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Introduction.

Let G be a finite group, K a subgroup of G and M a left G-module. Then
for r&Z the complete relative homology group H,(G, K, M) and cohomology
group H"(G, K, M) are defined in [6]. Let 1 be the unit element of G. For
the case of K={1} H.(G, K, M)=H~""Y(G, K, M) holds. But it is not true that
for any G, K, M and r there exists an isomorphism from H.(G, K, M) into
H-""YG, K, M). In fact, in [6, p. 262] there are G, K and M such that
H.(G, K, MYy=Z/2Z and H" (G, K, M)=0 forall r€Z. And if we set M=Q/Z
in [6, p. 262], H(G, K, M)=0 and H(G, K, M)=Z/2Z hold for all rZ.

Let 4 be an algebra over a commutative ring K and I a subalgebra such
that the ring extension A4/I" is a Frobenius extension. In section 1 we shall
introduce the complete relative cohomology group H7(A, I', —) and homology
group H. (A, I, —) for r€Z. When the ring extension ['/K is also a Frobenius
extension, We can define a K-homomorphism ¥4, r:HAA, I', (—)*) —
H-""Y (A, I', —) for r&€Z, where A is the Nakayama automorphism. The main
purpose of this paper is to show necessary and sufficient conditions on which
U7, r is an isomorphism. Theorems 6.3, and provide the necessary and
sufficient conditions. In section 8 we apply our results to extensions defined by
a finite group G and a subgroup K. In generalization of the well-known duality
for Tate cohomology we show that H.(G, K, —)=H "G, K, —) if and only if
K is a Hall subgroup of G.

1. Complete relative homology.

Throughout this paper, let /4 be an algebra over a commutative ring K and
- I' a subalgebra such that the ring extension A/[" is a (projective) Frobenius
extension in the sense of [9]. Since A/I" is a Frobenius extension, there exist
elements R,, ---, R,, Ly, -+, L, in A and a I'—["-homomorphism H=Hom (rAr,
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rl’r) such that x=X7", HxR)L, =%, R;H(L,;x) for all xeA. The pair
(R;, L;) 1<i<n) and H are called the dual projective pair as in and Fro-
benius homomorphism of A/I°, respectively. Let A4° and /™ be the opposite
rings of A4 and I, respectively. Put P=A®xA° and let S be a subring of P
which is the image of the natural homomorphism I'®xI'°—P. Note that the
ring extension P/S is a Frobenius extension with the dual projective pair
(Ri@xLj;, L;QkR;) 1<i, j<n) and Frobenius homomorphism HX H.

Regard A as a left P-module with the usual way. Then a complete (P, S)-
resolution of A

d, d, d, d_, d_,
) e ‘_'Xr —— Xr—l_’ ‘_’Xl —— Xo —> X—l —> e _’X—r —— X—(r+l) s
s\ «/”
A

is a (P, S)-exact sequence with a P-epimorphism ¢ and a P-monomorphism v/
such that X, is (P, S)-projective for all »Z and dy=m-¢ holds. Note that X,
is also (P, S)-injective since for (projective) Frobenius extensions of rings, the
relative projectivity and injectivity are equivalent by [9, Theorem 7]. Let M
be a left P-module. Then we have the following sequence from (1):

d,* do* d_*

-« «<— Hom (pX,, pM) «<— Hom (pX,, pM) «<— Hom (pX_,, pM) <— -+,
where we set d.*(f)=fed, for f€Hom (pX,.,, pM). In the »-th complete
cohomology group H"(A, I', M) is given by H"(A, I', M)=Ker d,,,*/Im d,*.
We regard H"(A, I, M) as a K-module with the usual way. Since left P-modules
can be regarded as right P-modules, (1) gives the following sequence:

d:Qply do@rly d_,Qrlu
X0®PM X_1®PM Tt .

e —— > X1®PM

We define the r»-th complete relative homology group H.(A, I, M) as
Ker (d,@ply)/Im (d,, @ply). Since X,QXpM is a K-module, we can regard
H.(A, I', M) as a K-module.

We now give a complete (P, S)-resolution of 4, i.e., (2) in [8]:

d, d d d_ d_,
@ = Xy Ky =Xy — Xy Xy —> e X e Xy s
s\ S
A

where X,=AQr - @rA (r+2 copies) for r=0, X_,=X,_, for r=1, d(x;Qr -
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Qrxr1)=2= (—1)'2Qr - Qrxx.\Qr - Qrx,,. for r=1, e(xeQrx)==xxy,
N(x)=20 RQrLx, dy=nee, d_(xQr - Qrx,;)= 2= 22: (—1)'x:Qr -+ Qrxe-y
QRQrR.QrLix:Qr -+ Qrx, for r=1.

For the relative complete resolution X of (2) and a left P-module M, we
denote the r-cycle module of X®pM by C4T' (M), and the r-boundary module
of X®pM by B4#T(M). Then we have H. (A, ', M)=C4T(M)/B4F(M). Ac-
cording to the definition of d,, we have

PROPOSITION 1.1. Let M be a left P-module. Then C#T(M), CHI(M),
BT (M) and BAT(M) are K-submodules of (ARQrA)@pM such that C{I(M)=
{(1Qr1)Qem| =i (RQrL)®@pm=0 in (AQrAHQeM}, CHI(M)={1Qr1)Qprm|
2 (R:QrL:Qr)Q@pm — 3 1QrR:QrL)Q@prm=0 in (AQrAQrANHQerM},
BAT(M)={1Qr1)QRpX: (mix;— x.:m,) ( finite sum)| x,& A and m,c M} and B4{'(M)
={2: (RiQrL;)®@pm|meM}.

