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SHAPE VIA MULTI-NETS

By

Zvonko ERIN

Abstract. We give in this paper a description of a new category
related to shape category. We consider families of multi-valued
functions between topological spaces which we call multi-nets. In
a well-controlled way functions of a multi-net more and more re-
semble single-valued functions. We introduce a notion of homotopy
for multi-nets and a composition of homotopy classes. The resultant
homotopy category of multi-nets $\mathcal{H}M$ is naturally equivalent to the
shape category provided we restrict to spaces which have ANR-
resolutions with onto projections. However, the homotopy category
of multi-nets is interesting because it provides an intrinsic method
of studying global properties of spaces. Our idea is to extend
Borsuk’s approach based on fundamental sequences to arbitrary
topological spaces in analogy with Sanjurjo’s description of shape

category of compact metric spaces in terms of upper semi-continuous
multi-valued functions.

Introduction

The subject of this paper belongs to the part of geometric topology which is
known under the name shape theory. The method of our investigations is through
the use of multi-valued functions. Our motivation is a desire to get a new des-
cription of the shape category which will be an extension to arbitrary topological
spaces of Sanjurjo’s approach to shape theory of compact metric spaces via
upper semi-continuous multi-valued functions [10].

The classical homotopy theory studies the equivalence relation of homotopy

for maps. Recall that maps ( $i.e.$ , continuous single-valued functions) $f$ and $g$

between topological spaces $X$ and $Y$ are called homotopic provided there is a
map $h$ from the product $X\times I$ of $X$ with the unit closed segment $I=[0,1]$ into
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$Y$ such that $h(x, O)=f(x)$ and $h(x, 1)=g(x)$ for every $x\in X$ . The homotopy

category $\mathcal{H}$ has as objects topological spaces and as morphisms homotopy classes
of maps. The homotopy classes are composed by composing representatives

and the identity morphisms are homotopy classes of the identity maps.
The equivalence relation of homotopy for maps leads to a useful and rich

theory only when we restrict to spaces with nice local properties like polyhedra

and absolute neighbourhood retracts. The problems arise in the definition above
when the space $Y$ is such that there are not many maps from $X\times I$ into $Y$ so
that the properties of $Y$ are preventing identification of maps which ought to
be identified. In other words, the definition of homotopy is too rigid because
the function $h$ must be continuous and single-valued and because it must take
values in the space $Y$ .

This has led K. Borsuk to modify homotopy theory so that the new theory

which he calls shape theory agrees with the old on absolute neighbourhood
retracts and that it gives much better results for spaces with complicated local
structure where the old theory is inadequate. The modification of Borsuk relies
on the idea to relinquish the insistence in the definition of homotopy that the
map $h$ goes precisely into the space $Y$ . The obvious alternative method which
was undertaken by Sanjurjo in [9] and [10] and further followed in this paper
is to give up with the requirement that the function $h$ is continuous $and/or$

single-valued while retaining the desirable condition that it takes values in the
space $Y$ . In order to properly honour these two diverse methods we shall call
them the Borsuk approach and the Sanjurjo approach to shape theory. We use
names outer shape theory and inner shape theory.

In the original Borsuk’s description [2] of shape category $Sh_{B}$ of compact

metric spaces, the spaces $X$ and $Y$ are considered as closed subsets of the Hil-
bert cube $Q$ and maps from $X$ into $Y$ are replaced with fundamental sequences.
Recall that a fundamental seguence $\varphi$ from $X$ into $Y$ is a sequence $\{\varphi_{i}\}_{i1}^{\infty_{=}}$ of
maps $\varphi_{i}$ : $Q\rightarrow Q$ such that for every neighbourhood $U$ of $Y$ in $Q$ there is a
neighbourhood $V$ of $X$ in $Q$ and an index $i$ with the property that the restrictions
$\varphi_{i}|_{V}$ and $\varphi_{J}|_{V}$ are homotopic in $U$ for every $j>i$ . The role of the homotopy
relation plays the following notion. Fundamental sequences $\varphi$ and $\psi$ from $X$

into $Y$ are called homotopic provided for every neighbourhood $U$ of $Y$ in $Q$

there is a neighbourhood $V$ of $X$ in $Q$ and an index $i$ with the property that
the restrictions $\varphi_{j}|_{V}$ and $\psi_{j}|_{V}$ are homotopic in $U$ for every $j\geqq i$ . This is an
equivalence relation $[\varphi]$ denotes the homotopy class of a fundamental sequence
$\varphi$ , and homotopy classes are composed by the rule $[\psi]\circ[\varphi]=[\psi\circ\varphi]$ , where $\psi\circ\varphi$

is a fundamental sequence formed by compositions $\psi_{i}\circ\varphi_{i}$ . The category $Sh_{B}$ has
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compact metric spaces as objects and homotopy classes of fundamental sequences
as morphisms.

In spite of its simplicity and clear geometric flavour, Borsuk’s theory relies
too much on the Hilbert cube and the use of open neighbourhoods of subsets
so that the extension of it to wider classes of spaces proved to be a formidable
problem. This was accomplished by many authors so that now we have dif-
ferent descriptions of shape category $Sh$ . Its objects are topological spaces
while its morphisms are rather awkward constructions involving things such as
Morita’s ANR-expansions, Grothendick’s pro-categories, and intricate concepts

of category theory (see [7]). All these efforts belong to the outer shape theory
because they use some outside objects in order to study global properties of
spaces. In particular, these approaches all require the use of absolute neigh-
bourhood retracts. In this paper we propose to follow for arbitrary topological
spaces Borsuk’s geometric method based on fundamental sequences as closely

as possible without any reference to absolute neighbourhood retracts.
Instead of fundamental sequences we consider multi-nets. The other steps

are identical. We define a notion of homotopy for multi-nets and the morphisms
are simply homotopy classes of multi-nets. This idea has previously been used
by Sanjurjo in [9] and [10] to get an analogou description of $Sh_{B}$ . The crux
of this approach is to use functions which are not continuous $and/or$ single-
valued. Our investigation started with attempts to extend Sanjurjo’s method to
arbitray topological spaces.

The difference $\ln$ approach is that we do not require multi-valued functions
to be upper semi-continuous though it is possible with only minor modifications
to build up the appropriate category where this requirement is fulfilled.

The key tools are given as Lemmas 2 and 3 which provide replacement of
a small multi-valued functions (as defined in Definition 2) by a close (see Defini-
tion 3) continuous single-valued function and necessary transitivity of the notion
of small homotopy (from Definition 4).

The multi-nets and their homotopy is given in Definitions 5 and 6. The
most difficult part is to find the correct notion of composition for homotopy

classses of multi-nets. This is accomplished in the first three claims and sum-
marized in Theorem 2.

With the description of the new category $\mathcal{H}M$ thus completed, the rest of
the paper deals with setting up a functor $\theta$ from our homotopy category of
multi-nets into the shape category (see Theorem 3 and Claims 4-6).

Finally, in Theorem 4 and Claims 7-10, we show that the homotopy cate-
gory of multi-nets is naturally equivalent to the shape category on spaces hav-
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ing ANR-resolutions with onto projections. This is done by describing the in-
verse $\zeta$ of the functor $\theta$ .

The present paper is only the first in a series where we shall attempt to
do large portions of inner shape theory using small multi-valued functions. This
approach is particularly suitable for some problems. It’s obvious merit is that
it does not need any outside objects (like a nice ambient space or an inverse
limit expansion into nice spaces). In conclusion, this paper lies foundations
for the study of the homotopy category $\mathcal{H}M$ of multi-nets and establishes some
connections between $\mathcal{H}M$ and the shape category. In the paper “Shape theory
intrinsically” we shall prove by far more complicated arguments that the cate-
gories $\mathcal{H}M$ and $Sh$ are equivalent.

Small Multi-valued functions

In this section we shall introduce notions that are required for our theory
and prove two useful technical results.

Let $\hat{Y}$ denote the collection of all normal covers of a topological space $Y$

[1]. With respect to the refinement relation $>$ the set $\hat{Y}$ is a directed set.
Two normal covers $\sigma$ and $\tau$ of $Y$ are equivalent provided $\sigma>\tau$ and $\tau<\sigma$ . In
order to simplify our notation we denote a normal cover and it’s equivalence
class by the same symbol. Consequently, $\hat{Y}$ also stands for the associated
quotient set.

Let $\tilde{Y}$ denote the collection of all finite subsets $c$ of $\hat{Y}$ which have a unique
(with respect to the refinement relation) maximal element $\tilde{c}\in\hat{Y}$ . We consider
$\tilde{Y}$ ordered by the inclusion relation and regard $\hat{Y}$ as a subset of single-element
subsets of $\tilde{Y}$ . Notice that $\tilde{Y}$ is a cofinite directed set [7, p. 11].

We shall repeatedly use the following lemma (see [7, p. 9]).

LEMMA 1. Let $\{f_{1}, \cdots f_{n}\}$ be a finite collection of functions from a cofinite
directed set $(M, <)$ into a directed set $(L, <)$ . Then there is an increasing func-
tion $g:M\rightarrow L$ such that $g(x)>f_{1}(x),$ $\cdots$ , $f_{n}(x)$ for every $x\in M$.

The next two definitions introduce precisely a type of multi-valued func-
tions that we shall use.

DEFINITION 1. Let $X$ and $Y$ be topological spaces. By a multi-valued func-
tion or an M-function $F:X\rightarrow Y$ we mean a rule which associates a non-empty

subset $F(x)$ of $Y$ to every point $x$ of $X$ . Let $M(X, Y)$ denote all M-functions

from $X$ into $Y$ .
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DEFINITION 2. Let $F:X\rightarrow Y$ be a multi-valued function and let $\alpha\in\hat{X}$ and
$\gamma\in\hat{Y}$ . We shall say that $F$ is an $(\alpha, \gamma)$-map provided for every $ A\in\alpha$ there is
a $ C_{A}\in\gamma$ with $F(A)\subset C_{A}$ . On the other hand, $F$ is $\gamma$-small provided there is an
$\alpha\in\hat{X}$ such that $F$ is an $(\alpha, \gamma)$-map.

