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1. Introduction

In [1] J. Berndt and L. Vanhecke introduced two classes ( $\mathfrak{C}-$ and $\mathfrak{B}$ -spaces)

of Riemannian manifolds which include the class of locally symmetric spaces
using the properties of Jaoobi operators along geodesics. They provided some
characterizations of $\mathfrak{C}-$ and $\mathfrak{B}$ -spaces and gave the classifications for dimensions
two and three. For further developments on the two spaces, we refer to [2],

[3] and [8]. Further, T. Takahashi ([19]) introduced the notion of a (Sasakian)

locally $\varphi$-symmetric space which may be considered as the analogue in the
almost contact metric case of locally Hermitian symmetric spaces. Also he
gave examples and equivalent properties of Sasakian locally $\varphi$-symmetric spaces.
For further results about the Sasakian locally $\varphi$-symmetric spaces, we refer to
[5], [6].

In the present paper, we introduce in an analogous way as in [1] four
classes of almost contact metric manifolds involving Sasakian locally $\varphi$-symmetric
spaces. In section 2, we recall definitions and several elementary properties of
an almost contact, a contact, a K-contact metric manifold and a Sasakian mani-
fold. In sections 3 and 4 we give the definitions of a $\mathfrak{D}\mathfrak{C}$ -space, a $\mathfrak{D}\mathfrak{P}$ -space, a
$\xi \mathfrak{C}$ -space and a $\xi \mathfrak{P}$ -space which are almost contact metric analogues of a $\mathfrak{C}$ -space
or a $\mathfrak{P}$ -space in the Riemannian case. We may observe that a Sasakian mani-
fold is a $\xi \mathfrak{C}$ -space and at the same time a $\xi \mathfrak{P}$ -space. Also we prove that a
Sasakian manifold is locally $\varphi$-symmetric if and only if it is a $\mathfrak{D}\mathfrak{C}$ -space and at

the same time a $\mathfrak{D}\mathfrak{P}$ -space. In section 5, we show that the tangent sphere

bundle of a 2-dimensional Riemannian manifold is a $\xi \mathfrak{P}$ -space if and only if the
base manifold is flat or of constant curvature 1. Furthermore, we give some
examples of almost contact metric $\mathfrak{D}\mathfrak{C}$ -spaces and $\mathfrak{D}\mathfrak{P}$ -spaces. In section 6, we
consider real hypersurfaces of a complex projective space $CP^{n}$ with Fubini-
Study metric and determine $\xi \mathfrak{P}$ -hypersurfaces of $CP^{n}$ . We also show that a
homogeneous real hypersurface of $CP^{n}$ is a $\xi \mathfrak{C}$ -space, and moreover, we give
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a characterization of homogeneous real hypersurfaces of two types which ap-
peared in the classification given by R. Takagi ([18]). All manifolds in the
present paper are assumed to be connected and of class $C^{\infty}$ unless otherwise
specified.

The author wishes to express his gratitude to Prof. K. Sekigawa for his
many valuable advices and constant encouragement and to the referee for his
valuable comments.

2. Preliminaries

In the present section, we recall definitions and elementary properties of an
almost contact, a contact, a K-contact metric, and a Sasakian manifold. We
refer to [4] for more details. A $(2n+1)$-dimensional differentiable manifold $M$

is called an almost contact manifold it ‘It admits a $(1, 1)$-tensor field $\varphi$ , a vector
field $\xi$ and a l-form $\eta$ satisfying

(2.1) $\eta(\xi)=1$ and $\varphi^{2}=-1+\eta\otimes\xi$

where $I$ denotes the identity transformation. From (2.1) we get

(2.2) $\varphi\xi=0$ and $\eta\circ\varphi=0$ .

Moreover, it is easily observed that an almost contact manifold $M$ admits a
Riemannian metric $g$ such that

(2.3) $g(\varphi X, \varphi Y)=g(X, Y)-\eta(X)\eta(Y)$

for all vector fields $X$ and $Y$ tangent to $M$ . Setting $ Y=\xi$ in (2.3), we also see
that $\eta(X)=g(X, \xi)$ . A Riemannian manifold equipped with structure tensors
$(\varphi, \xi, \eta, g)$ satisfying (2.1) and (2.3) is called an almost contact metric manifold
and denoted by $(M, \varphi, \xi, \eta, g)$ . For an almost contact metric manifold $M=$

$(M, \varphi, \xi, \eta, g)$ , one may define an almost complex structure $J$ on $M\times R$ by
$J(X, f(d/dt))=(\varphi X-f\xi, \eta(X)(d/dt))$ , where $X$ is tangent to $M,$ $f$ is a function
on $M\times R$ and $t$ the coordinate on $R$ . If the almost complex structure $J$ is
integrable, $M$ is said to be normal. The integrability condition for the almost
complex structure $J$ is the vanishing of the tensor field $[\varphi, \varphi]+2d\eta\otimes\xi$ , where
$[\varphi, \varphi]$ denotes the Nijenhuis torson of $\varphi$

Also, for an almost contact metric manifold we define its fundamental 2-
form $\Phi$ by

$\Phi(X, Y)=g(X, \varphi Y)$ .
If $\Phi=d\eta,$ $M=(M, \varphi, \xi, \eta, g)$ is called a contact metric manifold. In particular,
we have $\eta\wedge(d\eta)^{n}\neq 0$ . If the characteristic vector field $\xi$ of a contact metric
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manifold $M$ is a Killing vector field with respect to $g$ , then $M$ is called a K-

contact metric manifold. We denote by $R$ the curvature tensor defined by

$R(X, Y)Z=\nabla_{X}(\nabla_{Y}Z)-\nabla_{Y}(\nabla_{X}Z)-\nabla_{[X,Y]}Z$ , where $\nabla$ is the Levi-Civita connection
and $X,$ $Y,$ $Z$ are vector fields. It is known that the curvature tensor of a K-

contact metric manifold satisfies

(2.4) $ R(X, \xi)\xi=X-\eta(X)\xi$ .

A normal contact metric manifold is called a Sasakian manifold. We may see
that the conditions of being normal and contact metric are equivalent to

(2.5) $(\nabla_{X}\varphi)Y=g(X, Y)\xi-\eta(Y)X$ .

We note that (2.5) implies

(2.6) $\nabla_{X}\xi=-\varphi X$ ,

from which it $foI^{[}ows$ that $\xi$ is a Killing vector field. The curvature tensor of
a Sasakian manifold satisfies

(2.7) $R(X, Y)\xi=\eta(Y)X-\eta(X)Y$ ,

(2.8) $ R(X, \xi)Y=\eta(Y)X-g(X, Y)\xi$ .

3. $\mathfrak{D}\mathfrak{C}$ -spaces and $\mathfrak{D}\mathfrak{P}$-spaces

In this sectlon, we introduce two classes ( $\mathfrak{D}\mathfrak{C}$ -and $\mathfrak{D}\mathfrak{P}$ -spaces) of almost

contact metric manifolds which extend Sasakian locally $\varphi$-symmetric spaces.
Let $M=(M, \varphi, \xi, \eta, g)$ be an almost contact metric manifold. Let $T$ be a tensor

field of type $(1, 2)$ defined by (cf. [17])

$ T_{X}Y=-\frac{1}{2}\varphi(\nabla_{X}\varphi)Y-\frac{1}{2}\eta(Y)\nabla_{X}\xi-\eta(X)\varphi Y+(\nabla_{X}\eta)(Y)\xi$ ,

for all vector fields $X$ and $Y$ . We define a linear connection on $M$ by

(3.1) $\overline{\nabla}_{X}Y=\nabla_{X}Y+T_{X}Y$ .