In the sequel let the ring extension /'/K be also a Frobenius extension
with the dual projective pair (r;, [;) and Frobenius homomorphism Ai. Then
since ring extensions A/I" and ['/K are Frobenius extensions, the ring exten-
sion A4/K is also a Frobenius extension with the dual projective pair (R;»;, [;L;)
and Frobenius homomorphism A-H. Since the natural homomorphisms KQxK°
—I'Qxl’® and 'R xI'°—P are monomorphisms and the image of the natural
homomorphism I'Qx[°—P is the subring S of P, therefore from complete
(S, K)-resolutions of I” we have the complete relative cohomology group
H™(I', K, M) and homology group H,[I', K, M) for any r=Z and any left S-
module M. Moreover we have the complete (S, K)-resolution of /' of type (2),
and have [Proposition 1.1l for it. Similarly we have the complete relative coho-
mology group H"(A, K, M) and homology group H. A4, K, M) from complete
(P, K)-resolutions of A4 for any »Z and any left P-module M, and have the
complete (P, K)-resolution of A of type (2).

Since A4 is a Frobenius K-algebra, as in we have the Nakayama auto-
morphism A: A—A such that A(x)=3; ; heH(R;r;x)l;L; for all xeA4. We
denote A™' by V. Then V(x)=3); ; R;rjheH(xl;L;) holds for all x& 4. Through-
out this paper A is the Nakayama automorphism of the Frobenius K-algebra /A
and V is A™L.

2. The homomorphism ¥ 4 1.

Let L and M be left P-modules. Then since P/K is a Frobenius extension
with the dual projective pair (R;»;Q«l;»L;, I;L;QxR;7;:), we have the trace
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map from Hom (x L, xM) into Hom (pL, pM) which is defined by trace f(x)=
iy (RiryQuly L) f((;L:QkRi7v;)x) for xe L, where we denote the image
of feHom (xL, xM) by trace f as in [9, section 3]. Let M° be the module M
with a new scalar multiplication * as a left P-module such that (xQxy)*xm=
(V(x)RxA(y))m for xQxy=P and meM. Then in [7, section 4] and [9, section
4], the mapping ¢: Hom (x L, xK)QXpM°—Hom (pL, pM) is defined by ¢(f&@srm)
=[x—trace f(x)m], where f€Hom (xL, xK) is regarded as an element of
Hom (x L, xP).

The left P-module M is regarded as a two-sided (4, K)-module. Modifying
the structure of the right A4-module as m-x=mA(x) where meM and x4, we
obtain a left P-module M® from M. We shall denote meM?* by m?®. For the
left P-module L, when we regard Hom (4L, 44) as a left P-module with the
usual way, there is a K-isomorphism #: Hom (4L, 4 A)QpM3-==5 Hom (x L, xK)
QeM° given by r(f@pm®) =[x — heH(f(x)IQem and £ '(gRpm)=[x—
3.5 Rir;g(;L;x)J®pm?. Then putting ¢=¢-x, we have a K-homomorphism

(3) ¢ : Hom (4L, 4A)Q®pM>® —> Hom (pL, pM)

such that ¢(fQpm?) (x)=3.; f(xR;r)ml;L;. When Hom (4L, 44)®sM* and
Hom (pL, pM) are regarded as functors in P-modules L and M, it is shown by
the conventional argument that ¢ is natural in each of L and M. When L is
(P, S)-projective, that is, there is an S-module T such that pL <PpPRsT,
Hom (4L, 44) is also (P, S)-projective since we have pHom (4L, 44)<
®pHom (yPRsT, 44) = pHom (yAQrTR®r A, 44) = pHom (r A, rHom (rT, rA)=
pHOm (pHom (Ap, Fr), pHom (pT, [’F@p/f))%p/l@[’l‘lom (I‘T, PF)@PAEPP®S
Hom (T, rI'). Therefore for any complete (P, S)-resolution X of A, since the
complex Hom (4X, 44) is a (P, S)-exact sequence by [8, Proposition 1.1], it is
also a complete (P, S)-resolution of A such that the »-th component is
Hom (4X_,_;, 144). Hence ¢ induces K-homomorphisms

w'};/[' : HT(A) F’ MA) E—— H_T_I(Ay F} M)
for reZ.
Let 0—L L ME N-O be a (P, S)-exact sequence. Then the sequence 0—

LA L M2 5 NA0 is also (P, S)-exact. Then the connecting homomorphisms
0" :H"(A, ', N\=H™*Y(A, I', L) and 0%: H. (A, 'y N8—H,_,(A, I", L®) are in-
duced for all r€Z with the usual way. Since ¢ of (3) is natural in each of L
and M, we obtain

PROPOSITION 2.1. Let 0—-L—-M—N—O0 be a (P, S)-exact sequence. Then
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for the connecting homomorphisms 0" :H™(A, I', N)— H™Y (A, I, L) and
07: H(A, I', NY—H,_((A, I', L*), Thpe04=0"""-¥ % holds for reZ.

For the module X, of (2), as in [8], we have a P-isomorphism ¢, : X,—
Hom (4X_,_,, 44) for r&Z such that ¢(x,Q@r -+ Qrxew)=[2Rr - Qri:m—
AH( H(A:(ry -1 H(A: 1y X0)X1) ) X2iry ], <P71(f)=2i0,---,i,(n_, Rz‘o@P ®PRt,(T>_1®I’
fAQ@rLs,,,.,Qr - QrL;), where we put

r-+1 for =0,
w(r)=
—r for »<0.