The following is a notion of closeness for multi-valued functions that is
needed in this approach to shape theory.

DEFINITION 3. Let F. $G:X\rightarrow Y$ be multi-valued functions and let $\gamma\in\hat{Y}$ .
We shall say that $F$ and $G$ are $\gamma$-close and we write $F=^{\gamma}G$ provided for every
$x\in X$ there is a $ C_{x}\in\gamma$ with $F(x)\cup G(x)\subset C_{x}$ .

The following lemma is not needed in the description of the category $\mathcal{H}M$

but only in setting up a functor $\theta$ from the category $\mathcal{H}M$ into the shape cate-
gory $Sh$ . This is a very useful approximation result which shows that a suf-
ficiently small multi-valued functions into an approximate polyhedron can be
replaced by a continuous single-valued function.

Recall [7] that an approximate polyhedron is a topological space $Y$ with the
property that for every $\sigma\in\hat{Y}$ there is a polyhedron $P$ and maps $u:Y\rightarrow P$ and
$a:P\rightarrow Y$ with $id_{Y}=^{\sigma}d\circ u$ .

LEMMA 2. For every normal cover $\sigma$ of an approximate polyhedron $Y$ there
is a normal cover $\tau$ of Ysuch that every $\tau$-small multi-valued function $F:X\rightarrow Y$

from a topological space $X$ into $Y$ there is a normal cover $\rho$ of $X$ with the pro-
perty that for every canonical map $p:X\rightarrow N(\rho)$ from $X$ into the nerve $N(\rho)$ of
$\rho$ there is a single-valued continuous function $f:N(\rho)\rightarrow Y$ with $F=^{\sigma}f\circ p$ .

PROOF OF LEMMA 2. Let $\lambda\in\sigma^{*}$ and $\nu\in\lambda^{*}$, where $\sigma^{*}$ denotes the set of all
normal covers $\tau$ of $Y$ such that the star $st(\tau)$ of $\tau$ refines $\sigma$ . Choose a simplicial

polytope $P$ with the metric topology and maps $u:Y\rightarrow P$ and $d:P\rightarrow Y$ with

(1) $ id_{Y}=d\circ u\nu$ .

Let $\epsilon=d^{-1}(\nu)\in P$ . Let $\eta\in\epsilon^{*}$ . Since $P$ is an ANR [6, p. 106], there is a
refinement $\pi$ of $\eta$ with the property that every partial realization in $P$ of a
simplicial polytope $K$ with the Whitehead topology relative to $\pi$ defined on a
subpolytype $L$ of $K$ which contains all vertices of $K$ extends to a full realiza-
tion of $K$ in $P$ relative to $\nu$ [$6$ , p. 122]. Let $\xi\in\pi^{*}$ and let $\tau\in\hat{Y}$ be a common
refinement of $\nu$ and $u^{-1}(\xi)$ .
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Consider a $\tau$-small multi-valued function $F:X\rightarrow\}^{\prime}r$ Choose a $\beta\in\hat{X}$ such
that $F$ is a $(\beta, \tau)$-map. Let $\{\lambda_{B}|B\in\beta\}$ be a partition of unity subordinated to
to $\beta$ , and let $\{\mu_{B}|B\in\beta\}$ be its locally finite improvement [4, p. 354]. Let $\rho=$

$\{\mu_{B}^{-1}((0,1])|B\in\beta\}$ . Hence, for every $ R\in\rho$ there is a $ T_{R}\in\tau$, an $ N_{R}\in\nu$ , a
$K_{R}\in\xi,$ $y_{R}\in Y$ and a $z_{R}\in P$ with $F(R)\subset T_{R},$ $T_{R}\subset N_{R},$ $u(T_{R})\subset K_{R},$ $y_{R}\in T_{R},$ $z_{R}\in K_{R}$

and $z_{R}=u(y_{R})$ . Let $p:X\rightarrow N(\rho)$ be a canonical map of $X$ into the nerve $N(\rho)$

of $\rho$ (see [4]).

Define a function $\varphi:N(\rho)^{0}\rightarrow P$ by the rule $\varphi(R)=z_{R}$ for every $ R\in\rho$ . This
function is continuous and it provides a partial realization of $N(\rho)$ in $P$ relative
to the cover $\pi$ .

Indeed, let $\delta=\langle A, B, \cdots, Z\rangle$ be a simplex of $N(\rho)$ . We shall find a mem-
ber of $\pi$ which contains the set $\varphi(N(\rho)^{0}\cap\delta),$ $i.e.$ , the set $\{z_{A}, \cdots , z_{z}\}$ . Suppose
$x\in A\cap\cdots\cap Z$ . Since $F(x)$ is non-empty, the sets $T_{A},$

$\cdots,$
$T_{Z}$ and therefore

also the sets $K_{A},$
$\cdots,$

$K_{Z}$ have non-empty intersection. Slnce $\xi$ is a star-refine-
ment of $\pi$ , it is clear that some member $P_{\delta}$ of $\pi$ contains their union.

Let $\psi:N(\rho)\rightarrow Y$ be a full realization in $P$ of $N(\rho)$ relative to $\eta$ . Let $f$

denote the composition $ d\circ\psi$ . Then $f$ is the required contlnuous single-valued

function.
Let $x\in X$ and suppose that $A,$

$\cdots,$
$Z$ are all members of $\rho$ which contain

the point $x$ . Then $p(x)$ lies in the simplex $\delta$ of $N(\rho)$ determined by these sets.
It follows that a member $E_{x}$ of $\eta$ contains both $\psi\circ p(x)$ and points $z_{A},$ $\cdots,$ $z_{Z}$ .
Since $\xi$ refines $\eta$ and $\eta$ is a star-refinement of $\epsilon$ , there is a member $N_{x}$ of $\nu$

with $d(E_{x}\cup K_{A}\cup\cdots\cup K_{Z})\subset N_{x}$ . On the other hand, from (1) we get the exist-
ence of members $N_{A},$ $\cdots$ , $N_{Z}$ of $\nu$ such that $N_{C}$ contains both $y_{C}$ and $d(z_{C})$ for
every $C=A,$ $\cdots,$

$Z$ . It follows that

$f\circ p(x)\in N_{x}$ $d(z_{A})\in N_{x}\cap N_{A}$ , $y_{A}\in N_{A}\cap T_{A}$ , $F(x)\subset T_{A}$ .
Hence, some member of $\sigma$ contains both $f\circ p(x)$ and $F(x)$ . $\square $

The following definition is the most important for this paper and our ap-
proach to inner shape theory.

DEFINITION 4. Let $F,$ $G:X\rightarrow Y$ be multi-valued functions between topo-

logical spaces and let $\gamma$ be a normal cover of the space $Y$ . We shall say that

$F$ and $G$ are $\gamma$-homotopic and write $F\cong^{\gamma}G$ provided there is a $\gamma$-small multi-
valued function $H$ from the product $X\times I$ of $X$ and the unit segment $I=[0,1]$

into $Y$ such that $F(x)\subset H(x, 0)$ and $G(x)\subset H(x, 1)$ for every $x\in X$ . We shall
say that $H$ is a $\gamma$ -homotopy that joins $F$ and $G$ or that it realizes the relation
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(or homotopy) $F\cong^{\gamma}G$ .

The following lemma gives an adequate substitute for transitivity of the
homotopy relation for maps. It will be used later many times.

LEMMA 3. Let $F,$ $G,$ $H:X\rightarrow J^{\nearrow}$ be multi-valued functions. Let $\sigma\in\hat{Y}$ and
$\tau\in\sigma^{*}$ . If $F\cong^{\tau}G$ and $G\cong\tau H$, then $F\cong\sigma H$.

PROOF OF LEMMA 3. Let $K,$ $L:X\times I\rightarrow Y$ be $\tau$-small multi-valued functions
such that

(2) $F(x)\subset K(x, 0)$ , $G(x)\subset K(x, 1)\cap L(x, 0)$ , $H(x)\subset L(x, 1)$

for every $x\in X$ . Define $M:X\times I\rightarrow Y$ by

$K(x, 2t)$ , $x\in X,$ $0\leqq t<1/2$

$M(x, t)=$ $K(x, 1)\cup L(x, 0)$ , $x\in X,$ $t=1/2$

$|L(x, 2t-1)$ , $x\in X,$ $1/2<t\leqq 1$ .
Clearly, by (2), $F(x)\subset M(x, 0)$ and $H(x)\subset M(x, 1)$ for every $x\in X$ . Hence,

it remains to see that $M$ is $\sigma$ -small.
Since both $K$ and $L$ are $\tau$-small, there are normal covers $\alpha$ and $\beta$ of $X\times I$

so that for every $ A\in\alpha$ there is a $ T_{A}^{K}\in\tau$ with $K(A)\subset T_{A}^{K}$ and for every $ B\in\beta$

there is a $ T_{B}^{L}\in\tau$ with $L(B)\subset T_{B}^{L}$ . Let a normal cover $\gamma$ be a common refine-
ment of $\alpha$ and $\beta$ . Then for every $ C\in\gamma$ we can find $T(C),$ $ W(C)\in\tau$ with

(3) $K(C)\subset T(C)$ and $L(C)\subset W(C)$ .

We now use [4, p. 358], to get a normal cover $\epsilon\in\hat{X}$ together with the
function $r:\epsilon\rightarrow\{2,3,4, \cdots\}$ such that every set $E\times[t_{2i}, t_{2i+4}]$ is contained in a
member $C_{E,i}$ of $\gamma$ , where $E\in\epsilon,$ $i=0,1,2,$ $\cdots,$ $rE-2$, and $t_{j}=$ ] $/4rE$ for every
$j=0,1,$ $\cdots,$ $4rE$ .