The linear connection if has the torsion tensor $T_{x}Y-T_{Y}X$ . Also, using (2.1)

and (2.2), we have

(3.2) $\overline{\nabla}\varphi=0$ , $\overline{\nabla}\xi=0$ , $\overline{\nabla}\eta=0$ , $\overline{\nabla}g=0$ .

We remark that the above connection V coincides with the Tanaka connection
(defined in [20]) on a strongly pseudo-convex integral CR-manifold whose struc-

ture is determined by a given contact metric structure (see Proposition 2.1 in
[22]).

The tangent space $T_{p}M$ of $M$ at $p\in M$ decomposes as $T_{p}M=\mathfrak{D}_{p}\oplus\xi_{p}$ (direct
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sum), where we denote $\mathfrak{D}_{p}=\{v\in T_{p}M|\eta(v)=0\}$ . Then $\mathfrak{D}:p\rightarrow \mathfrak{D}_{p}$ defines a dis-
tribution orthogonal to $\xi$ . From (3.2) we see that a $\overline{\nabla}$-geodesic (not necessarily
a $(\nabla-)geodesic)$ which is initially tangent to $\mathfrak{D}$ remains tangent to $\mathfrak{D}$ , where a
$\overline{\nabla}$-geodesic means a geodesic with respect to the linear connection V. We call
such a $\overline{\nabla}$-geodesic which is tangent to $\mathfrak{D}$ a horizontal $\overline{\nabla}$-geodesic. Let $\gamma$ be a
horizontal $\overline{\nabla}$-geodesic parametrized by the arc-length parameter $s$ . We denote
$\dot{\gamma}=\gamma*(d/ds)$ where $\gamma*is$ the differential of $\gamma:I\rightarrow M$ . Using the Jacobi operator
$R_{\dot{\gamma}}=R(\cdot,\dot{\gamma})\dot{\gamma}$ along $\gamma$ , we introduce two new classes $\mathfrak{D}\mathfrak{C}$ and $\mathfrak{D}\mathfrak{P}$ of almost con-
tact metric manifolds as analogous concepts of the $\mathfrak{C}-$ and $\mathfrak{P}$ -classes (defined in
[1]) of Riemannian manifolds. Namely, we denote by $\mathfrak{D}\mathfrak{C}$ the class of almost
contact metric manifolds such that the eigenvalues of $R_{\dot{\gamma}}$ are constant along $\gamma$

and by $\mathfrak{D}\mathfrak{P}$ that of almost contact metric manifolds such that $R_{\dot{\gamma}}$ is diagonaliza-
ble by a parallel orthonormal frame field along $\gamma$ with respect to V, for any
V-geodesic $\gamma$ whose tangent vectors belong to $\mathfrak{D}$ . An almost contact metric
manifold $M$ is said to be a $\mathfrak{D}\mathfrak{C}$ -space (resp. $\mathfrak{D}\mathfrak{B}$ -space) if $M$ belongs to $\mathfrak{D}\mathfrak{C}$

(resp. $\mathfrak{D}\mathfrak{P}$ ).

In particular, let $M=(M, \varphi, \xi, \eta, g)$ be a Sasakian manifold. Then by (2.5)

and (2.6) we have

$T_{x}Y=g(X, \varphi Y)\xi-\eta(X)\varphi Y+\eta(Y)\varphi X$

for all vector fields $X$ and $Y$ on $M$. Moreover, we have $T_{X}X=0$ and

(3.3) $\overline{\nabla}\varphi=0$ , $\overline{\nabla}\xi=0$ , $\overline{\nabla}\eta=0$ , $\overline{\nabla}g=0$ , $\overline{\nabla}T=0$ .
Also, we have

(3.4) $(\overline{\nabla}_{V}R)(X, Y)Z=(\nabla_{V}R)(X, Y)Z+g(V, \varphi R(X, Y)Z)\xi-\eta(V)\varphi R(X, Y)Z$

$+\eta(R(X, Y)Z)\varphi V-g(V, \varphi X)R(\xi, Y)Z+\eta(V)R(\varphi X, Y)Z$

$-\eta(X)R(\varphi V, Y)Z-g(V, \varphi Y)R(X, \xi)Z+\eta(V)R(X, \varphi Y)Z$

$-\eta(Y)R(X, \varphi V)Z-g(V, \varphi Z)R(X, Y)\xi+\eta(V)R(X, Y)\varphi Z$

$-\eta(Z)R(X, Y)\varphi V$

for all vector fields $V,$ $X,$ $Y,$ $Z$ on $M$. From (3.4), using (2.7) and (2.8) we have

(3.5) $g((\overline{\nabla}_{V}R)(X, Y)Z,$ $\xi$) $=0$ ,

(3.6) $g((\overline{\nabla}_{V}R)(X, Y)Z,$ $W$) $=g((\nabla_{V}R)(X, Y)Z,$ $W$)

for all $V,$ $X,$ $Y,$ $Z,$ $W\in \mathfrak{D}$ . Taking account of the fact $T_{x}X=0$ and from (3.3),

we have
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LEMMA 3.1. Let $M$ be a Sasakian manifold. Then a $\overline{\nabla}$-geodesic coincides
with a $(\nabla-)geodesic$ , and a geodesic which is initially tangent to $\mathfrak{D}$ remains tangent
to $\mathfrak{D}$ .

We recall the definition of a Sasakian locally $\varphi$-symmetric space ([19]).

DEFINITION 3.2. A Sasakian manifold $M=(M, \varphi, \xi, \eta, g)$ is said to be a
locally $\varphi$-symmetric space if the curvature tensor $R$ satisfies $\varphi^{2}(\nabla_{V}R)(X, Y)Z=0$

for all $V,$ $X,$ $Y,$ $Z\in \mathfrak{D}$ .

Taking account of (2.1), we see that the condition $\varphi^{2}(\nabla_{V}R)(X, Y)Z=0$ is
equivalent to $g((\nabla_{V}R)(X, Y)Z,$ $W$) $=0$ for all $V,$ $X,$ $Y,$ $Z,$ $W\in \mathfrak{D}$ .

Now we give a characterization of a Sasakian locally $\varphi$-symmetric space.

THEOREM 3.3. Let $M$ be a Sasakian manifold. Then $M$ is locally $\varphi$-sym-
metric if and only if $M$ belongs to $\mathfrak{D}\mathfrak{C}\cap \mathfrak{D}\mathfrak{P}$ , i.e., $M$ is a $\mathfrak{D}\mathfrak{C}$ -space and at the
same time a $\mathfrak{D}\mathfrak{P}$ -space.

