y$ and $V^{*}x=\xi^{d}x$ ,

where $\xi$ is a primitive N-th root of 1. (cf. Prop. 6.2)

11) In case of $d|N$, in addition to 1), we have other types of $M$ and $V$ as
follows;

II-i) $M$ and $V$ in Proposition 6. $1a$ ).

II-ii) In addition to $\Pi-i$ ), $M$ and $V$ in Proposition 6. $1b$) and 6. $1c$), provided
$((d, N/d)=1$ .
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