Then for the P-homomorphism d, of (2) we have ¢, ,od,=(—1)"d*,.¢, where
d*,: Hom (4X_,_,, 4A)—Hom (4X_,, 44). Therefore when we put the plus and
minus sign ¢( ) such that

) { + for the case of »r=0 or 3 (modulo 4),
g\r)—=—
— for the case of r=1 or 2 (modulo 4),

{o(r)¢-} ez is a chain map from X into Hom (4X, 44). Hence composing ¢ of

(3) with a(r)e,QplM?2, we can consider that ¥}, is induced by the K-homo-
morphism

4 ir: X,QpM* —> Hom (pX_,_;, pM)

such that ¢';1/1"((x0®11'"®sz(r))®PmA)('ZO®P"'®Plz(r)):2i,j 0<r)20H("'H(21(T)—1'
HQ,»Ri¥jxo)x,) )X emyml; Ly for reZ, x;, A;&4 and meM.

3. Homomorphisms of complete relative homology.

Let Y be a complete (P, K)-resolution of 4 and M a left P-module. Then
we have the K-homomorphisms of change of rings, that is,

®) H(Y®sM) — H(Y QpM)=H(4, K, M)

for r&Z. Since P is S-projective, Y is also a complete (S, K)-resolution of A.
So the natural inclusion /™—A induces K-homomorphisms

(6) H(I', K, M) — H(Y QsM)
for r&Z. Then composing (5) with (6), we have K-homomorphisms
Cor,: H(I', K, M) —> H,(4, K, M)

for r&Z. Since Y is also a complete (S, K)-resolution of 4, the Frobenius
homomorphism of A/I" H: A—I" induces K-homomorphisms
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7 H(YQsM) — H/(I', K, M)

for r&Z. Since the dual projective pair of the Frobenius extension P/S is
(Ri®@xLj, L, QkR;), we can define a chain map YRpM—-Y RsM such as yQpm
=204, ¥ (RiQ@x L)Qs(LiQxR;) m=3 ; LyyR:QsLymR; for yeY,. and meM,
and this chain map induces the K-homomorphisms

(8) Hr(A) K’ M) — T(Y®SM)
for reZ. Composing (7) with (8), for rZ we have K-homomorphisms
Res,: H(A, K, M) — H.(I', K, M) .

Let X (resp. Y) be a complete (P, S)- (resp. (P, K)-) resolution of A with
the differentiation d={d,} (resp. ¢=/{c,}) and the P-epimorphism e&: X,— A
(resp. 0:Y,—). Then the identity homomorphism of 4 induces the following

commutative diagram :

C, Co C_,
Y, > Y, Y, —Y_ ,—>---
5N
(9) 011 Uol A ‘[0_1 Id_g
e N\
- > > > e —_—
X, . Xo 4 X, i X_e

as (4) in [8]. Let M be a left P-module. Then from the positive part of the
diagram (9), we have K-homomorphisms

Defr: H‘r<A; K; M) — T(A: F’ M)

for r=1. Since 0Qply is an epimorphism, for any element acX,QrM there
is an element €Y ,&pM such that (eQply) (a)=(dQrlxy) (B) holds. Therefore
we can define a K-homomorphism 7: X @pM/Im (d:Qpliy)—Y «XQpM/Im (¢,&Qply)
such that 7(@)=pf, where — stands for the residue classes. Then we have the
following commutative diagram from the diagram (9):

co@ply .1 Qply c-2Qprly
0— Y Q@pM/Im (c;Qplx) Y_ .M Y_.QpM

(10) K | 0. @rlu | 0@l
0 —> X, ®@pM/Im(d\Qply) ———— X_..QprM X_.QpM

o&Qply d_\Qply d_sQply

where ¢,@ply and d,Qply are homomorphisms induced by ¢,&ply and d,Xply
respectively with the usual way. Taking the homology of this diagram, for
r=0 we have K-homomorphisms

Inf,: H(A, I', M) — H, (A, K, M).
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PROPOSITION 3.1. Let 0— L—>M—N—0 be a (P, K)-exact sequence. Then
for the connecting  homomorphisms 04: H(A, K, N —=H,_(A4, K, L) and
ol H(I', K, N)—»H,_(I'", K, L), we have

(i) 04-Cor,=Cor,_,-0%,

(ii) oF-Res,=Res,_,°0%

for all r€Z. Let 0—L i»Mi N—0 be a (P, S)-exact sequence. Then for the
connecting homomorphisms 0,: H(A, I', NyY=H,_,(A, I"', L) and 04: H(A, K, N)
—H,_(A, K, L), we have

(iii) @,oDef,=Def,_,004 for r=2,

(iv) 04eInf,=Inf,_,0, for r<0,

(v) Infye0,°Def,=ad4.

PROOF. Since K-homomorphisms (5), (6), (7) and (8) commute with connect-
ing homomorphisms, the composite homomorphisms Cor and Res also commute
with them. Hence (i) and (ii) hold. (iii) follows from the definition. When
Y Q®pM/Im (¢,Qply) and X,QpM/Im (d,Qply) in the diagram are regarded
as functors covariant in M, they are right exact functors, and 7 in is a
natural transformation. Therefore by the conventional argument (iv) holds.
Put 0,-Def,(@)=j and 0{(@)=F for (v), where — stands for the residue classes.
Then we can choose 8 and y such that B=(g,&Xpl.)y) for o, in (9). Hence
Inf,°0,Def,(@)=7=04(a@) holds.