PROOF. Let $M$ be a locally $\varphi$-symmetric space and $\gamma:I\rightarrow M$ be a geocesic
parametrized by the arc-length parameter $s$ with 7 (0) $\in \mathfrak{D}_{\gamma(0)}$ . Then from Lemma
3.1 we see that $\gamma$ is also a $\overline{\nabla}$-geodesic and $\dot{\gamma}(s)\in \mathfrak{D}$ for all $s\in I$ . At first, for
the vector field $\xi$ , we see that $\overline{\nabla}_{t}\xi=0$ and $ R_{\dot{\gamma}}\xi=\xi$ from (2.8). Thus it is suffi-
cient to consider the Jacobi operator $R_{\dot{\gamma}}$ on $\mathfrak{D}$ . Now we assume $R_{\dot{\gamma}}(s_{0})v=\kappa v$ for
some $s_{0}\in I$ and $v\in \mathfrak{D}_{\gamma(s_{0})}$ . Let $E_{v}$ be the parallel vector field with respect to V
along $\gamma$ with $E_{v}(s_{0})=v$ . Then since $M$ is locally $\varphi$-symmetric, from (3.5) and
(3.6) we see that $R_{\dot{\gamma}}E_{v}$ and $\kappa E_{v}$ are parallel vector fields alongs $\gamma$ with respect to

V. Thus we have $R_{\dot{\gamma}}E_{v}=\kappa E_{v}$ . Therefore we have the conclusion.
Conversely, let us assume that $M$ is a $\mathfrak{D}\mathfrak{C}$ -space and at the same time a

$\mathfrak{D}\mathfrak{P}$ -space. Then by definition we may assume that $R_{\dot{\gamma}}E_{i}=\kappa_{i}E_{i},$ $i=1,2,$ $\cdots$ ,

$2n+1$ , where $\kappa_{i}$ are constant along $\gamma$ and $\{E_{i}\}$ is an orthonormal parallel frame
field along $\gamma$ with respect to V. By covariantly differentiating both sides of
the above equations with respect to $\overline{\nabla}$ along $\gamma$ (as a $\overline{\nabla}$-geodesic), we get $(\overline{\nabla}_{\dot{\gamma}}R)$

$(\cdot,\dot{\gamma})\dot{\gamma}=0$ , which implies $(\overline{\nabla}_{v}R)(\cdot, v)v=0$ for any $v\in \mathfrak{D}_{p}$ and $p\in M$ . Thus with
(3.6) we have $g((\overline{\nabla}_{V}R)(X, V)V,$ $W$) $=g((\nabla_{V}R)(X, V)V,$ $W$) $=0$ for all $V,$ $X,$ $W\in \mathfrak{D}$ .
By polarization of the above equation and using the first and the second Bianchi
identities, we have $g((\nabla_{V}R)(X, Y)Z,$ $W$) $=0$ for all $V,$ $X,$ $Y,$ $Z,$ $W\in \mathfrak{D}$ (cf. [9],
[23]). Therefore from Definition 3.2 we see that $M$ is locally ($\beta$-symmetric.
(Q. E. D.)
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REMARK 3.4. In particular, let $M$ be a 3-dimensional Sasakian manifold.
It is well-known that the curvature tensor $R$ of a 3-dimensional Riemannian
manifold is expressed by

(3.7) $R(X, Y)Z=\rho(Y, Z)X-\rho(X, Z)Y+g(Y, Z)QX-g(X, Z)QY$

$-\frac{1}{2}\tau\{g(Y, Z)X-g(X, Z)Y\}$

for all vector fields $X,$ $Y,$ $Z$ , where $Q$ is the Ricci $(1, 1)$-tensor determined by
$\rho(X, Y)=g(QX, Y)$ and $\tau$ is the scalar curvature of the manifold. Let $\gamma$ be a
geodesic parametrized by the arc-length parameter $s$ with 7 $(s)\in \mathfrak{D}_{\gamma(\iota)}$ (see Lemma
3.1). From (3.3) we see that $\{\dot{\gamma}, \varphi\dot{\gamma}, \xi\}$ is a parallel orthonormal frame field
along $\gamma$ with respect to V. From (2.8) and (3.7), we have $R(\xi,\dot{\gamma})\dot{\gamma}=R(\xi, \varphi\dot{\gamma})\varphi\dot{\gamma}$

$=\xi$ and $R(\varphi\dot{\gamma},\dot{\gamma})\dot{\gamma}=\{(1/2)\tau-\rho(\xi, \xi)\}\varphi\dot{\gamma}$ . Thus we see that a 3-dimensional Sasa-
kian manifold is a $\mathfrak{D}\mathfrak{P}$ -space. Applying Theorem 3.3 to the 3-dimensional case,
we see that a 3-dimensional Sasakian manifold is locally $\varphi$-symmetric if and only
if the scalar curvature is constant for all directions orthogonal to $\xi$ . This gives
another proof of Theorem 4.1 in [24].

Returning to the general case, we characterize an almost contact metric
$\mathfrak{D}\mathfrak{C}$ -space and $\mathfrak{D}\mathfrak{P}$ -space in a similar way as in [1]. We prove

PROPOSITION 3.5. An almost contact metric manifold $M$ is a $\mathfrak{D}\mathfrak{C}$ -space if
and only if for each $p\in M$ and $v\in \mathfrak{D}_{p}$ , there exists an endomorphism $S_{v}$ of $T_{p}M$

such that $R_{v}^{\prime}=R_{v}\circ S_{v}-S_{v}\circ R_{v}$ where we denote $R_{v}^{\prime}=(\overline{\nabla}_{v}R)(\cdot, v)v$ .

PROOF. Let $M$ be a $\mathfrak{D}\mathfrak{C}$ -space and $\gamma$ be a horizontal V-geodesic in $M$ which
is parametrized by the arc-length parameter $s$ and $\gamma(0I=p$ and $\dot{\gamma}(0)=v$ for any
$p\in M$ and $v\in \mathfrak{D}_{p}$ . Let $\tau_{0.s}^{\gamma}$ be the parallel translation along $\gamma$ from $\gamma(0)$ to $\gamma(s\backslash $

with respect to $\overline{\nabla}$ . Then from the property $\overline{\nabla}g=0$ , we see that $\tau^{\gamma}$ is an iso-
metry along $\gamma$ . Now we put $A(s)=\tau_{s.0}^{\gamma}\circ R_{\dot{\gamma}}\circ\tau_{0.\epsilon}^{\gamma}$ , then $A(s)$ is a family of self-
adjoint endomorphisms of $T_{p}M$ and the eigenvalues of $A(s)$ are constant. Thus
applying Lemma 4 in [1], there exists a family of endomorphisms $S(s)$ of $T_{p}M$

such that $A^{\prime}(s)=A(s)\circ S(s)-S(s)\circ A(s)$ . This implies $A^{\prime}(O)=A(O)\circ S(O)-S(O)\circ A(O)$ .
Thus we have $R_{\dot{\gamma}}^{\prime}(O)=R_{\dot{\gamma}}(O)\circ S(O)-S(O)\circ R_{\dot{\gamma}}(O)$ , and hence $R_{v}^{\prime}=R_{v}\circ S_{v}$– $S_{v}\circ R_{v}$ where
$S_{v}=S(0)$ . In order to prove the converse, let $\gamma:I\rightarrow M$ be a horizontal V-geodesic
parametrlzed by the arc-length parameter $s$ with $\gamma(s_{0})=p,$ $s_{0}\in I$ . Let $A(s)=$

