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1. Introduction

The purpose of this paper is to give a complete description of geodesics in
certain reductive homogeneous Riemannian manifolds. In case of naturally
reductive homogeneous space, it is well known that geodesics are orbits of 1-
parameter subgroups. On the other hand, H.C. Wang [7] studied the case of
semisimple Lie groups with certain left invarient metric and determined all
geodesics. In this paper we shall show a description of geodesics in certain
reductive homogeneous Riemannian manifolds which include the case of naturally
reductive and the case of semisimple Lie groups due to H.C. Wang. We first
recall the cases of naturally reductive and semisimple Lie groups more precisely
and then state our main result.

Let M=G/K be a reductive homogeneous space with decomposition g=¥f+m.
We identify the tangent space T ,M at the origin o={K} with m in a natural
manner.

(1) (cf. [6]) Let M=G/K be a reductive homogeneous space with a G-
invariant Riemannian metric g. Then the Riemannian homogeneous space M=
G/K is said to be naturally reductive if it admits the decomposition g=%f+m
satisfying the condition

g(X, [Z, Y]wotg([Z, X]m, ¥)o=0
for X, Y, Zem.
Then a geodesic y(f) in a naturally reductive homogeneous space M=G/K
such that y(0)=o0, 7(0)=X is written by

exp (tX)-o0 .
(2) (H.C. Wang [7]) Let G be a connected semisimple Lie group, g=¥f+p
a Cartan decomposition of its Lie algebra, and # the corresponding Cartain in-

volution. Consider the left invariant Riemannian metric given by the positive
definite bilinear form B, on gXg such that,
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Bo(X, Y)=—B(X, 6Y)

where B is the Killing form of g, X, Y=g. Then a geodesic y(t) in G such
that y(0)=e, 7(0)=T+X for T€l, Xep is written by

expt(X—T)exp 2tT .

In this paper, we study geodesics in reductive homogeneous spaces satisfying
certain conditions, which will be denote by (G/K, g, m'@Pm?, ¢) (see section 2
for notations). In section 2 we shall see that some of Kihler C-spaces with
second Betti number b,=1 and connected semisimple Lie groups with certain
left invariant metric are examples of these spaces. Now we can state our
main theorem.

THEOREM. Let y(t) be a geodesic in (G/K, g, m'@Pm? ¢) such that y(0)=o,
70)=X'+ X% for X*em®. Then,

r(t)=exp t(X'+cX?) exp (1—c)}tX?% 0.

As application of this theorem, we shall show that a geodesic in (G/K, g,
m'@Pm?, ¢) which intersects itself is a closed geodesic.

The author would like to thank Professors Tsunero Takahashi, Mitsuhiro
Itoh and Hiroyuki Tasaki for their helpful suggestions.

2. Definition and examples

Let M=G/K be a reductive homogeneous spacedelete with the Ad(K) in-
variant decomposition g=f+4m and a G-invariant Riemannian metric g. Now, we
assume that m has an orthogonal decomposition m=m'@m? with respect to g,
satisfying the following conditions:

[T, m*jCm® for 7=1, 2, 2.1)
[m!, m]Ct+m?, 2.2)
[m? m*]Ct, 2.3)
[m!, m¥]Cm?, (2.4)

Moreover there exists nonzero constant ¢ in R such that
g([X, Y], Z)ot+cg(X, [Z, Y])o=0, (2.5)

for each X, Yem?!, Zem?
We denote the above space by (G/K, g, m'éPpm?, ¢).



Geodesics in reductive homogeneous spaces 235

REMARK. Let (g, f+m?) and (f+wm? f) be orthogonal symmetric pairs, and
let m' be an orthogonal complement of f4m? in g with respect to the Killing
form of g. Then m=m'@Pm? satisfies conditions (2.1), (2.2), (2.3) and (2.4).

ExAaMPLE 2.1. Ké&hler C-spaces with second Betti number b,=1 (cf. [4]).

Let g° and %° respectively be a complex semisimple Lie algebra and its
Cartan subalgebra. Put /=dim¢)°. A denotes the set of nonzero roots of g°
with respect to §H°.

Let B be the Killing form of g°. For &=(h%)*=Hom (§¢; C), we define
H.=%® by B(H, H:)=&(H) for all H=%®. Fix a suitable lexicographic order on

(©)*. Put a fundamental root system IT={a,, -, a;}. By A* and A~ we
denote the sets of positive and negative roots, respectively. For each a€A,
we select a root vector E, so that {Hij=H,; G=1, -+, 1), E,, (a=A)} forms

Weyl’s canonical basis of g that is, it satisfies the following

B(E., E.)=—1, for acA*,
[:Em Eﬁ]:Na,ﬂEa+15 ’
fva,ﬁZZfV_a__BEElz.