We define for each $ E\in\epsilon$ an open over $|E|$ of $I$ as follows:

$|E|=\{V_{1}, V_{2}, \cdots, V_{4rE-1}\}$ ,

where $V_{1}=[0, t_{2}$ ), $V_{2}=(t_{1}, t_{3})V_{3}=(t_{2}, t_{4}),$ $\cdots,$ $V_{4rE-1}=(t_{4rE-2},1$ ].

Since $\{\{E\times V|V\in|E|\}|E\in\epsilon\}$ is a normal cover of $X\times I$ , our proof will be
completed provided we show that for every $ E\in\epsilon$ and every $V\in|E|$ there is a
member of $\sigma$ containing $M(E\times V)$ .

If $V=V_{i}$ , for $i\neq 2rE$ , this follows from (3).

Let $V=V_{2rE}$ . Then $M(E\times V)=K(E\times(t_{4rE-2},1$ ]) $\cup L(E\times\underline{\lceil}0, t_{2}))$ . But, $ K(E\times$

$(t_{4rE-2},1])\subset T(C_{E,2rE-1})$ and $L(E\times[0, t_{2}))\subset W(C_{E,0})$ . As $E$ is a non-empty set,
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there is an $x\in E$ . The relation (2) shows that the non-empty set $G(x)$ lies in
the intersection of sets $T(C_{E.2rE-1})$ and $W(C_{E0})$ . Hence. a member of $\sigma$ con-
tains $M(E\times V)$ . $\square $

Multi-nets

The following two definitions correspond to Borsuk’s definitions of funda-
mental sequences and homotopy for fundamental sequences.

DEFINITION 5. Let $X$ and $Y$ be topological spaces. By a multi-net or an
M-net from $X$ into $Y$ we shall mean a collection $\varphi=\{F_{c}|c\in\tilde{Y}\}$ of multi-valued

functions $F_{c}$ : $X\rightarrow Y$ such that for every $\gamma\in\hat{Y}$ there is a $c\in\tilde{Y}$ with $F_{d}\cong^{\gamma}F_{c}$ for
every $d>c$ . We use functional notation $\varphi:X\rightarrow Y$ to indicate that $\varphi$ is a multi-
net from $X$ into $Y$ . Let $MN(X, Y)$ denote all multi-nets $\varphi:X\rightarrow Y$ .

DEFINITION 6. Two multi-nets $\varphi=\{F_{c}\}$ and $\psi=\{G_{c}\}$ between topological
spaces $X$ and $Y$ are homotopic provided for every $\gamma\in\hat{Y}$ there is a $c\in\tilde{Y}$ such

that $F_{d}\cong^{\gamma}G_{d}$ for every $d>c$ .

It follows from Lemma 3 that the relation of homotopy is an equivalence
relation on the set $MN(X, Y)$ . The homotopy class of a multi-net $\varphi$ is denoted
by $[\varphi]$ and the set of all homotopy classes by $\mathcal{H}M(X, Y)$ .

Our first goal is to define a composition for homotopy classes of multi-nets
and to establish its associativity.

Let $\varphi=\{F_{c}\}:X\rightarrow Y$ be a multi-net. For every $c\in\tilde{Y}$ there is an $\overline{f}(c)\in\tilde{Y}$

such that for all $d,$ $e>\overline{f}(c)$ there is a normal cover $\overline{f}(c, d, e)$ of $X\times l$ and an
$(\overline{f}(c, d, e),\tilde{c})$-map joining $F_{d}$ and $F_{e}$ .

Let $c=\{(c, d, e)|c\in\tilde{Y}, d, e>\overline{f}(c)\}$ . Then $C$ is a subset of $\tilde{Y}\times\tilde{Y}\times\tilde{Y}$ that
becomes a cofinite directed set when we define that $(c, d, e)>(c^{\prime}, d^{\prime}, e^{\prime})iff$

$c>c^{\prime},$ $d>d^{\prime}$ and $e>e^{\prime}$ .
Now, let $f:\tilde{Y}\rightarrow\tilde{Y}$ be an increasing function such that $f(c)>\overline{f}(c),$ $c$ for

every $c\in\tilde{Y}$ . We shall use the same notation $f$ for an increasing function
$f:C\rightarrow\hat{X\times I}$ such thatf$(c, d, e)>\overline{f}(c, d, e)$ for every $(c, d, e)\in C$ . Let $(c, d, e)$

$\in C$ . For the normal cover $f(c, d, e)$ of $X\times I$ , by [4, p. 358], there is a normal
cover $\epsilon=\hat{f}(c, d, e)$ of $X$ and a function $r=f(c, d, e):\epsilon\rightarrow\{2,3,4, \cdots\}$ such that
every set $E\times[(i-1)/rE, (i+1)/rE]$ , where $ E\in\epsilon$ and $i=1,2,$ $\cdots,$ $rE-1$ , is con-
tained in a member of $f(c, d, e)$ .

Let $f;C\rightarrow\hat{X}$ be an increasing function with $f(c, d, e)>\hat{f}(c, d, e)$ for every
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$(c, d, e)\in C$ . We shall use the shorter notation $f(c)$ and $f(c)$ for the covers
$f(c, f(c),$ $f(c))$ and $f(c, f(c),$ $f(c))$ .

CLAIM 1. There is an increasing function $f^{*}:$
$\tilde{Y}\rightarrow\hat{X}$ such that

(1) $f^{*}(c)>f(c)$ for every $c\in\tilde{Y}$ , and
(2) $f^{*}$ is $co$final in $f$, i.e., for every $(c, d, e)\in C$ there is an $m\in\tilde{Y}$ with

$f^{*}(m)>f(c, d, e)$ .

PROOF OF CLAIM 1. Let $\mathcal{D}=\{f(c, d, e)|(c, d, e)\in C\}$ .

If $\tilde{Y}$ is a finite set, then $\mathcal{D}$ is a finite collection of elements of $\hat{X}$ . Let
$\alpha\in\hat{X}$ be a common refinement of all members of $\mathcal{D}$ . Let $f^{*}:$

$\tilde{Y}\rightarrow\hat{X}$ be a con-
stant function into $\alpha$ .

If $\tilde{Y}$ is an infinite set, then the cardinality of $\mathcal{D}$ does not exceed the car-
dinality of $\tilde{Y}$ . Hence, there is a surjection $g:\tilde{Y}\rightarrow \mathcal{D}$ . Let $f^{*}:$

$\tilde{Y}\rightarrow\hat{X}$ be an
increasing function such that $f^{*}(c)>g(c),$ $f(c)$ for every $c\in\tilde{Y}$ . $\square $

The above discussion shows that every multi-net $\varphi:X\rightarrow Y$ determines eight
functions denoted by $\overline{f},$ $f,\hat{f},$ $f$ and $f^{*}$ . With the help of these functions we
shall define the composition of homotopy classes of multi-nets as follows.

Let $\varphi=\{F_{c}\}:X\rightarrow Y$ and $\psi=\{G_{s}\}:Y\rightarrow Z$ be multi-nets. Let $x=\{H_{s}\}$ , where
$H_{s}=G_{g(s)}\circ F_{f(g*(s))}$ for every $s\in\tilde{Z}$ .

CLAIM 2. The collection $\chi$ is a multi-net from $X$ into $Z$ .

PROOF OF CLAIM 2. Let $\sigma\in\hat{Z}$ . We must find an $s\in\tilde{Z}$ such that

(13) $H_{t}\cong\sigma H_{s}$ for every $t>s$ .

Let $\tau\in\sigma^{*2}$ , where $\sigma^{*n}$ denotes the set of all normal covers $\tau$ of $Z$ such
that the n-th star $st^{n}(\tau)$ of $\tau$ refines $\sigma$ . Let $s=\{\tau\}\in\tilde{Z}$ .

Consider an lndex $t>s$ . We shall find an index $c\in\tilde{Y}$ so that

(14) $H_{t}\cong\tau G_{x}\circ F_{c}$ ,

(15) $G_{x}\circ F_{c}\cong^{\tau}G_{y}\circ F_{c}$ ,

and

(16) $G_{y}\circ F_{c}\cong\tau H_{s}$ ,

where $x=g(t)$ and $y=g(s)$ . Repeated use of Lemma 3 will give (13) from the
relations (14)$-(16)$ .
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Invoking the property (2) of Claim 1, choose a $u>t$ so that $r>\tilde{g}(s, p, q)$ ,

where $r=g^{*}(u),$ $p=g(s)$ , and $q=g(t)$ . Let $c=f(r)$ . Since $q>p>\overline{g}(s)$ and $\tilde{s}=\tau$ ,

there is a $(g(s, p, q), \tau)$-map $L:Y\times I\rightarrow Z$ joining $G_{p}$ and $G_{q}$ . But, $F_{c}$ is joined

to itself by an r-small homotopy. It follows that $L\circ(F_{c}\times id_{I})$ is a $\tau$-small homo-
topy realizing the relation (15).

On the other hand, $G_{x}$ is a $(\tilde{g}(t), \tau)$-map while $F_{f(g*(l))}$ and $F_{c}$ are joined

by a $g^{*}(t)$-small homotopy $K$ . The property (1) of Claim 1 implies that $G_{g(t)}\circ K$

is a $\tau$-small homotopy which realizes the relation (14). In an analogous fashion
one can show that (16) is also true. $\square $

We now define the composition of homotopy classes of multi-nets by the
rule $[\{G_{\theta}\}]\circ[\{F_{c}\}]=[\{G_{g(s)}\circ F_{f(g*(s))}\}]$ .

CLAIM 3. The composition of homotopy classes of multi-nets is well-defined.