It is easy to see that Cor, Res, Inf and Def are independent of the choice
of relative complete resolutions. Therefore they are computable from the rela-
tive complete resolutions of type (2). Then we have the following proposition.

PROPOSITION 3.2. Let M be a left P-module, and take the relative complete
resolutions of type (2). Then

Inf,: C{/T(M)/B{/T(M) —> C{/%(M)/B{/"(M),
Inf_,: CH4T(M)/B4I(M) —> C4F(M)/B4K(M),
Cor_,: CLi¥(M)/BL{E(M) —> CH4X(M)/B#4¥(M),
Res, : C{/*(M)/B{/*(M) —> C{/*(M)/BE*(M)

satisfy  Infy((IXr1X&rm) = 1Qx1Xpm, Inf_((1XQr1)Qpem) = 3; (r;Qkl)Rpm,
Cor_ (1R x1)Rsm) = 23y V(L)QxR:)Q@pm and Res(I1Xx1)Xrm) = 33 1R x1)
RsL;mR;, where — stands for the residue classes and Y is A™' as in section 1.

PROOF. Since we took the relative complete resolutions of type (2), for e
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and d in (9), <1Qr1)=1 and 6(1®k1)=1 hold. So we have Inf(IRr1)Rsm)=
(AR x1)Rsm. We can take o_, in (9) for =1 such that o_ (x,Qr - Qrx,)=
Sy X075, @ kly %17,k -+ Qxly,_ %r.  So we have Inf_(IQrDRprm) =
2 ikl )@pm. Let Y (resp. Z) be the complete (P, K)- (resp. (S, K)-) resolu-
tion of A (resp. I') of type (2). Then for the K-homomorphism (6), we need
the chain map F: Z—Y over the natural inclusion '—A4. Put F={F,},ez where
F, is the right S-homomorphism of Z, to Y,. Then we can take F, such that
F_(20Qk " Qr2r)=24 iy 209( L) QxR 21 V(L )Rk -+ QrRy,_2r for r=l.
Therefore Cor_,(I1Qx1)Xpm)=3>; V(L;)X®xR;)Xpm holds. For the K-homo-
morphism (7), we need the chain map G:Y—Z over the Frobenius homomor-
phism H: A—I". Put G={G,},ez Where G, is the right S-homomorphism of Y,
to Z,. We can take G, such that G(yeQ«k -+ QkYri1)=2i .1, H(YoR: )Rk
H(L;y:R,)®« - QxH(Li,yr+1) for rz=0. Therefore Resy(I®1)Rpm)=
23 IQxk1D&sL:mR, holds.

4. ¥ and homomorphisms Res, Cor, Inf and Def.

Let A and C be rings and B a subring of A. We consider a family of
covariant functors 7= {T;};cz from the category of A-modules to the category
of C-modules with connecting homomorphisms 0 : T;(M,)—T;_,(M,) defined for
each (A, B)-exact sequence 0—M,—M,—M,—0, and satisfying the following
conditions (11) and (12):

(11) The sequence

0
o —> Ty(M,) —> T (M,) —> T(M;) —> Tt-l(Ml) —> e

is exact.
12) If
0 M, M, — M, —>0

Lol

0—> N, —> N, — N, — 0

is a commutative diagram of (A, B)-exact rows, then, for i€Z, the following
diagram is commutative

0
Ty(M;) —> T (M)

l l

T i(Ns) _‘5’ T;_«(Ny)
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This family of functors is a relativized version of “connected sequence of func-
tors” in [2] or “o-foncteurs” in [4]. Let U be also a family of functors which
satisfies the conditions (11) and (12). When a sequence of natural transforma-
tions f;:T;—U,; satisfies a condition, that is, for any (A, B)-exact sequence
0—M,—M,—M,—0, the diagram

0
T (M) —> T ;_«(M,)

£ =
UM~ Uea()

is commutative, we call {f;} a map from T to U. Then the following proposi-
tion holds by the same way as [2, Proposition 5.2 in Chapter IlI] and [4, Pro-
position 2.2.17.

PROPOSITION 4.1. Let T and U be families of covariant functors which
satisfy the conditions (11) and (12). When a natural transformation f, : T —U,,
is given fdr some 1,&Z,

(i) f:, extends uniquely to a map {f:} : T—U defined for all i<i, if Ti(N)
=0 holds for all i<i, and any (A, B)-injective module N,

(ii) fi, extends uniquely to a map {f;} : T—U defined for all i=zi, if U;(N)
=0 holds for all i>i, and any (A, B)-projective module N.

Let Q be a subring of P which is the image of the natural homomorphism
I'®xA°—P. Note that Q is isomorphic to I'®xA° and the ring extension P/Q
is a Frobenius extension.

LEMMA 4.2. Let M be a (P, Q)-projective module. Then for any r&Z
H (A, I', M)=0 and H™(A, I', M)=0 hold. These equations also hold for M?®.