Then following (vector) space g is a compact real form of g¢:

g= é}lR\/

acsA+
where Ay=FE,+E_,, Ba=~—1(E,—E_,), asA*.

We assume that ¢° is simple. Consider a subset @={a;,, -, a; } of II.
We define a subset A*(@) of A* and a complex subalgebra [y of g¢ by

A*(@):{a: }E}lnja,EA*; n;, =0 for some aikeq)},
=

lb=h+ = CE..+ = CE;s.

acA+ BeA+-A+(D)

Then the intersection t=g\{y is a real subalgebra of g expressed as

t= S RV=IH,+ > {RA,+RB.,.
=1

acA+-A+ (D)

Let G¢ be a simply connected complex Lie group with the Lie algebra g°
and Ly a connected closed complex subgroup of G¢ with the Lie subalgebra 4.
Let G be a simply connected compact group with the Lie algebra g, and K be
a connected closed subgroup with the Lie subalgebra f.

The canonical imbedding G—GF¢ gives a diffeomorphism of a compact homo-
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geneous space M=G/K to a simply connected complex homogeneous space
G°/Ls. By a result of Borel and Hirzebruch [2], we see that the second Betti
number b,(M)=r.

Hence we obtain a C-space G/K with b,=r from a pair (g%, @), where g°
is a complex simple Lie algebra and @ is a subset of II.

When G/K admits a G-invariant Kdhler metric g, (G/K, g) is a Kédhler C-
space.

Conversely, a Kidhler C-space with b,=r can be described by a homogeneous
space G/K for some G and K, with a G-invariant Kihler metric g [8].

Define a linear subspace m of g as follows:

m= 2 {RAa‘*‘RBa} .

ach+(P)

Then we have g=f+m as a direct sum and [, fjcf, [f, m]JCm and ¥t m
with respect to B.

Since K leaves the orign of a C-space M=G/K fixed, K acts on the tangent
space at the origin as the linear isotropy and the adjoint representation of K
on m,

Let a complex structure / of m be defined by IA,=B,, IB,=——A,, acA* (D).
This gives a G-invariant complex structure on G/K and coincides with the
canonical structure induced from the complex homogeneous space G¢/L.

Now, suppose that @ consists of a single root a; of /I, that is @={a;}.
This is equivalent to that the second Betti number b,=1.

By A*(a;; n) we define a subset

{aeA*((D); a:jgll m;a;, m,-:n}
of A*(@). Then m*=3,ea+(ay;n {RA+RB,} gives a linear subspace of m for
neN. They satisfy the following properties :
(f, m*JCm",
[(m®, m™]Cm** ™ fmin-m (n#m)
[m®, m*]JCt+m?" .
By a theorem of Borel [1], we obtain the K&dhler metric g as follows:
g(?X”, gY"‘)o=I€ ; n{—B(X", Y™)},
where B is Killing form of g%, X", Y"em®, £>0.
Suppose that A*(a;, #)=0 for £#=3. Then we have,

m=m'4+m?,
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g X'+ X2, Y4+ Y?),=—kBX', Y)—2B(X? Y?).

Thus we see that a Kihler C-space G/K associated with (g% {a;}) where

A*(a;, B)=0 for k=3 satisfies conditions [2.1), (2.2}, [2.3), [2.4) and [2.5).
Using our notation, we denote this space by (G/K, g, m'@Pm?, 2).

REMARK. In above case, m', m?* are irreducible as K-module (cf. [5]).
Hence, G-invariant Riemannian metric g of G/K is written by

gX'+ X2, Y +Y?),=—kB(X', Y)—£rcB(X? Y?)
where X%, Yiem® (=1, 2), ¢>0. We denote this metric by g.,. Then, for ¢>0,
the space (G/K, g., m'@m?, ¢) is an example of our spaces.

ExAaMPLE 2.2. The connected semisimple Lie group.

Let G be a connected semisimple Lie group, g=f+p a Cartan decomposition
of its Lie algebra, and # the corresponding Cartan involution. Let K be a
closed subgroup with Lie algebra . We put a Lie subgroup of GXK as follows:

K*={(k, h)eGXK|keK}.
Then we have G=GXxXK/K*, and
Lie(GXK)={X, V)| Xeg, Y &t},
Lie(K*)=¥*={(Y, Y)|Y f}.
We put subspaces of Lie(GXK) as follows:
m'={(X, 0)| Xep},
m={(T, —T)I T,
m=mPm?.