PROOF OF CLAIM 3. Let $\kappa=\{K_{c}\}$ and $\lambda=\{L_{s}\}$ be multi-nets homotopic to
$\varphi$ and $\psi$, respectively, and let $\mu=\{M_{\epsilon}\}$ , where $M_{s}=L_{l(s)}\circ K_{k(l*(s))}$ for every
$s\in\tilde{Z}$ . We must show that multi-nets $\chi$ and $\mu$ are homotopic. In other words,

that for every $\sigma\in\hat{Z}$ there is an $s\in\tilde{Z}$ such that

(17) $H_{t}\cong M_{l}$ for every $t>s$ .

Let $\sigma\in\hat{Z}$ . Let $\tau\in\sigma^{*4}$ . Let $s=\{\tau\}\in\tilde{Z}$ . In order to prove (17), we shall argue
that for every $t>s$ we can find indices $c\in\tilde{Y}$ and $u\in\tilde{Z}$ such that

(18) $H_{l}\cong^{\tau}G_{x}\circ F_{c}$ ,

(19) $G_{x^{\circ}}F_{c}\cong^{\tau}G_{u}\circ F_{c}$ ,

(20) $G_{u}\circ F_{c}\cong^{\tau}L_{u}\circ F_{c}$ ,

(21) $L_{u}\circ F_{c}\cong\tau L_{u}\circ K_{c}$ ,

(22) $L_{u}\circ K_{c}\cong\tau L_{y}\circ K_{C}$ ,

(23) $L_{y}\circ K_{c}\cong\tau M_{l}$ ,

where we put $x=g(t)$ and $y=l(t)$ . From the relations (18) $-(23)$ with the help

of Lemma 3 we shall get (17).

We shall now describe how big $c$ and $u$ must be chosen for relations (18),

(19), (20) and (21) to hold separately. The relations (22) and (23) are analogous

to relations (19) and (18), respectively. We leave to the reader the task of
making a cumulative choice for $c$ and $u$ which accomplishes our goal. It is
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important to notice that $u$ is selected first while $c$ is selected only once $u$ is
already known.

Add (18). Since $G_{x}$ is a $(\tilde{g}(t), \tau)$-map and $g^{*}(t)$ refines the cover $\tilde{g}(t)$ , by

the property (1) of Claim 1, it sufflces to take $c>f(g^{*}(t))$ .
Add (19). If $u>x$ , then $G_{x}$ and $G_{u}$ are joined by a $(g(u), \tau)$-map $ P:Y\times$

$I\rightarrow Z$ . Let $c>f(g^{*}(t))$ . Then $F_{c}$ is $g^{*}(u)$-small. Since $g^{*}(u)>\tilde{g}(u)$ , it follows
that $P\circ(F_{c}\times id_{I})$ is a $\tau$-small homotopy joining the left and the right side of the
relation (19).

Add (20). Since $\psi\cong\lambda$ , there is a $u\in\tilde{Z}$ , a normal cover $\eta$ of $Y\times I$ , and an
$(\eta, \tau)$-map $S:Y\times I\rightarrow Z$ joining $G_{u}$ and $L_{u}$ . Let $\xi$ be a normal cover of $Y$ ob-
tained by the application of [4, p. 358] to the cover $\eta$ . If $c>f(\xi)$ , then $F_{a}$ is
$\xi$-small so that So $(F_{c}\times id_{I})$ is a $\tau$-small homotopy joining compositions which
appear in (20).

Add (21). Let $u>y$ . Then $L_{u}$ is an $(\tilde{1}(u), \tau)$-map. Since $\varphi$ and $\kappa$ are
homotopic, there is an index $c\in C$ so that $F_{c}$ and $K_{c}$ are joined by an $l(u)-$

small homotopy $T:X\times I\rightarrow Y$ . The composition $L_{u}\circ T$ realizes the relation (21).
$\square $

THEOREM 1. The composition of homotopy classes of multi-nets is associative.

PROOF OF THEOREM 1. Let $\varphi=\{F_{c}\},$ $\psi=\{G_{s}\}$ and $x=\{H_{p}\}$ be multi-nets
from $X$ into $Y$ , from $Y$ into $Z$ , and from $Z$ into $W$ , respectively. Let $\mu=\{M_{s}\}$ ,

$\nu=\{N_{p}\},$ $\kappa=\{K_{p}\}$ and $\lambda=\{L_{p}\}$ , where $M_{s}=G_{g(s)}\circ F_{f(g*(s))}$ for every $s\in\tilde{Z}$ and
$N_{p}=H_{h(p)}\circ G_{g(h*(p))}$ , $K_{p}=H_{h(p)}\circ M_{m(h*(p))}$ , and $L_{p}=N_{n(p)}\circ F_{f(n*(p))}$ , for every
$p\in\tilde{W}$ . We must show that $\kappa$ and $\lambda$ are homotopic, $i.e.$ , that for every $\pi\in\hat{W}$

there is a $ p\in\pi$ such that

(24) $K_{q}\cong\pi L_{q}$ for every $q>p$ .

Let $\pi\in\hat{W}$. Let $\rho\in\pi^{*4}$ . Let $p=\{\rho\}\in W$ . In order to prove (24), we shall show
that for every $q>p$ we can find indices $c\in\tilde{Y}$ and $s\in\tilde{Z}$ such that

(25) $K_{q}\cong\rho H_{x}\circ G_{y}\circ F_{c}$ ,

(26) $H_{x}\circ G_{y}\circ F_{c}\cong\rho H_{x}\circ G_{s}\circ F_{c}$ ,

(27) $H_{x}\circ G_{s}\circ F_{c}\cong\rho H_{z}\circ G_{s}\circ F_{c}$ ,

(28) $H_{z^{o}}G_{s}\circ F_{c}\cong\rho N_{w}\circ F_{c}$ ,

and
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(29) $N_{w}\circ F_{c}\cong\rho L_{q}$ ,

where $x=h(q),$ $y=g(m(h^{*}(q))),$ $z=h(n(q))$ and $w=n(q)$ . Repeated use of Lemma
3 will give (24) from the relations (25) $-(29)$ .

The method of proof is similar to the proof of Claim 3. We shall only

describe for each of the relations (25) $-(29)$ how large the indices $u$ and $c$ must

be in order that this homotopy holds. An easy exercise of putting together all

these selections is once again left to the reader. Since relations (28) and (29)

are analogous with relations (26) and (25), respectively, it suffices to consider
only relations (25) $-(27)$ .

Add (25). Observe that $H_{x}$ is an $(\alpha, \rho)$-map while $G_{y}$ is a $(\beta, \alpha)$-map, where
$\alpha=\tilde{h}(q),$ $\beta=h^{*}(q)$ , and $\gamma=\tilde{g}(m(\beta))$ . Let $\delta=g^{*}(m(\beta))$ . If $c>f(\delta)$ , then $F_{f(\delta)}$ and
$F_{c}$ are joined by a $\delta$-small homotopy $P:X\times I\rightarrow Y$ . But, $\delta$ refines $\gamma$ by the pro-

perty (1) of Claim 1. Hence, $H_{x}\circ G_{y}\circ P$ is a $\rho$ -small homotopy between $K_{q}$ and
$H_{x}\circ G_{y}\circ F_{c}$ .

Add (26). As above, $H_{x}$ is an $(\alpha, \rho)$-map. Since $m(s)>s$ for every $s\in\tilde{Z}$ ,

we get $y>g(\beta)$ . Therefore, if we take $s>y$ , then $G_{y}$ and $G_{s}$ are joined by an
$(\epsilon, \beta)$-map $Q:Y\times I\rightarrow Z$ , where $\epsilon=g(\beta)$ . However, $\beta$ refines $\alpha$ so that $H_{x}\circ Q$ is
an $(\epsilon, \rho)$ -map. Let $\eta$ be a normal cover of $Y$ associated to $\epsilon$ by [4, p. 358].

Finally, for $c>f(\eta)$ we see that $H_{x}\circ Q\circ(F_{c}\times id_{I})$ realizes the relation (26).

Add (27). Since $n(r)>r$ for every $r\in ffl$ , we get $z>x$ so that $H_{x}$ and $H_{z}$

are joined by an $(\eta, \rho)$-map $T:Z\times I\rightarrow W$, where $\eta$ denotes the normal cover
$h(z)$ of $Z\times I$ . Let $\xi=h^{*}(z)$ and let $s>g(\xi)$ . Then $G_{s}$ is a $(\tilde{g}(s), \xi)$-map. Let
$\zeta=g^{*}(s)$ and take $c>f(\zeta)$ . The composition $T\circ((G_{s}\circ F_{c})\times id_{I})$ realizes the rela-

tion (27). $\square $

The category $\mathcal{H}M$

For a topological space $X$ , let $c^{X}=\{I_{a}\}:X\rightarrow X$ be the identity multi-net
defined by $I_{a}=id_{X}$ for every $a\in\tilde{X}$ . It is easy to show that for every multi-
net $\varphi:X\rightarrow Y$ the following relations hold.

$[\varphi]\circ[c^{x}]=[\varphi]=[c^{Y}]\circ[\varphi]$

We can summarize the above with the following theorem.

THEOREM 2. The topological spaces as objects together with the homotopy

classes of multi-nets as morphisms and the composition of homotopy classes form
the category $\mathcal{H}M$.
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There is an obvious functor $J$ from the category $\mathcal{F}op$ of topological spaces
and continuous maps into the category $\mathcal{H}M$. On objects the functor $J$ is the
identity while on morphisms it associates to a map $f:X\rightarrow Y$ the homotopy

class of a multi-net $\underline{f}=\{F_{c}\}:X\rightarrow Y$ , where $F_{c}=f$ for every $c\in\tilde{Y}$ .
Our first main result can be stated as follows. Let $Sh$ be the shape cate-

gory of arbitrary topological spaces and let $S:\mathcal{F}op\rightarrow Sh$ be the shape functor
[7].