PROOF. Let X be a complete (P, S)-resolution of 4. Then [8, Proposition
1.17 shows that X is (P, @)-exact. Since P/Q is a Frobenius extension, M is
(P, Q)-injective. Hence Hom (pX, pM) is an exact complex, and thus H"(A, I, M)
=0 holds. Regard the differentiations of X as right P-homomorphisms. Then
[8, Proposition 1.1] also shows that X is (P, @)-exact. Hence XQpM is an
exact complex, and thus H.A4, I', M)=0 holds. M is (P, Q)-projective, i.e.,
there is a Q-module N such that »M<@p(PQeN) holds. Then we have
PMA<Bp(PRQeN A =p(AQrN=pAQrN2=pPR¢N"*. So M’ is (P, Q)-projec-
tive. Hence this lemma also holds for MA.
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The natural homomorphisms KQx 4°— P and KX xI'°— P are monomorphisms
since 4° and ['° are K-projective. So we can regard KQxA4° and KQRxI'° as
subrings of P and S, respectively. Moreover the ring extensions P/KQx1° and
S/KQxI'® are Frobenius extensions. Therefore by the same way as
4.2, the following corollary follows from [8, Proposition 1.17.

COROLLARY 4.3. Let M be a (P, KQxA°)-projective module. Then for any
reZ, H (A, K, M)=0, H,(A, K, M*)=0, H"(I", K, M)=0 and H(I", K, M%)=0
hold.

PrROOF. When M is regarded as a left S-module, M is (S, KQxI °)-projec-
tive since A is I'-projective. Therefore H™(I", K, M)=0 and H.([, K, M*)=0
also hold.

In [8], for a left P-module M, we have defined K-homomorphisms
Res™: H" (A, K, M)—H™(I", K, M) for r&Z, Cor": H"(I", K, M)—-H"(A, K, M)
for reZ, Inf": H(A, I', M)—-H"(A, K, M) for »r=1 and Def": H" (A, K, M)—
H7™(A, I', M) for »r<0. For these homomorphisms, the following holds.

LEMMA 4.4. Let M be a left P-module, and take the relative complete re-
solutions of type (2). Then we have
Cor’(f)=[¥sQ@x¥: —> i o R fARxDL:y:],
Def’(g)=[*Qrx, — g(x:Qxx1)],
Res™'(k)=[20Qx2z1 —> 2 k(2. L:QxA(R)z))],

where — stands for residue classes.

PROOF. The proofs about Cor® and Def® are given in [8, Proposition 2.2].
Let Y (resp. Z) be the complete (P, K)- (resp. (S, K)-) resolution of 4 (resp.
I') of type (2). Then the identity homomorphism of A induces a chain map
G: ZQrA—Y which consists of left Q-homomorphisms. Put G={G,} ez Where
G,: Z,QrA-Y,. Take G, such that G_,((z,Qk - Rz )Qrd)=2,. i, 2oL,
QxA(R: )z, L@k -+ QrA(R;,_)z:A for r=1. Then Res (k) ={z,Qxz —
2 k(20 L, QxA(R;)z,)] holds by the definition of Res in [8].

By the same argument as in section 2 we have the K-homomorphisms
Uhk: H(A, K, M*)—>H"""Y(A, K, M) and ¥} x: H(I', K, NY>H-"\T", K, N)
for r=Z, any left P-module M and S-module N. Note that the restriction of
A to [' is the Nakayama automorphism of the Frobenius K-algebra I". Then
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the following holds.

PROPOSITION 4.5. Let M be a left P-module. Then for the K-homomorphisms
Cor,, Res,, Def, and Inf, of M", we have the equations

(i) ¥y k-Cor,=Cor " 2 UF,x for any r=Z,

(ii) TF/x°Res,=Res " 1 ¥, x for any reZ,

(iii) Ty reDef,=Def " 1UY, x for r=1,

(iv) U3lp=Def™ 1eW7xeInf_, for r=0, 1,

(v) Ualgelnf_=Inf""*T37r for r=2.

PrROOF. By (4), Proposition 3.2 and (i), (ii) and (iv) hold for
the cases of r=—1, »=0 and =1, respectively. All the composite K-homo-

morphisms in the equations above commute with connecting homomorphisms by
Propositions 2.1, B.1 and [8, Lemmas 2.5 and 3.8]. Therefore the uniqueness
of [Proposition 4.1 and [Corollary 4.3] shows that (i) and (ii) hold. Similarly the
uniqueness of [Proposition 4.1 and shows that (iv) holds. The case
of »r=1 of (iii) also holds. In fact, for the (P, Q)-exact sequence

§
(13) 0 —> Keré —> PQM —> M —0,

where & is a P-homomorphism such that §(p@em)=p-m, we have the connect-
ing homomorphisms 92: H.(A, ', M*)—H,_(A, I, (Ker &)%), 0" : H"(A, I", M)—
H™Y (A, I, Ker &), 0%4: H(A, K, MY)—H,_,(4, K, Ker &?*) and 07: H"(A, K, M)
—H™YA, K, Ker &) for all r&Z. Then by (iv) of this proposition and Proposi-
tion 3.1 (v) we have 072U}, roDef, =¥, r-04Def,=Def ¥, x-Inf,0%Def,=
Def 1Ty, £ 003 4=Def 1002 ¥} x=0"2Def 2T}, . Since 072 is an isomorphism
by the case of r=1 also holds. Similarly by using the connecting
homomorphisms of the (P, Q)-exact sequence

T
(14) 0 —> M — Hom (o P, (M) —> Cokerz —> 0,

where t(m)=[p—p-m], the case of r=2 of (v) also holds by (iv) of this pro-
position and [8, Lemma 3.8 (ii)]. Therefore (iii) and (v) also hold by the uni-
queness of Proposition 4.1 and [Lemma 4.2,

