A REMARK ON MINIMAL MODELS

By

Koichiro IKEDA

Abstract. We prove the following theorem: Let T be superstable and let A any set. Then there is no minimal model over A which has an infinite set of indiscernibles over A.

0. Introduction

A model M is said to be *minimal* if there is no proper elementary submodel of M. We consider the size of indiscernible sets in a minimal model. Shelah showed that if a theory T is totally transcendental then there is no infinite indiscernible set in a minimal model of T (see [3, IV, Theorem 4.21]). On the other hand, in [2] Marcus constructed a minimal (and prime) structure with an infinite indiscernible set. His structure is stable but not superstable. Our aim here is therefore to extend the above statement to a superstable theory.

Shelah's proof is as follows: Let M be a model having an infinite indiscernible set I. Pick any $a \in I$ and let $J=I-\{a\}$. Since T is totally transcendental, there is $N \prec M$ which is primary (and hence atomic) over J. By indiscernibility of I, we have $a \notin N$. Hence M is not minimal.

Our proof is similar to his one. However, for the general case, we do not necessarily have the existence of primary models. So, instead of N above, we take in M a maximal set E which includes J but is independent from a. We call such E a tp(a)-envelope of J in M (see Definition 1.2 for the exact definition). First we show that if T is superstable, E is an elementary submodel of M (Lemma 1.4). It follows that M is not minimal, and hence we can obtain our theorem. At the end of the paper, we give a stable structure having an infinite indiscernible set (Example 1.7). The way of the construction is essentially same as Marcus's one [2].

1. The size of indiscernible sets

1.1. NOTATION. We fix a (possibly uncountable) stable theory T. We usually work in a big model C of T. Our notations are fairly standard. Received August 2, 1993.

Koichiro IKEDA

A, B, ... are used to denote small subsets of C. $\bar{a}, \bar{b}, ...$ are used to denote finite sequences of elements in C. $\varphi, \psi, ...$ are used to denote formulas (with parameters). p, q, ... are used to denote types (with parameters). The nonforking extension of a stationary types p to the domain A is denoted by $p \mid A$. The type of a over A is denoted by tp(a/A). $R^{\infty}(p)$ (resp. $R^{\infty}(\varphi)$) is the infinity rank of a type p (resp. a formula φ). We simply write $R^{\infty}(a/A)$ instead of $R^{\infty}(tp(a/A))$. The set of realizations of a type p (resp. a formula φ) in a model M is denoted by p^{M} (resp. φ^{M}).

1.2. DEFINITION. Let M be a model and $A \subset B \subset M$. Let $p \in S(A)$ be stationary. Then a *p*-envelope of B in M is a maximal set E such that $B \subset E \subset M$ and any element of $(p \mid B)^M$ is independent from E over A.

1.3. REMARK. The notion of "envelopes" was introduced in [1], and was defined in the context of totally categorical theories. Our definition is a generalization of that in [1].

1.4. LEMMA. Let T be superstable. Let M be a model and $A \subset M$. Let $p \in S(A)$ be stationary. Suppose that M contains some infinite Morley sequence I of p. Then a p-envelope of $I \cup A$ in M is an elementary submodel of M.

PROOF. For the simplicity of the notation, we may assume that $A=\emptyset$. Take any *p*-envelope *E* of *I* in *M*. If $(p \mid I)^{M} = \emptyset$, then E = M. So we assume that $(p \mid I)^{M} \neq \emptyset$. Assume by way of contradiction that *E* is not an elementary submodel of *M*. Then, by the Tarski criterion, there is a consistent formula $\varphi(x, \bar{e}_{0}) \in L(E)$ such that $\varphi^{M} \cap E = \emptyset$. By superstability, pick an element *b* of φ^{M} such that $R^{\infty}(b/E)$ is minimal.

CLAIM. Any $a \in (p \mid I)^{M}$ is independent from b over E.

PROOF. Assume otherwise. Then there is an element a of $(p \mid I)^{M}$ such that tp(a/Eb) forks over E. Take a formula $\theta(x, \bar{e}_1) \in tp(b/E)$ such that $R^{\infty}(b/E) = R^{\infty}(\theta)$. Now tp(a/Eb) forks over \emptyset , so there is $\bar{e} \in E$ such that $tp(a/\bar{e}b)$ forks over \emptyset . Then we may assume that \bar{e}_0 , $\bar{e}_1 \subset \bar{e}$. Note that $tp(a/\bar{e})$ does not fork over \emptyset (because $\bar{e} \in E$). It follows that $tp(b/\bar{e}a)$ forks over \bar{e} . So we can get a formula $\psi(x, \bar{e}, a) \in tp(b/\bar{e}a)$ such that, if $\models \psi(b', \bar{e}, a)$ then $tp(b'/\bar{e}a)$ forks over \bar{e} . Let $\Gamma(a, \bar{e})$ denote $(\exists x)(\varphi(x, \bar{e}_0) \land \psi(x, \bar{e}, a) \land \theta(x, \bar{e}_1))$. Now the weight of \bar{e} is finite since $R^{\infty}(\bar{e}) < \infty$. Therefore we can pick $a' \in I$ such that $tp(a'/\bar{e})$ does not fork over \emptyset . Remember that $tp(a/\bar{e})$ does not forks over \bar{e} . Therefore