THEOREM 3. There is a functor $\theta$ from the category $\mathscr{X}M$ into the shape
category $Sh$ such that $S=\theta\circ J$ .

Description of the functor $\theta$

The functor $\theta$ will leave the objects unchanged. In order to explain how
$\theta$ effects the morphisms we must work much harder. First we encounter the
dilemma of selecting the right description of shape morphisms among the many
that exist in the literature.

In the rest of this paper, let $X,$ $Y$ and $Z$ be topological spaces and let

$p=\{p^{a}\}:X-x=\{X_{a}, \epsilon_{a}, p_{b}^{a}, A\}$ ,

$q=\{q^{c}\}$ : $Y-\wp=\{Y_{c}, \xi_{c}, q_{d}^{c}, C\}$ ,
and

$r=\{r^{m}\}$ : $Z-z=\{Z_{m}, \nu_{m}, r_{n}^{m}, M\}$

be uniform commutative approximate resolutions of $X,$ $Y$ and $Z$ where each
$X_{a},$ $Y_{c}$ and $Z_{m}$ is a polyhedron, $st^{3}(\epsilon_{a})$-close maps lnto $X_{a}$ , $st^{3}(\xi_{c})$-close maps
into $Y_{c}$ and $st^{3}(\nu_{m})$ -close maps into $Z_{m}$ are homotopic, and $A=(A, >),$ $C=(C, >)$ ,

and $M=(M, >)$ are infinite cofinite directed sets with cardinalities greater or
equal to cardinalities of $\tilde{X},\tilde{Y}$ and $\tilde{Z}$ , respectively. The existence of such
approximate resolutions follows from [8] and [11].

We can associate with the approximate resolutions $p,$ $q$ and $r$ the underly-
ing expansions in the sense of Morita [7]

$|p|=\{p^{a}\}:X-|x|=\{X_{a}, p_{b}^{a}, A\}$ ,

$|q|=\{q^{c}\}$ : $Y-|^{\zeta}|f|=\{Y_{c}, q_{d}^{c}, C\}$ ,

and
$|r|=\{r^{m}\}$ : $Z-|\mathcal{Z}|=\{Z_{m}, r_{n}^{m}, M\}$ .

It is well-known that shape morphisms from $X$ into $Y$ could be considered
as equivalence classes of morphisms of inverse systems ee $|$ and $|qf|$ (see [7]

and [11]). More precisely, the set $Sh(X, Y)$ of all shape morphisms between
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spaces $X$ and}’ can be identified with the set pro-.4(Pol $(|X|, |qi|)$ of all mor-
phisms in the Grothendick’s pro-category pro- $q(Pol$ of the homotopy of poly-

hedra $\mathcal{H}Pol$ between the objects ec $|$ and $|qj|$ . In our description of what $\theta$

does on morphisms of the category $\mathcal{H}M$ we shall view shape morphisms in
this way.

Let $\varphi=\{F_{S}\}_{s\in\overline{Y}}$ : $X\rightarrow Y$ be a multi-net. By Lemma 2, we can find a refine-
ment $\eta_{c}$ of $\xi_{c}$ so that for every $st^{2}(\eta_{c})$-small multi-valued function $K:W\rightarrow Y_{c}$

there is a normal cover $\rho$ of $W$ with the property that for every canonical map

$r;W\rightarrow N(\rho)$ there is a map $k:N(\rho)\rightarrow Y_{c}$ with $K=^{c}\xi k\circ r$ . Let $\pi_{c}=(q^{C})^{-1}(\eta_{c})$ .
Choose an index $l_{c}\in\tilde{Y}$ so that

(31) $ F_{s}\cong^{c}F_{t}\pi$ for all $s,$ $t>l_{c}$

Let $\lambda:C\rightarrow\tilde{Y}$ be an increasing function such that $\lambda(c)>l_{c},$ $\{\pi_{c}\},$ $v(c)$ for every
$c\in C$ , where $v;C\rightarrow\tilde{Y}$ is a surjection. We shall need later the fact that the
function $\lambda$ is cofinal, $i.e.$ , that for every $s\in\tilde{Y}$ there is a $d\in C$ with $\lambda(d)>s$ .

Observe that $F_{\lambda(c)}$ is $\pi_{c}$-small. Hence, $q^{c}\circ F_{\lambda(c)}$ is $\eta_{c}$-small. Let $\rho$ be a
normal cover of $X$ such that $q^{c}\circ F_{\lambda(c)}$ is a $(\rho, \eta_{c})$-map. Let $r;X\rightarrow N(\rho)$ be a
canonical map. The way in which we selected the cover $\eta_{c}$ gives a map $k$

which satisfies

(32) $ k\circ r=^{c}q^{c}\circ F_{\lambda(c)}\xi$ .

Let $\zeta=k^{-1}(\xi_{c})$ . By the property (R1) for the approximate resolution $p$ , there is

an index $f(c)\in A$ and a map $g:X_{f^{(C)}}\rightarrow N(\rho)$ with $r=^{\zeta}g\circ p^{f(c)}$ . Hence,

(33) $k\circ r^{\xi}=^{c}k\circ g\circ p^{f(C)}$ .

Let $f^{c}=k\circ g:X_{J^{(c)}}\rightarrow Y_{c}$ . The relations (32) and (33) together imply

(34)
$f^{c}\circ p^{f(c)}=^{c}q^{c}\circ F_{\lambda(c)}s\iota(\xi)$ .

CLAIM 4. The pair $f=(f, \{f^{c}|c\in C\})$ is a morphism between inverse systems
$|eel$ and $|^{q}f|$ .

PROOF OF CLAIM 4. We must show that for every pair $c,$
$d$ of elements

of $C$ with $d>c$ it is passible to find an $a>f(c),$ $f(d)$ so that

(35) $f^{c}\circ p_{a}^{f(c)}\cong q_{d}^{c}\circ f^{d_{o}}p_{a}^{f(d)}$ .

Since $\lambda(d)>\lambda(c)>l_{c}$ , by (31), the functions $F_{\lambda(c)}$ and $F_{\lambda(d)}$ can be joined by $\pi_{c^{-}}$

small homotopy $H:X\times I\rightarrow Y$ . Hence, $q^{c}\circ F_{\lambda(c)}$ and $q^{c}\circ F_{\lambda(d)}$ are joined by the $\eta_{c^{-}}$
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small homotopy $q^{c}\circ H$. It follows that there ls a single-valued continuous func-
tion $K:X\times I\rightarrow Y$ with

(36) $K^{\xi}=^{c}q^{c}\circ H$ .
The way in which we constructed $f^{d}$ , the relation $q^{c}=q_{d}^{c}\circ q^{d}$ , and the uniformity
property of $q$ give

$st(\xi_{c})$

(37) $q^{c}\circ F_{\lambda(a)}$ $=q_{d}^{c}\circ f^{d}\circ p^{f(d)}$ .
We know that

(38) $q^{c}\circ F_{\lambda(c)}(x)\subset q^{c}\circ H(x, 0)$ and $q^{c}\circ F_{\lambda(d)}(x)\subset q^{c}\circ H(x, 1)$

for every $x\in X$ . Combining relations (36), (34) and (38) we obtain
$st^{2}(\xi_{c})$

(39) $K_{0}$ $=$ $f^{c}\circ p^{f(c)}$ ,

while (36), (37) and (38) imply

(40)
$K_{1}=q_{d^{\circ}}^{c}f^{d}\circ p^{f(d)}st^{2}(\xi_{c})$

where $K_{0},$ $K_{1}$ : $X\rightarrow Y$ are defined by $K_{0}(x)=K(x, 0)$ and $K_{1}(x)=K(x, 1)$ for every
$x\in X$ . But, the assumption aabout $\xi_{c}$ gives that the maps appearing in (39)

and (40) are homotopic. Hence,

(41) $f^{c}\circ p\zeta^{(c)}\circ p^{b}\cong q_{d}^{c}\circ f^{d}\circ p\zeta^{(d)}\circ p^{b}$ ,

where $b>f(c),$ $f(d)$ . However, the system ec $|$ satisfies the condition (E2) from
the reference [7, p. 48], so that an $a>b$ for which (35) holds surely exists. $\square $

Now we can define that $\theta$ acts on morphisms of the category $\mathcal{H}M(i.e.$ , on
homotopy classes of multi-nets) by the rule $\theta([\varphi])=[f]$ , where $[f]$ denotes the
equivalence class of $f$ with respeot to the equivalence relation $\sim$ (see [7, p. 6]).

CLAIM 5. The function $\theta$ is well-defined i.e., it does not depend on the
choices of $\varphi,$

$\lambda$ , and $f^{c}$ in our description of $f$.

PROOF OF CLAIM 5. Suppose that $\psi=\{G_{c}\}:X\rightarrow Y$ is multi-net homotopic to
$\varphi$ and let the morphism $g=(g, \{g^{c}|c\in C\})$ of inverse systems ec $|$ and $|qf|$ be
constructed from $\psi$ by the above procedure using in it $\mu$ instead of $\lambda$ . We
must show that $f$ and $g$ are equivalent, $i.e.$ , that for every $c\in C$ there is an
$a>f(c),$ $g(c)$ with

(42) $f^{c}\circ p_{a}^{f(c)}\cong g^{c}\circ p_{a}^{g(c)}$ .
Let a $c\in C$ be given. Since $\varphi$ and $\psi$ are homotopic multi-nets, there is an
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index $s_{c}\in\tilde{Y}$ such that

(43) $F_{t}\cong^{c}\pi G_{u}$ for all $t,$ $u>s_{c}$ .