5. Fundamental exact sequences.

We now show that we can define Cor, by another way. Let Y and Z be
a complete (P, K)-resolution of 4 and a complete (S, K)-resolution of I', respec-
tively. For the subring Q@ of P in section 4, AQRrZ is a complete (Q, K)-
resolution of the right Q-module 4. Since Y is also a complete (@, K)-resolu-
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tion of A, the identity homomorphism of A induces
(15) H(AQr Z)QeM)=HY QM)

for any left @Q-module M and reZ. And we have H.(AQRQrZ)RXQ M)=
H(ZRsQ)QM)=H(ZQsM)=H.(I', K, M) with the usual way. Hence for reZ
there is an isomorphism

(16) set H(I', K, M) = H(Y QM)

LEMMA 5.1. Let M be a left P-module. Then Cor, and Res, coincide with
the following composite homomorphisms (17) and (18), respectively :

(17) H(I', K, M) = H(YQM) —> H(A, K, M),
Sr
(18) HT(A) K} M) —— T(Y®QM) l’ T(Fy K’ M) ’
sy

where H.(YQM)—H. (A, K, M) is induced by the K-homomorphisms of change
of rings, that is, Y, QoM—Y . QpM, and H. (A, K, M)-H(Y QM) is induced by
a chain map k:YRpM—-Y QM such that (yQem)=2; yRQoL:m for yevY,
and meM.

PrROOF. Let F:Z—Y be the chain map over the natural inclusion I'— A
which induces the K-homomorphism (6), and G:Y—Z the chain map over
H: A—I" which induces the K-homomorphism (7). Then the isomorphism
is induced by a chain map F’: AQrZ—Y such that F'(AQrz)=A4F(z), and the
inverse isomorphism of [(15) is induced by a chain map G’: Y—A®rZ such that
G'(»)=3 Ri\QrG(L;y). Using these chain maps F’ and G’, we can see that
the K-homomorphism is induced by the chain map F” : ZQsM—Y XM such
that F7(zQsm)=F (2)®pm, and the K-homomorphism is induced by the chain
map G” : YQ®pM—ZRsM such that G”(yQem)=3>); ; G(L;yR,)RQsL;mR;. By the
definitions of Cor, and Res,, these mean that and coincide with Cor,
and Res,, respectively.

In the introduction of [5], it is said that fundamental exact sequences of
Tor can be obtained. Therefore by the same way as [8, section 2] we have
the following theorem from them and [Lemma 5.1:

THEOREM 5.2. Let N be a left P-module and define left P-modules N; (i=0)
inductively as No=N and N;=PQqN,;_, for i=1. Then the sequence

Def,

O(_—HT(A; F; N) HT(A; K’ N) Hr(r’ K: N)
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s exact for r=1 if H, ([, K, N,_,)=0 (0<n<r).

PROPOSITION 5.3. The following sequence is exact for any left P-module:

Inf, Res,

0——>H0(A, F, M) HO(-A: K: M)

H(I',K, M).

Ppoor. Take relative complete resolutions of type (2). Then by Proposi-
tions 1.1 and 3.2 Inf, is a monomorphism and Ker Res,CIm Inf, holds. In fact,
if Reso(IRxDRem)=0, X LimR;=: (mize—z:m,;) (finite sum) for some z.&I"
and m,&M by Proposition 1.1, and so X); (R:QrL,)XRem=2); 1QQr1)QpL;mR;
=0 holds in (AR ARpM, that is, 1Qr1)Qeme C4 " (M). So Ker Res,CIm Inf,
holds. Define a K-homomorphism ¢: (AQrA)QeM — (I'Qx IR sM/BY*(M)
such that ¢(2:Qri,)®em)=(1Qx1)Xsdmi,. Then for AR r1)YReme C4F (M),
0=0(0)=¢(Z: (R:Qr L)Qrm)=2 1Qx1)QsL,mR; holds. So 32 1Qx1)®sLimR;
=BI/X(M) holds. Therefore ResyeInf, (IRr1)Xrm)= > IRQx1)RsL;mR;=0
holds. Hence the proof is complete.

LEMMA 54. HJ(I', K, M)=H (A, K, PQoM)=H. (A, K, Hom (; P, ¢M)) holds
for any left P-module M and all reZ.

PROOF. For a complete (P, K)-resolution Y of A, we have H,(F, K, M)=
H.(Y®qM) by [16). Since P/Q is a Frobenius extension, PQoM=Hom (¢P, (M)
holds as left P-modules. Therefore H (Y QM) = H(Y Qp(PQRM)) =
H. (A, K, PQeM)=H, (A, K, Hom (,P, ;M)) holds.

THEOREM 5.5. Let M be any left P-module and define left P-modules M*
(1=0) inductively as M°=M and M*=Hom (oP, (M*™") for i=1. Then the sequence

Res_.
00— H_ (A, T, M)

H_.(4, K, M)
is exact for r=0 if H_,(I', K, MT"")=0 0=n=r—1).