$\tau_{s.s_{0}}^{\gamma}\circ R_{\dot{\gamma}}(s)\circ\tau_{s_{0},s}^{\gamma}$ and $S(s)=\tau_{s.s_{0}}^{\gamma}\circ S_{\dot{\gamma}^{(\epsilon)}}\circ\tau_{s_{0}.s}^{\gamma}$ . Then we see that $A(s)$ and $S(s)$ are
families of endomorphisms of $T_{p}M$ and by a calculation we have
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$A^{\prime}(s)=\tau_{s,s_{0}}^{\gamma}\circ R_{\dot{\gamma}}^{\prime}\circ\tau_{s_{0}.s}^{\gamma}$

$=\tau_{s.s_{0}}^{\gamma}\circ(R_{\dot{\gamma}}\circ S_{\dot{\gamma}}-S_{\dot{\gamma}}\circ R_{\dot{\gamma}})\circ\tau_{ss}^{\gamma_{0}}$ (by the assumption)

$=A(s)\circ S(s)-S(s)\circ A(s)$ ,

$i$ . $e.$ , there exists a family of endomorphisms $S(s)$ of $T_{p}M$ such that $A^{\prime}(s)=A(s)$

$\circ S(s)-S(s)QA(s)$ . Thus by Lemma 4 in [1], we see that the eigenvalues of the
endomorphism $A$ , and therefore also of $R_{\dot{\gamma}}$ are constant. (Q.E. D.)

On the other hand, as a characterization of an almost contact metric $\mathfrak{D}\mathfrak{P}-$

space, we have

PROPOSITION 3.6. If $M$ is a $\mathfrak{D}\mathfrak{P}$ -space, then $R_{v}\circ R_{v}^{\prime}=R_{v}^{\prime}\circ R_{v}$ for all $v\in \mathcal{D}_{p}$ ,
$p\in M$, where $R_{v}^{\prime}=(\overline{\nabla}_{v}R)(\cdot, v)v$ . Moreover, if $M$ is real analytic, then also the
converse holds.

We refer to Lemma 5 in [1] for the proof of the above Proposition 3.6.

4. $\xi \mathfrak{C}$ -spaces and $\xi \mathfrak{P}$ -spaces

In this section, we study local symmetry in the direction $\xi$ . All almost
contact metric manifolds do not satisfy the following condition: $(*)$ each tra-
jectory of $\xi$ is a geodesic. However some special cases of almost contact metric
manifold do satisfy it. For example, the tangent sphere bundle of a Rieman-
nian manifold as a hypersurface of the tangent bundle with an almost Kahler
structure inherits an almost contact metric structure and satisfies $(*)$ (cf. chapter
7 in [4]). Another example is a homogeneous real hypersurface of an n-dimen-
sional complex projective space $CP^{n}$ with Fubini-Study metric (cf. [11]). We
may also observe that every contact metric manifold satisfies the condition $(*)$

(cf. [4]). Moreover, from (2.4) and (2.7), we see that a K-contact metric mani-
fold and a Sasakian manifold satisfy in addition $(\nabla_{\xi}R)(\cdot, \xi)\xi=0$ .

DEFINITION 4.1. An almost contact metric manifold $M$ with a structure
$(\varphi, \xi, \eta, g)$ is said to be a locally $\xi$-symmetric space if $M$ satisfies $(*)(i$ . $e.,$ $\nabla_{\xi}\xi$

$=0)$ and $(\nabla_{\xi}R)(\cdot, \xi)\xi=0$ .

We remark that a contact metric manifold whose characteristic vector field
$\xi$ belongs to the k-nullity distribution (see [21]) is a locally $\xi$-symmetric space.
We may characterize a locally $\xi$-symmetric space using the Jacobi operator
$ R_{\xi}=R(\cdot, \xi)\xi$ associated with the vector field $\xi$ in a similar way as in Theorem
1 in [1]. Namely, an almost contact metric manifold $M$ satisfying the condi-
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tion $(*)$ is locally $\xi$-symmetric if and only if $M$ satisfies the following two con-
ditions: $(c)$ the eigenvalues of $R_{\xi}$ are constant along each trajectory of $\xi$ and
$(p)R_{\xi}$ is diagonalizable by a parallel orthonormal frame field along each trajectory

of $\xi$ . We denote by $\xi \mathfrak{C}$ the class of almost contact metric manifolds with $(*1$

and $(c)$ , and by $\xi \mathfrak{P}$ that of almost contact metric manifolds with $(*)$ and $(p)$ .
An almost contact metric manifold $M$ is said to be a $\xi \mathfrak{C}$ -space (resp. $\xi \mathfrak{P}$ -space)

if $M$ belongs to $\xi \mathfrak{C}$ (resp. $\xi \mathfrak{P}$ ).

From Theorem 2 (resp. Theorem 5) in [1], we immediately have the fol-
lowing Remark 4.2 (resp. Remark 4.3) as a characterization of a $\xi \mathfrak{C}-(resp. \xi \mathfrak{P}-)$

space.

REMARK 4.2. An almost contact metric manifold $M$ is a $\xi \mathfrak{C}$ -space $1f$ and
only if $M$ satisfies $(*)$ and there exists a skew-symmetric $(1, 1)$-tensor field $B_{\xi}$

such that $\dot{R}_{\xi}=R_{\xi^{o}}B_{\xi}-B_{\xi}\circ R_{\xi}$ where we denote $\dot{R}_{\xi}=(\nabla_{\xi}R)(\cdot, \xi)\xi$ .

REMARK 4.3. If an almost contact metric manifold $M$ is a $\xi \mathfrak{P}$ -space, then
we have $R_{\xi}\circ\dot{R}_{\xi}=\dot{R}_{\xi}\circ R_{\xi}$ and moreover, if $M$ satisfies $(*)$ and is real analytic,

then the converse holds.

Also, we have some interesting equivalent properties of a $\xi \mathfrak{P}$ -space related
to the geometry of Jacobi vector fields and the geometry of geodesic spheres
along geodesic trajectories of $\xi$ . For more details concerning that, we refer to
[1] and [2].

5. Tangent sphere bundle of a surface

Let $M$ be a 2-dimensional Riemannian manifold and $T_{1}M$ the tangent sphere

bundle of $M$ ( $i.e.$ , the set of all unit tangent vectors of $M$ ) with the projection

map $\pi$ : $T_{1}M\rightarrow M$ . As we stated in the first part of section 4, it is known that
the tangent bundle $TM$ admits an almost K\"ahler structure $(J,\overline{g})$ (cf. chapter 7
in [4]). Let $(x^{1}, x^{2})$ be an isothermal local coordinate system on $M$ such that

the Riemannian metric is of the form

$\rho^{2}((dx^{1})^{2}+(dx^{2})^{2})$

where $\rho$ is a function on $M$ . Then by a calculation we see that the Gauss
curvature $\kappa$ of $M$ is $-(\Delta_{0}\log\rho/\rho^{2})$ where $\Delta_{0}$ is the Laplacian with respect to

Euclidean metric. Let $(u^{1}, u^{2}, y^{1}, y^{2})$ be a local coordinate system around a
point $p$ of $T_{1}M$ in $TM$ sucn that $ u^{i}=x^{i}\circ\pi$ and $\rho^{2}((y^{1})^{2}+(y^{2})^{2})=1$ . The vector

field $N=y^{1}(\partial/\partial y^{1})+y^{2}(\partial/\partial y^{2})$ is a unit normal and the position vector for the
point $p$ of $T_{1}M$ . Denote by $g$ the metric of $T_{1}M$ induced from $\overline{g}$ on $TM$ .
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Define $\varphi,$
$\xi,$

$\eta$ by

$ JN=-\xi$ , $JX=\varphi X+\eta(X)N$ .