Then we have Lie(GXK)=¥*4+m and m=T,(GXK/K*). Consider the left in-
variant Riemannian metric g given by the positive definite bilinear from B, on
mXm such that

Bo(X+T, —T), Y+S, —S)=—B(T, S)4+B(2X, 2Y)

where B is the Killing form of g, (X, 0), (Y, 0)em!, and (T, —T), (S, —S)
em?* It is clear that this space satisfies condition (2.1), (2.2), (2.3), (2.4) and
(2.5). Hence, we can denote this space by (GXK/K*, g, m*@m?, —2).
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3. Main theorem

THEOREM 3.1. Let ¥(t) be a geodesic in (G/K, g, m*@m?, ¢) such that y(0)=
0, TO)=X"+X2? for X*em?. Then,

r(t)=exp t(X'+cX?) exp (1—c)tX?-0.

In order to prove this theorem, we need some preparations.

Let G/K be a reductive homogeneous space. Put = denote the natural
mapping of G onto G/K. For geG, we put L, and R, the left translation
h—gh and the right translation h--hg of G, respectively, and z, be the diffeo-
morphism AK~—ghK of G/K onto itself.

For X, Yem, we defined vector fields on G as follows:

Xo=(LoeX, T,=(R Y.

Then, by easy calculation, we obtain a following Lemma.

LEMMA 3.2. For each X, Yem, g&G,

(Te-Damx(X)=X . (3.6)
(te-smx(X )= {Ad(g" )X} m , 3.7)
[X, ¥1,=0X, V1., (3.8)
[X, ¥],=0. 3.9)

For X, Zem, we put curves a(t) and y(t), respectively in G, and M=G/K

as follows,
o(t)=exptXexptZ, r)=rn(o(?)).

Then, the vector field along ¢(¢) is written by
sO=(X+Z)s, -

Take a normal neighborhood V of 0 in wm, that is 7|expw):exp(V)—
w(exp (V)) is a diffeomorphism. We put U={a(t)g, geexp(V)}. Then =n(U)
is a neighborhood of the curve y(#). We extend 7 to a vector field on the
neighborhood #(U) of r(t) as follows:

Trerg) i= nl*(()?—’r'Z)o(t)g)

for o(t)g=U. We denote this extended vector field by same notation 7.

PROOF OF THEOREM 3.1. Put a(t)=exptXexptZ, y(t)=n(a(t)). For arbitrary
Y em, we define a vector field }7,, on U by
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Then we have
2(@(V,), Vit v =Frirg@(m«(Vo), )
(¢, TanP), Pro— 5 @ Nrwllils,  (3.10)

where ||71?:= g(7, 7).

From equations [(3.6), [3.7), [3.8) and [3.9) in Lemma 3.2, we can calculate
as follows.

Fraog8@w(¥,), 1)
R e A )
- dS s=0g TTx o/ 7 7(t+8)

d ~ ~ ~
:—d_— g(ﬂ*(ya(t+s), ﬂ*((X+Z>a(t+s)))o(t+s)-o
S 1s=0

d ~ A o~
- d? s=0g<(7<z—(z+s)))*TL’*(Ya), (Ty(—(t+s)))*”*((X+Z)a<t+s)))o

=L | g, (Ad(olt+ DX +2) s

= *5; B, {Ad (exp (= (+9)Z) exp(—(t+)XNX+Z} m)o
=-§—; 3=0g<Y, {Ad (exp (—(t+S)ZNX+Z} m)o

=g(¥, {Ad (exp (—tZ)[X, Z1} n)o,
g(t, [xx(¥o), 1Drw
=gt (X+D)octr)s [73(Y 0ct2), Tl (X+2)009)Dactr-o
= g((Toctr-Ds T (X4 Doy, @awr-[m4F o060), 74U XA+2)octs) o
=g({Ad (@) )X +Z) my For-Ds7x(LY, Zow)o

=g( {Ad (exp ("“tZ))X‘Jr'Z} wlY, Z1mo,
and

1 ~ :
— = (@ P s 713

1 d 5z
:_'2“_d§ 8=0“7r*((X+Z)a(t)expsY)”g(t)expsY-o

1d s & \
=— 20| exs oot DT (R Do exp )
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:__é_{;« | {Ad (exp (—sY)a(t) )X+ Z} ul
S Is=0
1d
— 5 45 |, HAd exp (—sY) exp (—tZNX+Z} ull;

=—g([Ad (exp (—tZ)X, Y I, {Ad (exp (—tZ)X+Z}w)o .