H.AI', K, M)

PrROOF. By induction on . The case of »=0 is proved by Proposition 5.3.
Assume that the case of »=t¢ holds. Consider the case of r=t+1. We use the
exact sequence in section 4. Put N=Cokerz. Then since is (P, Q)-
exact, we have oN<@PoM'. Therefore sN:'<PsM** holds for all =0, where
we put N°=N and N*=Hom (¢P, (N*') for /=1 inductively. So we have
H_,(I', K, N°")=0 for 0<n<t. Hence the theorem holds for N and the case
of »r=t. Moreover H_,(I", K, N)=0 holds. Then by [Proposition 3.1], (14) induces
the following commutative diagram:
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Inf_, Res_;
O—>H—t(/1, F: N) H—t(Ai K; N) H—t(F’ K: N)
19 e 1"
Inf_z_]_ ReS_;_.l
H—t—l(Ay F, M) H-t—-I(A’ K, M) H—l—l(r) K} M)
i? //

H_. (4, K, M")

where 9, 34 and 9" are connecting homomorphisms for 7 is the homomor-
phism induced by 7, and ¢ is the isomorphism of Lemma 5.4. The isomorphism
H(Y®qM)—H/(A, K, M*) in the proof of is induced by an isomor-
phism u:Y,Q;M—-Y,@pM' such that u(yQem)= yQpe[x:@x; — H(x,)mx,]
for yeV,, meM and x,Qx,=P. Therefore p-Res_;_;=7 holds by Lemma 5.1.
M! is (P, Q)-projective since P/Q is a Frobenius extension. Therefore 0 is an
isomorphism by [Lemma 4.2. And 04 is a monomorphism because by
54 H_((A, K, M)Y=H_(I", K, M) and H_(I", K, M)=0 holds by H_.(I', K, M)
PH_(I", K, Ny=H_(I'", K, M*)=0. Hence for the middle sequence of the com-
mutative diagram above, holds.

6. ¥, r and fundamental exact sequences.

The complete (P, K)-resolution of 4 of type (2) is the complete projective
resolution defined in and since the modules of the resolution are P-
projective. Therefore the absolute homology and cohomology groups in and
[9] are H/ (A, K, —) and H"(A, K, —). Similarly for the complete (S, K)-
resolution of I” of type (2), we have the same argument. Hence [7, Satz 2]
and [9, Theorem 10] show that the following holds.

THEOREM 6.1. ¥4,k (resp. UF/k) is an isomorphism for any left P- (resp.
S-) module and any reZ.

also shows the result above by using a complete resolution.
We have the following diagrams for any left P-module M from
4.5 and [Theorem 6.1:

Def, Cor,
0<— HJ(A, I', MY H.(A, K, M%) H(I', K, M%)

19) |wr | [k |5

0<— H""YA, T, M) H~""YA, K, M) H™""XI, K, M),
Def 7~ Cor™r™*
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Inf_

S_r

0— H. (A, "', M®) H_.(A, K, M%) H_(I', K, M%)
(20) | wan | @ s

O<«—H™ YA, I', M) H™ YA, K, M) H'I'K,M),
Def™-! Cor™™?

Inf_, Res_,
0— H—T(A) F’ MA) H-T(A) K) MA) H—-T(F) K’ MA)

1) |wrr ||[#ix @77

00— H™ YA, I',M) H Y4, K, M) HYI',K,M),
Infr? Res™?

where diagrams and are commutative for »=1 and r=2, respectively,
and the left half of is commutative for »=0, 1. So if the top and bottom
rows of (resp. are exact, ¥},r in (resp. ¥3/r in [21)) is an iso-
morphism, and if the top and bottom rows of [20) are exact and H_(I", K, M*)
=0, that is, H*"(I", K, M)=0, ¥/ in[20) is an isomorphism. Hence by results
of scction 5 we have

THEOREM 6.2. For any left P-module N, put left P-modules N; (:=0) induc-
tively as Ny=N, N;=PQN;_, for i=1. Then for a left P-module M, the fol-
lowing statements hold.

i) Thr:HA, T, MY—H""YA, I', M) for r=1 is an isomorphism if M
satisfies the condition H,(I", K, (M*),_,)=0 for —1<n=<r—1.

i) ¥Yr: H A, ', MD—H YA, ', M) is an isomorphism if M satisfies the
conditions Hy(I", K, M®)=0 and HI, K, M,)=0.

(i) U3ir: H.(A, ', MOD—HYA, I', M) is an isomorphism if M satisfies the
conditions Hy(I", K, (M*))=0 and HXI", K, M)=0.

(iv) @hir: H. (A, T, MO —H"™YA, I', M) for r=2 is an isomorpnism if M
satisfies the condition H™(I', K, M,_,_,)=0 for —1=n=<r—2.

PROOF. For any left P-module N and all /=0, note that N;=N'® holds as
left P-modules where N°® is the P-module as in [Theorem 5.5. Moreover for all
i=0 (N;)2=(N%), holds as left P-modules by induction. In fact, by induction,
we have (N,)*=(AQRrN;_ Qs = AQr(N;_)* = AQr(N4);_,=(N*),. (i) follows
from [8, Theorem 2.6], Theorems 5.2 and6.1. In fact, [8, Theorem 2.6] shows
that the bottom row of is exact if H *([", K, M,,,_,)=0 for 0<n<r, and
shows that the top row of is exact if H,(I", K, (M*),_,)=0
for 0<n<r. Therefore (i) holds by and the isomorphism (N;)3=
(N);. Similarly by using the diagrm [20), (ii) and (iii) follow from [8, Proposi-
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tion 2.2 and Theorem 2.6], Proposition 5.3 and [Theorem 5.5 And by using
the diagram (iv) follows from [8, Theorem 2.1], Theorems 5.5 and 6.1l

By using [Proposition 2.1 for [13) and since the connecting homomor-
phisms are isomorphisms by ¥'n,r is an isomorphism for any left
P-module and any z Z if and only if ¥%,r is an isomorphism for any left P-
module and some r&Z. Hence we have

THEOREM 6.3. The following conditions are equivalent:

G) Thr:H(A, ', MY—H"""YA, I', M) is an isomorphism for any left P-
module M and any reZ.

(i) 0O—H"*A, I, M) <— H-¥A, K, M) <— H-XI", K, M) is exact for any
left P-module M.