Then we see that $(\varphi, \xi, \eta, g)$ is an almost contact metric structure of $T_{1}M$ and
we have a local orthonormal frame field $\{e_{1}, e_{2}, e_{3}\}$ as follows:

(5.1) $e_{3}=\xi=\sum_{ijk}(y^{i}\frac{\partial}{\partial u^{i}}-\left\{j & i & k\right\}y^{j}y^{k}\frac{\partial}{\partial y^{i}})$ .

$e_{1}=\sum_{i}z^{i}\frac{\partial}{\partial y^{i}}$ ,

$e_{2}=-\varphi e_{1}=\sum_{ifk}(z^{t}\frac{\partial}{\partial u^{i}}-\left\{j & i & k\right\}y^{j}z^{k}\frac{\partial}{\partial y^{i}})$

for $i,$ $i,$ $k=1,2$ where we denote $(z^{1}, z^{2})=(-y^{2}, y^{1}),$ $\left\{j & i & k\right\}=\left\{j & i & k\right\}\circ\pi$ and where
$\left\{j & i & k\right\}$ are the Christoffel symbols of the Riemannian connection of $M$.

For the local orthonormal frame field we have

(5.2) $[e_{1}, e_{2}]=-e_{3}$ , $[e_{2}, es]=-\tilde{\kappa}e_{1}$ , $[e_{3}, e_{1}]=-e_{2}$ ,

where $\tilde{\kappa}=\kappa Q\pi$ . Put

$\Gamma_{ijk}=g(\nabla_{e_{i}}e_{j}, e_{k})$ for $i,$ $j,$ $k=1,2,3$ .
Then we have $\Gamma_{ijk}=-\Gamma_{ikj}$ . We recall the formula

$2g(\nabla_{X}Y, Z)=Xg(Y, Z)+Yg(Z, X)-Zg(X, Y)+g(Y, [Z, X])$

$+g(Z, [X, Y])-g(X, [Y, Z])$

for all vector fields $X,$ $Y,$ $Z$ on $T_{1}M$. Using this formula, we obtain

(5.3) $\Gamma_{123}=\frac{1}{2}(\tilde{\kappa}-2)$ , $\Gamma_{213}=\Gamma_{321}=\frac{\tilde{\kappa}}{2}$ , all other $\Gamma_{ijk}$ being zero.

From (5.3) we see that $e_{1},$ $e_{2},$ $e_{3}$ are all geodesic vector fields, $i$ . $e.$ , self-parallel

vector fields and from (5.2) and (5.3) we get

(5.4) $R(e_{1}, e_{3})e_{3}=\frac{1}{4}\tilde{\kappa}^{2}e_{1}+\frac{1}{2}(e_{3}\tilde{\kappa})e_{2}$ ,

$R(e_{2}, e_{3})e_{3}=\frac{1}{2}(e_{3}\tilde{\kappa})e_{1}-(\frac{3}{4}\tilde{\kappa}_{2}-\overline{\kappa})e_{2}$ ,

(5.5) $R(e_{2}, e_{1})e_{1}=\frac{1}{4}\overline{\kappa}^{2}e_{2}$ ,

$R(e_{s}, e_{1})e_{1}=\frac{1}{4}\tilde{\kappa}^{2}e_{3}$ ,
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$R(e_{1}, e_{2})e_{2}=\frac{1}{4}\tilde{\kappa}^{2}e_{1}-\frac{1}{2}(e_{2}\tilde{\kappa})e_{3}$ ,

$R(e_{3}, e_{2})e_{2}=-\frac{1}{2}(e_{2}\tilde{\kappa})e_{1}-(\frac{3}{4}\tilde{\kappa}^{2}-\tilde{\kappa})e_{3}$ .

Moreover, we have

(5.6) $(\nabla_{e_{3}}R)(e_{1}, e_{s})e_{3}=\tilde{\kappa}(e_{s}\tilde{\kappa})e_{1}+\frac{1}{2}\{e_{3}(e_{3}\tilde{\kappa})-\overline{\kappa}^{\theta}+\tilde{\kappa}^{2}\}e_{2}$

$(\nabla_{\iota_{3}}R)(e_{2}, e_{3})e_{3}=\frac{1}{2}\{e_{3}(e_{3}\tilde{\kappa})-\tilde{\kappa}^{3}+\tilde{\kappa}^{2}\}e_{1}+\{e_{3}\tilde{\kappa}-2\tilde{\kappa}(e_{3}\tilde{\kappa})\}e_{2}$ .

PROPOSITION 5.1. The tangent sphere bundle $T_{1}M$ of a 2-dimensional Rie-
mannian manifold $M$ is a $\xi \mathfrak{C}$ -space if and only if the Gauss curvature of $M$ is
constant.

PROOF. From (5.4) we have the following matrix representation of $R_{\xi}$ with
respect to $\{e_{1}, e_{2}, e_{3}\}$ :

$R_{\xi}=[\frac{1}{2}(e_{0^{s}}^{2}\tilde{\kappa})\frac{1}{4}\tilde{\kappa}$
$\frac{1}{2}(e_{s_{0}}-\frac{3}{4}\tilde{\kappa^{\tilde{\kappa}_{2})}}+\tilde{\kappa}$ $000]$ .

The eigenvalues $\lambda_{i},$ $i=1,2,$ $(\lambda_{s}=0)$ of $R_{\xi}$ are

$\lambda_{1}=\frac{-\frac{1}{2}\tilde{\kappa}^{2}+\tilde{\kappa}+\sqrt{\overline{\kappa}^{2}(\tilde{\kappa}-1)^{2}+(e_{s}\tilde{\kappa})}2}{2}$

$\lambda_{2}=--\frac{\sqrt{\overline{\kappa}^{2}(\tilde{\kappa}-1)^{2}+(e_{3}\tilde{\kappa})}2}{2}-\underline{2^{-\tilde{\kappa}^{2}+\tilde{\kappa}-}1}$ .