Since the functions $\lambda$ and $\mu$ are increasing and cofinal, there is a $d>c$ such
that $\lambda(d),$ $\mu(d)>s_{c}$ . From (43), we get

(44) $F_{\lambda(d)}\cong^{c}\pi G_{\mu^{(d)}}$

Let $H:X\times I\rightarrow Y$ be a $\pi_{c}$-small multi-valued function with $F_{\lambda(d)}(x)\subset H(x, 0)$ and
$G_{\mu^{(d)}}(x)\subset H(x, 1)$ for every $x\in X$ . Hence, $q^{c}\circ H$ is an $\eta_{c}$-small multi-valued func-
tion and

(45) $q^{\epsilon}\circ F_{\lambda(d)}(x)\subset q^{c}\circ H(x, 0)$ and $q^{c}\circ G_{\mu^{(d)}}(x)\subset q^{c}\circ H(x, 1)$

for every $x\in X$ . Just as in the proof of Claim 4 there is a single-valued con-
tinuous function $N:X\times I\rightarrow Y_{c}$ with

(46)
$N^{\xi}\cong^{c}q^{\iota}\circ H$ .

On the other hand, since $\lambda(d)>\lambda(c)>l_{c}$ the functions $F_{\lambda(c)}$ and $F_{\lambda(d)}$ are joined
by a $\pi_{c}$-small homotopy $L:X\times I\rightarrow Y$ . It follows that $q^{c}\circ L$ is an $\eta_{c}$-small homo-
topy which satisfies

(47) $q^{c}\circ F_{\lambda tc)}(x)\subset q^{c}\circ L(x, 0)$ and $q^{c}\circ F_{\lambda(d)}(x)\subset q^{c}\circ L(x, 1)$

for every $x\in X$ . Pick a single-valued continuous function $M:X\times I\rightarrow Y_{c}$ wlth

(48)
$ M=^{c}q^{c}\circ L\xi$ .

Similarly, there is a single-valued continuous function $P:X\times I\rightarrow Y_{c}$ together

with a $\pi_{c}$-small homotopy $R:X\times I\rightarrow Y$ such that

(49) $q^{c}\circ G_{\mu^{(C)}}(x)\subset q^{c}\circ R(x, 0)$ and $q^{c}\circ F_{\mu^{(c)}}(x)\subset q^{c}\circ R(x, 1)$

for every $x\in X$, and

(50) $ P=^{c}q^{c}\circ R\xi$ .
In analogy with (35), we also have

(51)
$g^{c}\circ p^{g(c)}=^{c}q^{c}\circ G_{\mu^{(c)}}st(\xi)$ .

Let $M_{0},$ $M_{1},$ $N_{0},$ $N_{1},$ $P_{0}$ and $P_{1}$ be maps defined from maps $M,$ $N$ and $P$ as we
defined $K_{0}$ and $K_{1}$ from $K$ in the proof of Claim 4.

The relations (34) and (48) imply that $f^{c}\circ p^{f(c)}$ and $M_{0}$ are $st^{8}(\xi_{c})$-close maps
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into $Y_{c}$ . It follows that they are homotopic. Similarly, the maps $g^{c}\circ p^{g(C)}$ and
$P_{1}$ are homotopic.

The maps $M_{1}$ and $N_{0}$ are also homotopic because from relations (45) $-(48)$

we see that both are $\xi_{c}$-close to the function $q^{c}\circ F_{\lambda(d)}$ . The maps $N_{1}$ and $P_{0}$ are
homotopic because of a similar reason.

We conclude from the last two paragraphs that maps $f^{c}\circ g^{f(c)}$ and $g^{c}\circ p^{g(c)}$

are homotopic. Just as in the proof of Claim 4, with the help of the condition
(E2), we can conclude that there exists an $a>f(c),$ $g(c)$ so that (42) holds. $\square $

CLAIM 6.
(1) Let $\ell=\{(id_{x})_{z\in\tilde{X}}$ be the identity multi-net on a space X. Then the mor-

phism $i$ : ee $|\rightarrow|X|$ associated to $f$ by our description of $\theta$ is the identity
morphlsm $(id_{A}, \{(id_{X})_{a}|a\in A\})$ .

(2) Let $\varphi=\{F_{i}$ {: $X\rightarrow Y$ and $\psi=\{G_{u}\}:Y\rightarrow Z$ be multt,-nets. Then

$\theta([\psi J\circ[\varphi])=\theta([\psi])\circ\theta([\varphi])$ .
(3) $\theta$ is a functor and the relation $S=\theta\circ J$ holds.

PROOF OF CLAIM 6 (2). Let $\eta=\{H_{u}\}:X\rightarrow Z$ , where $H_{u}=G_{g(u)}\circ F_{f(g*(u))}$ for
every $u\in\tilde{Z}$ . Let $f=(f, \{f^{c}\}_{c\in C}),$ $g=(g, \{g^{m}\}_{m\in M})$ , and $h=(h, \{h^{m}\}_{m\in M})$ be ob-
tained from $\varphi,$

$\psi$ and $\eta$ by the above procedure. We must show that $h$ and
$g\circ f$ are homotopic. Since $g\circ f=(f\circ g, \{g^{m}\circ f^{g(m)}\})$ , this amounts to show that
for every $m\in M$ there is an $a>t,$ $x$ such that

(52) $h^{m}\circ p_{a}^{x}\cong g^{m}\circ f^{v}\circ p_{a}^{t}$ ,

where $t=f\circ g(m),$ $x=h(m)$ and $v=g(m)$ .
Once again, our method is to show that

(53) $h^{m}\circ p^{x}\cong g^{m}\circ f^{v}\circ p^{t}$ ,

and then use the condition (E2) to get the required index.
In order to establish (53), we shall argue that there are large enough indices

$b\in C$ and $n\in M$ such that
$st(\nu_{m})$

(54) $h^{m_{o}}p^{x}$ $=$ $r^{m}\circ H_{y}$ ,

(55) $ r^{m}\circ H_{y}\cong^{m}r^{m}\circ G_{z}\circ F_{c}\mu$

(56) $ r^{m}\circ G_{z}\circ F_{c}\cong^{m}r^{m}\circ G_{n}\circ F_{c}\mu$

(57) $ r^{m}\circ G_{n}\circ F_{c}\cong^{m}r^{m}\circ G_{w}\circ F_{c}\mu$
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$st^{2}(\nu_{m})$

(58) $r^{m}\circ G_{w}\circ F_{c}$ $=$ $g^{m}\circ q^{v}\circ F_{c}$ ,

(59) $ g^{m}\circ q^{v}\circ F_{c}\cong^{m}g^{m}\circ q^{v}\circ F_{u}\mu$

and
$st(\mu_{m})$

(60) $g^{m}\circ q^{v}\circ F_{u}$ $=$ $g^{m}\circ f^{v}\circ p^{t}$

where $y=\gamma(m),$ $z=g(\gamma(m)),$ $w=\kappa(m),$ $u=\lambda(g(m)),$ $\mu_{m}$ is analogous to $\eta_{c}$ and $\gamma,$
$\kappa$

and $\lambda$ are functions used in constructing $h,$ $g$ and $f$, respectively.

Suppose for a moment that the relations (54) $-(57)$ hold. From (55) $-(57)$ it
follows that there is a $st^{2}(\mu.)$-small multi-valued function $K:X\times I\rightarrow Z$ such that

(61) $r^{m}\circ H_{y}(x)\subset K(x, 0)$ and $r^{m}\circ G_{w}\circ F_{c}(x)\subset K(x, 1)$

for every $x\in X$ . Similarly, from (59), it follows that there is a $\mu_{m}$-small multi-
valued function $L:X\times I\rightarrow Z$ with

(62) $g^{rn}\circ q^{v}\circ F_{c}(x)\subset L(x, 0)$ and $g^{m}\circ q^{v}\circ F_{u}(x)\subset L(x, 1)$

for every $x\in X$ . Let $B$ and $D$ be single-valued continuous functions such that

(63)
$B^{\nu}=^{m}K$ and $D^{\nu}=^{m}L$

From (54), (61) and (63), we get that maps $h^{m}\circ p^{x}$ and $B_{0}$ are $st(\nu_{m})$-close.
Hence,

(64) $h^{m}\circ p^{x}\cong B_{0}$ .

Similarly, from (58) and (61) $-(63)$ , it follows that the two maps $B_{1}$ and $D_{0}$

are $st(\nu_{m})$-close. Hence,

(65) $B_{1}\cong D_{0}$ .
Finally, from (60), (62) and (63), we obtain that maps $D_{1}$ and $g^{m}\circ f^{v}\circ p^{t}$ are

$sl^{3}(\nu_{m})$-close. Hence,

(66) $D_{1}\cong g^{m}\circ f^{v}\circ p^{i}$ .

The relations (64) $-(66)$ together imply the relation (53). Thus it remains to
explain why (54) $-(60)$ hold. We shall describe what choice of $c$ and $n$ make
each of these relations true and leave to the reader to put together all choices
to pick them so that all are true simultaneously.

Add (54). This follows from the way in which $h$ was constructed (it cor-
responds to the relation (34)).

Add (55). Observe that $H_{y}=G_{z}\circ F_{s}$ , where $s=f(g^{*}(y))$ . Since $G_{z}$ is a
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$(\tilde{g}(y, z, z),\tilde{y})$-map (and therefore also a $(g^{*}(y),\tilde{y})$-map because $g^{*}(y)$ refines
$\tilde{g}(y, z, z))$ and $\tilde{y}$ refines $\rho_{m}=(r^{m})^{-1}(\mu^{m})$ , it suffices to take $c>s$ because then $F_{s}$

and $F_{c}$ are joined by a $g^{*}(y)$-small homotopy $Q:X\times I\rightarrow Y$ so that $r^{m}\circ G_{z}\circ Q$ is
a $\mu_{m}$-small homotopy joining $r^{m}\circ H_{y}$ and $r^{m}\circ G_{z}\circ F_{c}$ .