Hence (3.10) is
g(Y, {Ad (exp (—tZ)[X, Z]1}mdo
+g({Ad (exp (—tZNX+Z}wm, [Y, Z]wo

—g([Ad (exp (—tZNX, Y 1w, {Ad (exp (—tZ)NX+Z}m)o .
Now, we put

X=X'4+cX? and Z=(1—c)X?* for Xiem®.
Then, (3.10) is

g(Y, {Ad (exp (c—DtX?)[X'+cX?, (1—c)X* T} wo

+g({Ad (exp (¢ — X)X +c X +(1—c) X%, [V, 1—0)X?T)s

—g([Ad (exp (c— X)X +cX?), Y],
{Ad (exp (¢ —IX*) (X' +cXB)+(1—)X?} o
=g, [Ad (exp (c—1tX®X?, (1—¢)X%]m)o
+g((Ad (exp (¢ —INXH) X'+ X%, 1Y, (1—0)X*]w)o
—g([Ad (exp (¢ —tX)X'+cX?, ¥,
{Ad (exp (¢ — It X)X+ X2} w)o .
Since [m? m!]cCm!, for simplicity, we can put

Ad (exp (c—1tXDX'=:Z'em!.
Then, is

g, [Z, 1—=o)X*Do+g(Z'+ X2, [Y, (1—c)X?]m)o
—g([Z'+cX? Y I, Z'4-X2),.
First. we put Y=Y'em'. From [2.2), [2.4) and [2.5), [3.12) is
gV, [Z', 1—o)X*Dot+g(Z'+ X2 [V, (1—c)X*]m)o
—8([Z'+cX? Y']m, 2+ X%,
=g(Y", [Z%, 1—o)X?D+g(Z, [V, (1—0)X?])s
—g([Z", Y'w, X2)o—g([cX? YT, Z1)s

(3.11)

(3.12)
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=1—0)g(Y?, [ZY, X*])o+(1—0)g(Z?, [V, X*]),

—&(LZ", Y']m, X%o—cg([X? Y1, Z%),

_ 1—
=12y, 2 X9t a2, Y10 X,

—Cg(ZI) [Yl, XZ])O'—Cg([XZ) Yl]: Zl)o
=0.

Next, we put Y=Y2?=m?. From conditions [2.3), [2.4) and [2.5), [(3.12) is
gY?, [Z', 1=o)X?Do+8(Z%, [V?, (1=6)X*]m)o
—g([Z'+ X% Y], Z1+X?),
=—g([Z2%, Y*], Z')o

=— 280", 124 20,

=0.
Hence, for a curve y(t)=n(exp #{(X'+cX?)-exp(1—c)tX?), we get

(fo)rm:o .
Q.E.D.

REMARK. From Theorem 3.1 and Example 2.2, we have the result of H.C.
Wang ([7D.
Moreover, we suppose that
Ad (K)m'cCm? for =1, 2. (3.13)
If K is connected, this condition (3.13) is equivariant to (2.1). Under this

assumption, we get the following Corollary:

COROLLARY 3.3. A geodesic in (G/K, g, m*@wm? ¢) which intersects itself is
a closed geodesic.

PROOF. Let y(t)=exp #(X'+cX?) exp (1—c)tX%-0 be a geodesic in G/K such
that y(0)=y(L) for some L=R\{0}. Then,
exp L(X'+cX»)exp(l—c) LXK .
We put k=exp L(X'+cX?) exp(l—c)LX?. Then,
exp L(X'+cX*)=kexp(c—1)LX?2.

In order to show 7(L)=7(0)=X'+X2, we shall calculate 7(L) by two ways.
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First we have
7(L+t)=exp(L+)(X +cX?) exp(1—c)(L+H)X-0
=exp L(X'+cX?)exp t(X'+cX*)exp(l—c)LX?exp(l—c)tX2%-0
=kexp(c—1)LX?exp t(X'+cX®)exp(l1—c)LX%exp(1—c)tX2-0
=kexp(c—1)LX?exp {(X'+cX¥)exp(1—c)LX?k 'k exp (1—c)tX%-0
=exp t(Ad (kR exp(c—1) LX*)( X'+ cX?)exp (1—c)i(Ad (k)X?)-0
=exp t(Ad (k exp(c—1)LX®)X'+c Ad (k)X?) exp (1—c)t(Ad (k)X?)-o.

Hence we have
7(L)Y=Ad (kexp (c—1)LX®X'+Ad (R)X®. 3.14)
Secondly
r(L+t)=exp (L+)(X'+cX?) exp (1—c)(L+1)X* 0

=exp i(X'+cX?) exp L(X'+cX?) exp (1—c)L+t)X2-0
=exp (X' +cX®)k exp (c—1)LX2exp (1—c)(L+t)X%-0
=exp t(X*+cX*)k exp (1—c)tX%-0

=exp (X' +cX®) exp (1—c)t Ad (R)X2-0.
Thus we have
F(L)=X"+cX?+(1—c) Ad (R)X®. (3.15)

By conditions [2.4) and [3.13), we have
Ad(kexp(c—1) LX) X'em!.
Hence, from (3.15), we get
cX*+(1—c) Ad (B)X*=Ad (k)X®.

That is
Ad (k)X2=X2.
Hence, from we obtain
T(L)=X"+X2.
Q.E.D.
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