there is an element $b' \in \varphi^M$ such that $R^{\infty}(b'/\bar{e}) \leq R^{\infty}(b/E)$ and $tp(b'/\bar{e}a')$ forks over \bar{e} . Thus $R^{\infty}(b/E) \geq R^{\infty}(b'/\bar{e}) > R^{\infty}(b'/\bar{e}a') \geq R^{\infty}(b'/E)$. Moreover $R^{\infty}(b'/E) \neq 0$ because b' satisfies φ . But this contradicts the minimality of $R^{\infty}(b/E)$. Hence the claim holds.

Thus any $a \in (p \mid I)^{M}$ is independent from bE over I. But this contradicts that E is an envelope. Hence E is an elementary submodel. This completes the proof of the lemma. \Box

1.5. EXAMPLE. Let $Per(\omega)$ denote the set of permutations of ω which move only a finite number of elements. For each $i < \omega$, define a function $\pi_i : Per(\omega) \rightarrow \omega$ such that $\pi_i(\sigma) = \sigma(i)$. Let $A = \omega \cup Per(\omega)$. Consider the structure $M = (A; \omega, Per(\omega), \{\pi_i\}_{i < \omega})$. Then ω is a Morley sequence of tp(0). Note that for any $\sigma \in Per(\omega), \omega \subset dcl(\sigma)$ (=the definable closure of σ). Therefore $\omega - \{0\}$ is the tp(0)-envelope of $\omega - \{0\}$ in M. However $\omega - \{0\}$ is not a model. Moreover T = Th(M) is not superstable (since the weight of σ is infinite). This example shows that we need, in lemma 1.4, the assumption that T is superstable.

1.6. THEOREM. Let T be superstable and let A any set. Then there is no minimal model over A which has an infinite set of indiscernibles over A.

PROOF. Suppose that M has an infinite set I of indiscernibles over some set A. We can assume that I is already an infinite Morley sequence of some $p \in S(A)$ because $\kappa(T)$ is countable. Pick any $a \in I$. By lemma 1.4, a *p*-envelope E of $(I - \{a\}) \cup A$ in M is an elementary submodel of M. It is clear that $a \notin E$. Hence M is not minimal. A contradiction. \Box

1.7. EXAMPLE (see [2]). Theorem 1.6 can not be extended to a stable theory. We construct a minimal structure with an infinite indiscernible set. Recall the structure $M=(A; \omega, Per(\omega), \{\pi_i\}_{i < \omega})$ (see Example 1.5). Note that this structure is not minimal. But by modifying the construction, we can obtain a minimal one: For each $n < \omega$, we define inductively P_n and $\{\pi_a^n : a \in P_n\}$ which satisfy the following properties:

(i) $P_0 = \omega$, and $\pi_a^0 = \pi_a$ $(a \in P_0)$;

(ii) $P_{n+1} = Per(P_n) \ (n < \omega);$

(iii) $\pi_a^{n+1}: P_{n+1} \to P_n$ is a function such that $\pi_a^{n+1}(\sigma) = \sigma(a)$ $(a \in P_n, n < \omega)$.

Let $A^* = \bigcup \{P_n : n < \omega\}$. Consider the structure $M^* = (A^*; \{P_n : n < \omega\}, \{\pi_a^n : a \in P_n, n < \omega\})$. Then for each $n < \omega$, if $\sigma \in P_{n+1}$ then we have $P_n \subset dcl(\sigma)$. Hence M^* is a minimal model (Proof: Take any $N < M^*$ and $a \in M^*$. Then

Koichiro IKEDA

there is some *n* such that $a \in P_n$. Now $P_{n+1} \cap N \neq \emptyset$, so we can pick some $\sigma \in P_{n+1} \cap N$. Therefore $a \in dcl(\sigma) \subset N$, so $a \in N$. It follows that $N = M^*$). It is easy to see that $P_0 = \omega$ is an infinite indiscernible set. Moreover M^* is not superstable, since *M* is interpreted in M^* (Recall that *M* is not superstable).

References

- [1] G.L. Cherlin, L. Harrington and A.H. Lachlan, X₀-categorical, X₀-stable structures, Annals of Pure and Applied Logic 2 (1985), 101-137.
- [2] L. Marcus, A minimal prime model with an infinite set of indiscernibles, Israel Journal of Mathematics 11 (1972), 180-183.
- [3] S. Shelah, Classification Theory, North-Holland, Amsterdam, 1990.

Institute of Mathematics University of Tsukuba Tsukuba-shi, Ibaraki, 305 Japan