Now we assume that the tangent sphere bundle $T_{1}M$ of a 2-dimensional Rie-
mannian manifold $M$ is a $\xi \mathfrak{C}$ -space, that is, the eigenvalues $\lambda_{i}(i=1,2)$ of $R_{\xi}$

are constant along each trajectory of $\xi$ . Let $W=\{p\in T_{1}M|\lambda_{1}(p)\neq\lambda_{2}(p)\}$ . Then
$W$ is an open and dense subset of $T_{1}M$ . Thus we have $\xi(\lambda_{1}+\lambda_{2})=0$ on $W$ ,

which implies that $\xi\tilde{\kappa}=0$ on $W$ . From the continuity of $\tilde{\kappa}$ , we see that $\xi\tilde{\kappa}=0$

on $T_{1}M$ and from (5.1) we conclude that $\kappa$ is constant on $M$. Conversely, if $\kappa$

is constant on $M$, then $\tilde{\kappa}=\kappa\circ\pi$ is also constant on $T_{1}M$. Thus, from (5.4) and
(5.6), we have
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$R_{\xi}=[\frac{1}{4}\tilde{\kappa}_{0^{2}}0$

$-\frac{3}{4}\tilde{\kappa}_{0^{2}}+\tilde{\kappa}0$ $000$
and $\dot{R}_{\nu}=[-\frac{1}{2}\tilde{\kappa}_{0^{3}}+\frac{1}{2}\tilde{\kappa}^{2}00-\frac{1}{2}\tilde{\kappa}_{0^{3}}+\frac{1}{2}\tilde{\kappa}^{2}$

$000$

with respect to $\{e_{1}, e_{2}, e_{a}\}$ . Put

$B_{\xi}=[\frac{1}{2,0}\tilde{\kappa}0$
$-\frac{1}{2}\tilde{\kappa}00$ $000]$ .

Then we have $\dot{R}_{\xi}=R_{\xi^{o}}B_{\xi}-B_{\xi}\circ R_{\xi}$ . Thus from Remark 4.2 we see that the
tangent sphere bundle $T_{1}M$ is a $\xi \mathfrak{C}$ -space. (Q.E.D.)

THEOREM 5.2. The tangent sphere bundle $T_{I}M$ of a 2-dimensional Rieman-
nian manifold $M$ is a $\xi \mathfrak{P}$ -space (or locally $\xi$-symmetric space) if and only if the
Gauss curvature of $M$ is $0$ or 1.

PROOF. Assume that $T_{1}M$ is a $\xi \mathfrak{P}$ -space. Then from Remark 4.3 we see
that $T_{1}M$ satisfies $R_{\xi}\circ\dot{R}_{\xi}=\dot{R}_{\xi}\circ R_{\xi}$ , where $ R_{\xi}=(\nabla_{\xi}R)(\cdot, \xi)\xi$ . From (5.4) and (5.6),

we calculate $R_{\xi}(R_{\xi}(e_{i}))=R_{\xi}(R_{\xi}(e_{i}))$ for $i=1,2$ . Then we have

$\tilde{\kappa}^{5}-2\tilde{\kappa}^{4}+\tilde{\kappa}^{3}-(\xi(\xi\tilde{\kappa}))\tilde{\kappa}^{2}+\{3(\xi\tilde{\kappa})^{2}+\xi(\xi\tilde{\kappa})\}\tilde{\kappa}-(\xi\tilde{\kappa})^{2}=0$ .
From the above equation, we have $\tilde{\kappa}^{5}-2\tilde{\kappa}^{4}+\tilde{\kappa}^{3}=\tilde{\kappa}^{3}(\tilde{\kappa}^{2}-2\kappa+1)=0$ . Thus we see
that $\kappa=0$ or 1. Conversely, if $\kappa=0$ or 1, then from (5.4) we see that $T_{1}M$ is
flat or a space of constant sectional curvature 1/4. Thus we see that $T_{1}M$ is
of course a $\xi \mathfrak{P}$ -space. We recall that a locally $\xi$-symmetric space is equivalently

characterized as a $\xi \mathfrak{C}$ -which is at the same time a $\xi \mathfrak{P}$ -space. Thus from the
result of Proposition 5.1 we see that $T_{1}M$ is a $\xi \mathfrak{P}$ -space if and only if it is a
locally $\xi$-symmetric space. (Q.E.D.)

We remark that ([13]) $T_{1}(S^{2})$ is isometric to the elliptic space $RP^{3}$ of con-
stant curvature 1/4, where $S^{2}$ is the unit sphere in a Euclidean space $E^{3}$ with
the induced metric.

On the other hand, from (3.1), (3.2) and (5.3) we have

(5.7) $5_{c_{i}}\xi=0$ and $\overline{\nabla}_{t_{i}}e_{j}=0$ for $i,$ $j=1,2$

and moreover, we have
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(5.8) $(\overline{\nabla}_{e_{1}}R)(e_{2}, e_{1})e_{1}=0$ ,

$(5_{e_{1}}R)(e_{3}, e_{1})e_{1}=0$ ,

$(F_{e_{2}}R)(e_{1}, e_{2})e_{2}=\frac{1}{2}\tilde{\kappa}(e_{2}\tilde{\kappa})e_{1}-\frac{1}{2}e_{2}(e_{2}\tilde{\kappa})e_{3}$ ,

$(\nabla_{e_{2}}R)(e_{3}, e_{2})e_{2}=-\frac{1}{2}e_{2}(e_{2}\tilde{\kappa})e_{1}-\frac{1}{2}\{3\tilde{\kappa}(e_{2}\tilde{\kappa})-2(e_{2}\tilde{\kappa})\}e_{3}$ .

$PROPOSlT10N5.3$ . The tangent sphere bundle $T_{1}M$ of a 2-dimensional Rie-
mannian manifold $M$ is a $\mathfrak{D}\mathfrak{C}$ -space if and only if the Gauss curvature of $M$ is
constant.

PROOF. Assume that the tangent sphere bundle $T_{1}M$ of a 2-dimensional
manifold $M$ is a $\mathfrak{D}\mathfrak{C}$ -space. Using a simllar calculation and argument as in the
proof of Proposition 5.1, we see that $\kappa$ is constant on $M$. Conversely, we
assume that $\kappa$ is constant on $M$ . Taking an endomorphism $S_{v}=0$ of $T_{p}(T_{1}M)$

for any $v\in \mathfrak{D}_{p}$ and $p\in T_{1}M$, then from (5.5), (5.8) and Proposition 3.5, we see
that $T_{1}M$ is a $\mathfrak{D}\mathfrak{C}$ -space. (Q.E.D.)

PROPOSITION 5.4. The tangent sphere bundle $T_{1}M$ of a 2-dimensional Rie-
mannian manifold is a $\mathfrak{D}\mathfrak{P}$ -space if and only if the Gauss curvature of $M$ is con-
stant.

PROOF. Assume that $T_{1}M$ is a $\mathfrak{D}\mathfrak{P}$ -space. Then from Proposition 3.6 we
see that $T_{1}M$ satisfies $R_{v}\circ R_{v}^{\prime}=R_{v}^{\prime}\circ R_{v}$ for all $v\in \mathfrak{D}_{p},$ $p\in T_{1}M$, where $R_{v}^{\prime}=(\ovalbox{\tt\small REJECT}_{v}R)$ .
$($ ., $v)v$ . From (5.5) and (5.8) we calculate $R_{e_{2}}(R_{e_{2}}^{\prime}(e_{a}))=R_{e_{2}}^{\prime}(R_{e_{2}}(e_{a}))$ for $a=1,3$ .
Then we get

$(e_{2}\tilde{\kappa})^{2}(1-2\tilde{\kappa})+(e_{2}(e_{2}\tilde{\kappa}))\tilde{\kappa}(\tilde{\kappa}-1)=0$ .