Add (56). Let $n>z$ . Then $G_{f}$ and $G_{n}$ are joined by a $(g(y, z, n),\tilde{y})$-map
$R:Y\times l\rightarrow Z$ . Hence, if $c>g^{*}(n)$ , then $r^{m}\circ R\circ(F_{c}\times id_{I})$ is a $\mu_{m}$-small homotopy
joining $r^{m}\circ G_{z}\circ F_{c}$ and $r^{m}\circ G_{n}\circ F_{c}$ .

Add (57). Let $n>w$ . Then $G_{n}$ and $G_{w}$ are joined by a $\rho_{m}$-small homotopy
$T:Y\times I\rightarrow Z$ . Let $\omega$ be a normal cover of $Y\times I$ such that $T$ is an $(\omega, \rho_{m})$-map
and let $\zeta$ be a normal cover of $Y$ obtained from $\omega$ by application of [4, p. 358].

Let $c>f(\{\zeta\})$ . Then $F_{c}$ is a $\zeta$-small multi-valued function so that $r^{m}\circ T\circ(F_{c}\times id_{I})$

is a $\mu_{m}$-small homotopy joining $r^{m}\circ G_{n}\circ F_{c}$ and $r^{m_{Q}}G_{w}\circ F_{c}$ .
Add (58). First we observe that

$st(\nu_{m})$

(67) $r^{m}\circ G_{w}=g^{m}\circ q^{v}$ .

The relation (67) is just the version of the relation (34) for $\psi$ . Choose a normal
cover $\pi$ of $Y$ such that $G_{w}$ is a $(\pi, \rho_{m})$-map. Let $c>f(\{\pi\})$ . Then $F_{c}$ is $\pi-$

small and the composition $r^{m}\circ G_{w}\circ F_{c}$ is $\mu_{m}$-small. Let $\beta=(g^{m}\circ q^{v})^{-1}(\mu_{m})$ . Let
$c>f(\{\beta\})$ . Then $F_{c}$ is $\beta$ -small and the composition $g^{m}\circ q^{v}\circ F_{c}$ is also $\mu_{m}$-small.
With this information on the size of both sides appearing in (58), from (67), we
can get (58).

Add (59). We can assume that $\xi_{v}>(g^{m})^{-1}(\mu_{m})$ for every $m\in M$. It might
be necessary to pass from a given set of $\xi_{c}\prime s$ to the new ones by an inductive
argument on number of predecessors in order to accomplish this. Let $c>u$ .
Then $F_{c}$ and $F_{u}$ are joined by a $\pi_{v}$-small homotopy $U:X\times I\rightarrow Y$ and $g^{m}\circ q^{v}\circ U$

is a $\mu_{m}$-small homotopy between $g^{m}\circ q^{v}\circ F_{c}$ and $g^{m}\circ q^{v}\circ F_{u}$ .
Add (60). The relation (34) for $c=v$ reads

$q^{v_{o}}F_{u}=^{v}f^{v}\circ p^{t}st(\xi)$ .
Since $\xi_{v}>(g^{m})^{-1}(\mu_{m})$ , we get from this the relation (60). $\square $

PROOF OF CLAIM 6 (3). That $\theta$ is a functor follows fram the previous dis-
cussion. It remains to see that $S=\theta\circ J$ . Let $f:X\rightarrow Y$ be a map, $i.e.$ , a mor-
phism of the category Sop. For each $c\in C$ , there is a $\mu_{c}\in\xi_{c}^{*2}$ such that $q$ is
also a commutative uniform approximate resolution of $Y$ into the approximate
inverse system $\wp^{\prime}=\{Y_{c}, \mu_{c}, q_{d}^{c}, C\}$ . By Theorem (6.3) in [8], there is an appro-
ximate map $r\rightarrow q$ such that $(p, q, f)$ is an approximate resolution of $f$.
By Lemma (5.6) in [8], we get
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(68) $f^{c}\circ p^{f(c)}\xi_{c,=q^{c}}$ . $f$ .
Let $\varphi_{f}=\{F_{i}\}:X\rightarrow Y$ be a multi-net, where $F_{i}=f$ for every $i\in\tilde{Y}$ . Then $[\varphi_{f}]$

$=J(f)$ . In applying the procedure from the description of $\theta$ to the multi-net
$\varphi_{f}$ we can take for $\lambda$ a constant function and the above morphism $f$. The
relation (68) implies that $S=\theta\circ J$ . Indeed, the induced morphisms satisfy

(69) $|f|\circ|p|=|q|\circ f$ .
Since there is a unique morphism which satisfies (69), namely the morphism
$S(f)$ , we get $S(f)=\theta(J(f))$ . $\square $

Inverse of $\theta$

We shall now prove that on spaces which admit ANR-resolutions with the
onto projections (that we call O-spaces) the functor $\theta$ is a category isomorphism.

DEFINITION 7. A space $X$ is called an O-space provided there is an ANR-
resolution $ p=\{p^{a}\}:X\rightarrow\{X_{a}, p_{b}^{a}, A\}\ln$ the sense of Marde\v{s}i\v{c} [7], where each
projection $p^{a}$ is an onto map.

At present we do not know what is the real extend of O-spaces. From
results in [11], it follows that inverse limits of inverse systems of compact
Hausdorff spaces with onto bonding maps are O-spaces. In particular, all com-
pact metric spaces are O-spaces. One can easily check that the examples of
non-degenerate regular spaces with the property that every real valued map on
them is constant [5, p. 160] provide examples of spaces that are not O-spaces.

THEOREM 4. Let $X$ be a topological space and let $Y$ be an O-space. Then
the function $\theta$ : $\mathcal{H}M(X, Y)\rightarrow Sh(X, Y)$ is a bijection.

In order to prove Theorem 4, we shall construct the function $\zeta;Sh(X, Y)$

$\rightarrow \mathcal{H}M(X, Y)$ which will be the inverse for the function $\theta$ . The description of
$\zeta$ and the verification of its properties is given below in Claims 7-10.

Construction of the function $\zeta$

Let $f=(f, \{f^{c}\}_{c\in C})$ be a morphism between inverse systems $|X|$ and $|qj|$ .
Let $s\in\tilde{Y}$ . Recall that $s$ is a finite set of normal covers of $Y$ with the unique
maximal element $\tilde{s}\in\hat{Y}$ . By the condition (B1) for the approximate resolution
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$q[8]$ , there is an index $c(s)\in C$ such that

(70) $(q^{c})^{-1}(\xi_{c})$ refines $\tilde{s}$ for every $c>c(s)$ .
Let $\gamma:\tilde{Y}\rightarrow C$ be an increasing function with $\gamma(s)>c(s)$ for every $s\in\tilde{Y}$ . Let
$\varphi=\{F_{S}\}_{s\in\tilde{Y}}$, where $F_{s}=(q^{\gamma(S)})^{-I}\circ f^{\gamma(s)}\circ p^{f(\gamma(s))}$ .

CLAIM 7. The family $\varphi$ is a multi-net from $X$ into $Y$ .

PROOF OF CLAIM 7. Let a $\sigma\in\hat{Y}$ be given. We must show that there is a
$c\in\tilde{Y}$ such that

(71) $F_{t}\cong\sigma F_{s}$ for every $t>s$ .

Let $s=\{\sigma\}\in\hat{Y}$ . Let $l>s$ . Put $m=\gamma(t),$ $n=\gamma(s),$ $v=f(m)$ and $w=f(n)$ . Since
$m>n$ and $f$ is a morphism of inverse systems, there is an $a>v,$ $w$ and a map
$K:X_{a}\times I\rightarrow Y_{n}$ with

(72) $K(x, 0)=q_{m}^{n}\circ f^{m}\circ p_{a}^{v}(x)$ and $K(x, 1)=f^{m}\circ p_{a}^{w}(x)$

for every $x\in X_{a}$ . Let $L=(q^{n})^{-1_{\circ K}}o(p^{a}\times id_{I})$ . Then $L:X\times I\rightarrow Y$ is a $\sigma$ -small
homotopy. Moreover, for every $x\in X$ , from (72), we get

(73) $L(x, 0)=(q^{n})^{-1}\circ q_{m}^{n}\circ f^{m}\circ p_{a}^{v}\circ p^{a}(x)\supset(q^{m})^{-1}\circ f^{m}\circ p^{v}(x)=F_{t}(x)$ ,

and

(74) $L(x, 1)=(q^{n})^{-1}\circ f^{n}\circ p_{a}^{w}\circ p^{a}(x)=(q^{n})^{-1}\circ f^{n}\circ p^{w}(x)=F_{\epsilon}(x)$ .
Hence, $L$ is a $\sigma$ -small homotopy between $F_{t}$ and $F_{s}$ . $\square $

Now we can define the function $\zeta$ by the rule $\zeta([f])=[\varphi]$ .

CLAIM 8. The function $\zeta$ is well-defined, i.e., the value $\zeta([f])$ does not de-
pend on the choice of the representive $f$ of the equivalence class $[f]$ and on the
choice of the function $\gamma$ in our descriprxon of $\varphi$

PROOF OF CLAIM 8. Let $g=(g, \{g^{c}\}_{c\in C})\in[f]$ . Let $\psi=\{G_{S}\}_{\epsilon\in\tilde{Y}}$ be con-
structed from $g$ by the above procedure using the increasing function $\mu:\tilde{Y}\rightarrow C$ .
We must show that $\varphi$ and $\psi$ are homotopic, $i.e.$ , that for every $\sigma\in\hat{Y}$ there is
an $s\in\tilde{Y}$ such that

(75) $F_{t}\cong\sigma G_{t}$ for every $t>s$ .
Let a $\sigma\in\hat{Y}$ be given. Let $\tau\in\sigma^{*2}$ . Put $s=\{\tau\}\in\tilde{Y}$ . Pick an increasing

function $\delta:\tilde{Y}\rightarrow C$ such that $\delta(t)>\gamma(t),$ $\mu(t)$ for every $t\in\tilde{Y}$ .
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Let $t>s$ . Let $m=\gamma(t),$ $n=\mu(t),$ $k=\delta(t),$ $u=f(m),$ $v=f(k),$ $y=g(n)$ and $z=$

$g(k)$ . Since $k>m$ , there is an $a>u,$ $v$ with $f^{m}\circ p_{a}^{u}\cong q_{k}^{m}\circ f^{i}\circ p_{a}^{v}$ . As in the proof
of Claim 7, we can conclude from here that

(76) $ F_{t}\cong K\tau$

where $K=(q^{k})^{-1}\circ f^{k}\circ p^{v}$ . Similarly, we obtain

(77) $L\cong\tau G_{t}$ ,

where $L=(q^{k})^{-}‘\circ g^{k}\circ p^{z}$ . Since $f$ and $g$ are equivalent, there is a $b>v,$ $z$ and a
homotopy $H:X_{b}\times I\rightarrow Y_{k}$ with $H(x, 0)=f^{k}\circ p_{b}^{v}(x)$ and $H(x, 1)=g^{k}\circ p_{b}^{z}(x)$ for every
$x\in X_{a}$ . It follows that the composition $(q^{k})^{-1}\circ H\circ(p^{b}\times id_{I})$ is a $\tau$-small homotopy
joining $K$ and $L$ . This together with (77) and (76) implies (75). $\square $

CLAIM 9. For every morphism $f=(f, \{f^{c}\}_{c\in C})$ : EM $|\rightarrow|\wp|$ we have $|f|=$

$\theta\circ\zeta([f])$ .

PROOF OF CLAIM 9. For every $s\in\tilde{Y}$ choose an index $c(s)\in C$ such that (70)

holds. Let $\gamma:\tilde{Y}\rightarrow C$ be an increasing function with $\gamma(s)>c(s)$ for every $s\in\tilde{Y}$ .
Let $\delta:C\rightarrow\tilde{Y}$ be a function such that $\delta(c)\in\gamma^{-1}(c)$ whenever $\gamma^{-1}(c)\neq\emptyset$ . Let $\varphi=$

$\{F_{l}\}_{s\in\tilde{Y}}$, where $F_{l}=(q^{\gamma(S)})^{-1}\circ f^{\gamma(\theta)}\circ p^{f(\gamma(s))}$ . With respect to $\varphi$ we now choose $\eta_{c}$ ,
$\pi_{c}$ and $l_{c}$ as we did in the description of the function $\theta$ . Hence, we can assume

that $(q^{\gamma(m)})^{-1}\circ f^{\gamma(m)}\circ p^{f(\gamma(m))}\cong^{c}\pi(q^{\gamma(n)})^{-1}\circ f^{\gamma(n)}\circ p^{f(\gamma(n))}$ whenever $m,$ $n>l_{c}$ .
Next, we shall select a cofinal increasing function $\lambda:C\rightarrow\tilde{Y}$ such that $\lambda(c)>$

$l_{c},$ $\{\pi_{c}\},$ $\delta(c)$ for every $c\in C$ . Let $u=\lambda(c),$ $v=\gamma(u)$ and $w=f(v)$ . Then $v>c$ and

$q^{c}\circ F_{u}=q^{c_{o}}(q^{v})^{-1}\circ f^{v}\circ p^{w}=q_{v}^{c}\circ f^{v}\circ p^{w}$ .

Hence, in the next step, ($i.e.$ , the selection of the index “
$f(c)$ and the single-

valued continuous function “
$f^{c}’$ ) we can take some $z=g(c)$ with $z>w$ and the

map $g^{c}=q_{v}^{c}\circ f^{v}\circ p_{z}^{w}$ . It remains to check that the morphisms $f$ and $g=(g, \{g^{c}\}_{c\in C})$

are equivalent. In other words, that for every $c\in C$ we can find an $a>f(c)$ ,
$g(c)$ with

$f^{c}\circ p_{a}^{f(c)}\cong g^{c}\circ p_{a}^{f(c)}=q_{v}^{c}\circ f^{v}\circ p_{z}^{w}\circ p_{a}^{z}$ .

But, this follows from the fact that $v>c$ and $f$ is a morphism of inverse sys-
tems. $\square $

DEFINITION 8. Let $\sigma$ be a normal cover of a space $Y$ . Two multi-valued
functions $F,$ $G:X\rightarrow Y$ are $\sigma$ -hooked provided for every $x\in X$ there is an $ S_{x}\in\sigma$

such that $S_{x}$ has non-empty intersection with both $F(x)$ and $G(x)$ .
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Observe that $\sigma$ -close multi-valued functions are $\sigma$ -hooked.

LEMMA 4. Let $F,$ $G:X\rightarrow Y$ be multi-valued functions and let $\sigma$ be a normal

cover of Y. If $F$ and $G$ are $\sigma$ -small and $\sigma$ -hooked, then $F^{sl}\cong^{(\sigma)}G$ .

PROOF OF LEMMA 4. Since $F$ and $G$ are $\sigma$ -small, there is a normal cover
$\eta$ of $X$ such that for every $ E\in\eta$ there are $S_{E},$ $ T_{E}\in\sigma$ with $F(E)\subset S_{E}$ and
$G(E)\subset T_{E}$ . Define a function $H:X\times I\rightarrow Y$ by the rule $H(x, t)=F(x)\cup G(x)$ for
every $x\in X$ and every $t\in l$ . Let $\xi=\{E\times I|E\in\eta\}$ . Clearly, $\xi$ is a normal cover
of $X\times I$ . We shall check that $H$ is a $(\xi, st(\delta))$-map. This would imply that $H$

is a $st(\sigma)$-small homotopy joining $F$ and $G$ .
Then $H(K)=F(E)\cup G(E)=S_{E}\cup T_{E}$ , for a member $K=E\times I$ of $\xi$ and $ E\in\eta$ .

But, since $F$ and $G$ are $\sigma$ -hooked, for every $x\in E$ there is an $ R_{x}\in\sigma$ with
$ R_{x}\cap F(x)\neq\emptyset$ and $ R_{x}\cap G(x)\neq\emptyset$ . Hence, $H(K)\subset st(R_{x}, \sigma)$ . $\square $

CLAIM 10. For every multi-net $\varphi=\{F_{s}\}_{s\in Y}$ : $X\rightarrow Y$ we have $\zeta\circ\theta([\varphi])=[\varphi]$ .

PROOF OF CLAIM 10. We first perform steps from the description of the
functor $\theta$ to get $C_{c},$ $\pi_{c},$

$l_{c},$ $\lambda,$ $f$ , and the maps $f^{c}$ . Then we perform steps from
the description of $\zeta$ to get indices $c(s)$ , the function $\gamma$ , and a multi-net $\psi=$

$\{G_{s}\}_{s\in\tilde{Y}}$ , where $G_{s}$ is the composition $(q^{\gamma(S)})^{-1}\circ f^{\gamma(S)}\circ\rho^{f(\gamma(S))}$ . We must show that
multi-nets $\varphi$ and $\psi$ are homotopic, $i.e.$ , that for every $\sigma\in\hat{Y}$ there is an $s\in\tilde{Y}$

with

(78) $F_{t}\cong\sigma G_{t}$ for every $t>s$ .

Let a $\sigma\in\hat{Y}$ be given. Let $\tau\in\sigma^{*s}$ . Since $\varphi$ is a multi-net there is an $s>\{\tau\}$

such that

(79) $F_{r}\cong\sigma F_{t}$ for all $r,$ $t>s$ .

Let $t>s$ . We shall prove that there is a large enough index $c\in C$ with the
property that

(80) $ F_{l}\cong F_{u}\tau$

$st^{2}(\tau)$

(81) $F_{u}\cong(q^{c})^{-1}\circ f^{c}\circ p^{v}$ ,

and

(82) $(q^{c})^{-1}\circ f^{c}\circ p^{v}\cong\tau G_{t}$ ,

where $u=\lambda(c)$ and $v=f(c)$ . The relations (80) $-(82)$ and Lemma 3 imply (78).

Add (80). Since $\lambda$ is a cofinal function, there is a $c\in C$ so that $\lambda(c)>s$ .
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Then (80) is a consequence of (79).

Add (81). Let $c>\gamma(\{\tau\})$ . If follows that $(q^{C})^{-1}(\xi_{c})$ refines $\tau$ so that $(q^{C})^{-1}(st(\xi_{c}))$

refines $st(\tau)$ . Hence, from the relation (34), we get

(83) $()^{-1}=^{\tau}$ .

But, the composition on the left side of (83) is a $\pi_{c}$-small multi-valued function.
Since $\pi_{c}=(q^{C})^{-1}(\eta_{c})$ refines $\tau$, by Lemma 4, from (83) we get (81).

Add (82). Let $w=\gamma(t)$ and $z=f(w)$ . Let $c>w,$ $\gamma(\{\tau\})$ . Since $(f, \{f^{d}\}_{d\in C})$

is a morphism of inverse systems, there is an $a>v,$ $z$ and a homotopy $ H:X_{a}\times$

$I\rightarrow Y_{c}$ with $H(x, 0)=q_{c}^{V}\circ f^{c}\circ p_{a}^{v}(x)$ and $H(x, 1)=f^{w}\circ p_{a}^{z}(x)$ for every $x\in X_{a}$ . It

follows that $(q^{C})^{-1}\circ H\circ(p^{a}\times id_{I})$ is a $\tau$-small homotopy joining the left and the
right side of (82). $\square $

REMARK. It is possible to use only multi-valued functions that are upper
semi-continuous or to require that in addition images of points are compact.

With these functions we shall get a similar result but the space $Y$ is further

restricted to spaces that admit ANR-resolutions with closed and perfect projec-
tions, respectively.
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