From the above equation, we see that $\kappa$ is constant. Conversely, if $\kappa$ is con-
stant, then with (5.8) taking account of (5.3) and (5.7), we have $(\nabla_{e_{i}}R)(\cdot, e_{j})e_{k}$

$=0$ for $i,$ $j,$ $k=1,2$ . It may be observed that a $\mathfrak{D}\mathfrak{C}-$ which is at the same time
a $\mathfrak{D}\mathfrak{P}$ -space is equivalently characterized by $(5_{V}R)(\cdot, V)V=0$ for any $V\in \mathfrak{D}$ .
Thus we see that $T_{1}M$ is a $\mathfrak{D}\mathfrak{P}$ -space. (Q.E. D.)

6. Real hypersurfaces of $CP^{n}$

Let $(CP^{n}, g, J)$ be an n-dimensional complex projective space with Fubini-
Study metric $g$ of constant holomorphic sectional curvature 4, and let $M$ be an
oriented real hypersurface of $CP^{n}$ . We denote by the same $g$ the induced
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metric on $M$. Let $N$ be a unit normal vector field of $M$ in $CP^{n}$ . For any
vector field $X$ tangent to $M$, we put

(6.1) $JX=\varphi X+\eta(X)N$ , $ JN=-\xi$ .

Then we may see that the structnre $(\varphi, \xi, \eta, g)$ is an almost contact metric
structure on $M$. By $\tilde{\nabla}$ we denote the Riemannian connection on $CP^{n}$ and by $\nabla$

the one on $M$ determined by the induced metric. The the Gauss and Weingarten

formulas are given respectively by

$\tilde{\nabla}_{X}Y=\nabla_{X}Y+g(AX, Y)N$ , $\tilde{\nabla}_{x}N=-AX$

for any vector field $X$ and $Y$ tangent to $M$, where $A$ is the shape operator of
$M$ in $CP^{n}$ . An eigenvector (resp. eigenvalue) of the shape operator $A$ is called
a principal curvature vector (resp. principal curvature). Also we denote by $V_{\lambda}$

the eigenspace of $A$ associated with an eigenvalue $\lambda$ . From the fact $\tilde{\nabla}J=0$ and
(6.1), making use of the Gauss and Weingarten formulas, we have

(6.2) $\nabla_{x}\xi=\varphi AX$ .
Let $R$ be the curvature tensor of $M$ . Then we have following Gauss and
Codazzi equations:

(6.3) $R(X, Y)Z=g(Y, Z)X-g(X, Z)Y+g(\varphi Y, Z)\varphi X-g(\varphi X, Z)\varphi Y$

$+2g(X, \varphi Y)\varphi Z+g(AY, Z)AX-g(AX, Z)AY$ ,

(6.4) $(\nabla_{X}A)Y-(\nabla_{Y}A)X=\eta(X)\varphi Y-\eta(Y)\varphi X+2g(X, \varphi Y)\xi$ .
From (6.2), we have

LEMMA 6.1. Each $tra$] $ectory$ of $\xi$ is a geodesic if and only if $\xi$ is a principal

curvature vector.

Typical examples of real hypersurfaces in $CP^{n}$ on which the trajectory of
$\xi$ is a geodesic are homogeneous ones which are classified by R. Takai ([18]).

T. E. Cecil and P. J. Ryan ([7]) investigated real hypersurfaces of $CP^{n}$ on which
$\xi$ is a principal curvature vector. They showed that if $\xi$ is a principal curva-
ture vector and the corresponding focal map has constant rank, then $M$ lies on
a tube of constant radius over a certain K\"ahler submanifold. Making use of
this notion and the result of R. Takagi’s classification, M. Kimura ([11]) proved

the following

THEOREM 6.2. Let $M$ be a real hypersurface of $CP^{n}$ . $M$ has constant
principal curvatures and $\xi$ is principal if and only if $M$ is locally isometric to a
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homogeneous real hypersurface i.e., a tube of radius $r$ over one of the following

Kahler submanifolds:
(A) a hyperplane $CP^{n-1}$ , where $0<r<\pi/2$ ;
(A) a totally geodesic $CP^{k}(1\leqq k\leqq n-2)$ , where $0<r<\pi/2$ ;
(B) a complex quadric $Q^{n-1}$ , where $0<r<\pi/4$ ;
(C) a $CP^{1}\times CP^{(n-I/2)}$ , where $0<r<\pi/4$ and $n(\geqq 5)$ is odd;
(D) a complex Grassmann $G_{2.5}(C)$ , where $0<r<\pi/4,$ $n=9$ ;
(E) a Hermitian symmetric space $SO(10)/U(5)$ , where $0<r<\pi/4,$ $n=15$ .

We note that the number of distinct eigenvalues of the above real hyper-
surfaces is 2, 3 or 5, and the principal curvature $\alpha$ corresponding to the vector
field $\xi$ is 2 $\cot 2r$ with multipllcity 1. For more details, we refer to [11] and
[18]. We only state two lemmas without proofs.

LEMMA 6.3 ([14]). If $\xi$ is principal curvature vector, then the corresponding
principal curvature $\alpha$ is constant.

LEMMA 6.4 ([14]). Assume $ A\xi=\alpha\xi$ . If $AX=\lambda X$ for $ X\perp\xi$ , then we have
$A\varphi X=(\alpha\lambda+2/2\lambda-\alpha)\varphi X$ .

Now we give a characterization of real hypersurfaces of $CP^{n}$ in the class
$\xi \mathfrak{P}$ introduced in section 4.

PROPOSITION 6.5. Let $M^{2n-1}$ be a $\xi \mathfrak{P}$-hypersurface of $CP^{n}$ . Suppose $A\xi\neq 0$ .
Then $M$ is locally isometric to a homogeneous real hypersurface of type $(A_{1})$ or
(A). Moreover, any real hypersurface of type $(A_{1})$ or $(A_{2})$ is a $\xi \mathfrak{P}$ -space.

PROOF. Assume $M$ is a $\xi \mathfrak{P}$-hypersurface of $CP^{n}$ . We see from Lemma
6.1 that $\xi$ is a principal curvature vector and from Lemma 6.3 that the corre-
sponding principal curvature $\alpha$ is constant. Thus from (6.3) we have

(6.5) $ R_{\xi}X=X+\alpha AX-(1+\alpha^{2})\eta(X)\xi$

and

(6.6) $R_{\epsilon^{X=(\nabla_{\xi}R)(X}},$ $\xi$) $\xi$

$=\alpha(\nabla_{\xi}A)X$

for any $X$ tangent to $M$ .
From Remark 4.3, we have
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(6.7) $0=(R_{\xi}\circ R_{\xi}-R_{\xi}\circ R_{\xi})X$

$=\alpha^{2}\{A(\nabla_{\xi}A)X-(\nabla_{\xi}A)AX\}$ .

Since $\alpha\neq 0$ (the assumption), we have $A(\nabla_{\xi}A)X-(\nabla_{\xi}A)AX=0$ , and hence taking
account of Lemma 6.3, from (6.2), (6.4) and (6.7), we have

$0=(\alpha A\varphi AX-A^{2}\varphi AX+A\varphi X)-(\alpha\varphi A^{2}X-A\varphi A^{g}X+\varphi AX)$

for any $X\in \mathfrak{D}$ . Assume $X\in V_{\lambda}$ . Then from Lemma 6.4 we have

$0=(\alpha\lambda-\lambda\frac{\alpha\lambda+2}{2\lambda-\alpha}+1)(\frac{\alpha\lambda+2}{2\lambda-\alpha}-\lambda)\varphi X$ .
Thus we have

$\alpha\lambda-\lambda\frac{\alpha\lambda+2}{2\lambda-\alpha}+1=0$ or $\frac{\alpha\lambda+2}{2\lambda-\alpha}-\lambda=0$ ,

which implies $\lambda^{2}-\alpha\lambda-1=0(\alpha\neq 0)$ , and hence $\lambda(2\lambda-\alpha)=\alpha\lambda+2$ , that is, $\lambda=$

$(\alpha\lambda+2/2\lambda-\alpha)$ . From this we conclude that $\varphi V_{\lambda}=V_{\lambda}$ and our real hypersurface
$M$ must be locally isometric to one of real hypersurface of type $(A_{1})$ and $(A_{2})$

(cf. [16]). Taking account of the fact that every homogeneous manifold admits
an analytic structure (refer to p. 123 in [10]), from the Remark 4.3 and (6.7),

we see that any real hypersurface of type $(A_{1})$ or $(A_{2})$ is a $\xi \mathfrak{P}$ -space. (Q.E.D.)

The above Proposition 6.3 is an improvement of the result obtained by M.
Kimura and S. Maeda ([12]). Also we remark that a homogeneous real hyper-
surface of type $(A_{2})$ is a locally $\xi$-symmetric space which is not a K-contact
metric (and of course, not Sasakian) manifold. (cf. [15]).

We see from (6.5) that homogeneous real hypersurfaces of $CP^{n}$ are $\xi \mathfrak{P}$ -spaces.
Applying Remark 4.2, then from (6.5) and (6.6) we have

PROPOSITION 6.6. A homogeneous real hypersurface of $CP^{n}$ admits a skew-
symmetric $(1, 1)$-tensor field $B_{\xi}$ such that

$\alpha(\nabla_{\xi}A)X=\alpha(AB_{\xi}X-B_{\xi}AX)+(1+\alpha^{2})\{g(X, B_{\xi}\xi)\xi-g(X, \xi)B_{\xi}\xi\}$

for any vector fields $X$ tangent to $M$ .

We note that in particular for a homogeneous one of type $(A_{1})$ and $(A_{2})$ ,

there exists a skew-symmetric $(1, 1)$-tensor field $ B_{\xi}=\varphi$ such that

$\nabla_{\xi}A=A\circ\varphi-\varphi\circ A(=0)$ .
(See [12] and [16]). Thus we are motivated to prove the following

PROPOSITION 6.7. Let $M$ be a real hypersurface of $CP^{n}$ . Suppose that $\nabla_{\xi}\xi$
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$=0$ and $A\xi\neq-2$ . If $\nabla_{\xi}A=A\circ\varphi-\varphi\circ A$ , then $M$ is locally isometric to a homogeneous
real hypersurface of type $(A_{1})$ and $(A_{2})$ .

PROOF. Using the same notations and similar calculations as in the proof
of Proposition 6.5, from the rssumption we have

$(\lambda^{2}-\alpha\lambda-1)(\alpha+2)=0$ .
A similar argument as in the proof of Proposit’lon 6.5 then yields our assertion.
(Q. E. D.)

References
$L^{1}\ulcorner]$ J. Berndt and L. Vanhecke, Two natural generalizations of locally symmetric

spaces, Diff. Geom. Appl. 2(1992), 57-80.
[2] –, Geodesic spheres and generalizations of symmetric spaces, Boll. Un. Mat.

Ital. (7), 7-A (1993), 125-134.
$\llcorner 3_{\lrcorner}$ –, Geodesic sprays and $\mathfrak{C}$ -and $\mathfrak{V}$ -spaces, to appear in Rend. Sem. Mat. Univ.

Politec. Torino.
[4] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture notes in Math.

509, Springer-Verlag, BerIin-Heidelberg-New-York, 1976.
[5] D. E. Blair and L. Vanhecke, Symmetries and $\varphi$ -symmetric spaces, T\^ohoku Math.

J. 39 (1987), 373-383.
[6] –, New characterizations of $\varphi$ -symmetric spaces, Kodai Math. J. 10 (1987),

102-107.
[7] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective

space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
[8] J. T. Cho, Natural generalizations of locally symmetric spaces, Indian J. Pure Appl.

Math. 24(4) (1993), 231-240.
[9] A. Gray, Classification des vari\’et\’es approximativement K\"ahl\’eriennes de courbure

sectionnelle holomorphe constante, C. R. Acad. Sci. Paris S\’er. A 279 (1974),
$797\sim 800$ .

[10] S. Helgason, Geometry and symmetric spaces, Academic Press, New York 1962.
[11] M. Kimura, Real hypersurfaces and complex submanifolds in complex proiective

space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
[12] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space II,

Tsukuba J. Math. 15 (1991), 547-561.
[13] W. Klingenberg and S. Sasaki, On the tangent sphere bundla of a 2-sphere, T\^ohoku

Math. J. 27 (1975), 49-56.
[14] Y. Maeda, Oh real hypersurfaces of a complex projective space, J. Math. Soc.

Japan 28 (1976), 529-540.
[15] M. Okumura, Certain almost contact hypersurfaces in Kaehlerian manifolds of con-

stant holomorphic sectional curvatures, T\^ohoku Math. J. 16 (1964), 270-284.
[16] –, On some real hypersurfaces of a complex projective space, Trans. Amer.

Math. Soc. 212 (1975), 355-364.
[17] S. Sasaki and Y. Hatakeyama, On differential manifolds with certain structures

which are closely related to almost contact structure II, T\^ohoku Math. J. 13
(1961), 282-294.

[18] R. Takagi, Real hypersurfaces in a complex projective space with constant principal



On some classes of almost contact metric manifolds 217

curvatures I, II, J. Math. Soc. Japan 25 (1975), 43-53, 507-516.
[19] $’\Gamma$ . Takahashi, Sasakian $\varphi$ -symmetric spaces, T\^ohoku Math. J. 29 (1977), 91-113.
[20] N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan

connections, Japan. J. Math. 2 (1976), 131-190.
[21] S. Tanno, Ricci curvature of contact Riemannian manifolds, T\^ohoku Math. J. 40

(1988), 441-448.
[22] –, Variational problems on contact Riemannian manifolds, Trans. Amer.

Math. Soc. 314 (1989), 349-379.
[23] L. Vanhecke and T. J. Willmore, Interaction of tubes and spheres, Math. Ann. 263

(1983), 31-42.
[24] Y. Watanabe, Geodesic symmetries in Sasakian locally $\varphi$ -symmetric spaces, Kodai

Math. J. 3 (1980), 48-55.

Department of Mathematical Science
Graduate School of Science
and Technology
Niigata University

Niigata, 950-21, Japan


	ON SOME CLASSES OF ALMOST ...
	1. Introduction
	2. Preliminaries
	THEOREM 3.3. ...

	5. Tangent sphere bundle ...
	THEOREM 5.2. ...
	THEOREM 6.2. ...

	References