(iii) Inf_,: H.,(A, T, M3)—H_\(A, K, M%) is a monomorphism and H%A, K, M)
=Im U4 x-Inf_,PKer Def® for any left P-module M.

(iv) Def': H™ YA, K, M)»H YA, ', M) is an epimorphism and HyA, K, M*)
=Ker Def1-¥Y, xPIm Inf, for any left P-module M.

V) 0— Hoo(A, T, MY 5 H (4, K, MY = H (T, K, M) is exact for
any left P-module M.

Proor. We use [19), [20) and [2I) for the proof.

(i)e(ii). For any left P-module M the top row of [(19) is exact for the case
of »=1 by without any condition. Therefore ¥}, is an isomor-
phism for any left P-module M if and only if (ii) holds. Hence (i)&(ii) holds.

(i)e(iii). The bottom row of is exact for the case of »=1 by [8, Pro-
position 2.2]. So if ¥}, is an isomorphism, Inf_, is a monomorphism and the
bottom row of is split by ¥}kelnf_,o (@7 r)"'. Therefore (i)=>(iii) holds.
If (iii) holds, 1t is easy to see that @3}, of is an isomorphism. Hence
(iii)=(i) holds.

(iy=(iv). The top row of is exact for the case of »=0 by Proposition
5.3. Hence (i)=(iv) holds by the similar way to (i)e(iii).

(i)o(v). The bottom row of is exact for the case of »=2 by [8, Theo-
rem 2.1] without any condition. Therefore (i)e(v) holds by the similar way
to (i)&(ii).
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7. The necessary and sufficient conditions on which
¥ 4 r is an isomorphism.

Put M= meM|(1QRr1)Q@rmbe CA4T (M*)} for any left P-module M where
CA4T' is the same as in [Proposition 1.1, and put M4={meM|xm=mx for all
xeA} and MT={meM|zm=mz for all zeI'}. M, M4 and MT are K-sub-
modules of M. Then we have the following theorem.

THEOREM 7.1. The following conditions are equivalent :

i) Tyr: H(A, I', MYD—H"""Y(A, I', M) is an isomorphism for any left P-
module M and any reZ.

(i) Tyr: H(A, I, MA)—H-""YA, I', M) is an epimorphism for any left
P-module M and any r=Z.

(ili) There are elements Ac A and &= AT such that 1=3; r;A;+>: REL,.

Proor. Induce ¥, from (4). By Proposition 1.1 and [8, Proposition 1.2]
U3ir can be regarded as a K-homomorphism from C4{7(M3)/B4{"(M*) inlo
MA/N 4 r(M) such that

(22) Viir(1Qr1)Qpm*)=33; rymi;
for IQr1)Qpmte CH4I(M?), where Ny r(M)={3; RymL;\meM’} and — stands
for the residue classes.

(i)=(ii). This holds obviously.

(ii)=(iii). Consider the case of M=/. ¥ is an epimorphism. So since
le A4, there is (1Qr1)®pite CA4T(A8) such that T7 (1R r1)®p4)=1, that is,
53, 7;4;=1 holds. Therefore 1—3X,7,Al;&N 4 r(A), that is, there is £ A" such
that 1=33; rj21j+2i REL,.

(iii)=(i). By using Proposition 2.1 for [13) and [(14), since the connecting
homomorphisms are isomorphisms by Lemma 4.2, (iii)=(i) holds if ¥}, is an
isomorphism for any left P-module M. Let M be any left P-module. For 4 of
(iii), define a K-homomorphism ¢ : M4—C4/"(M*) such that o(m)=(1Rr1)Q(Am)*.
This is well-defined. In fact since meM4, we can define a K-homomorphism
km: (AQrAQrANHQ@pAt — (AQrAQrNHX@erM® as rn((x.Qrx,Qrx:)Rpxd) =
(xQrx,Qrx)Q@p(xm)®. Since 1Rr1)RpiteCAT(A2), we have

0=fcm(0)=xm(2i (Ri®1’Li®1"l)®PzA_Zi (1®PRi®I‘ Li)®PZA)
=3 (RQrLQr1)R®p(Am)* —=; 1QrR.Qr L )Qp(Am) .
Therefore ¢ is well-defined. (N4 r(M)CB4(M*) holds. In fact, for any
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2i RimL;eNy r(M), we have (2 RmL)=3; (1®fl)®P(lRimLi)A:Ei (I®rl)
Qp(R;mL;2)%, and since meM?, we can define a K-homomorphism &, :
(AQr ARQr MR p A2 — (ARQr ARQpM? as kn(£e®rx:Q@rx)@px) = (XeQrx)Qp

(mx,x)8. Then we have
0=kn(0)=£n(: (R:Qr L @r1)®@ra*—:; (1QrR:Qr L)Qri*)
=3 (R:Q@r L)Qp(mA)* — (T RyimL,) .
Therefore <p(NA,p(M))CBi’{r(MA) holds. So ¢ induces a K-homomorphism
@ : MA/Nyr(M)— CHT(M3)/B4T(MY). And we have @-¥ % r(1Qr1)Qpem?)=
AR r1)Rp(Arymiz?. Further we have
35 AR rDp(Ar mi*=2; VIR rar pQpm®
=3 1Qrr Al )Qpm*
=(1Qr1)@sm*— 3 IQrRELIRem* by (iii).

Since £é=A4’, we can define a K-homomorphism «;: (ARpARr A)RpM? —
(AQr HRpM? as ke((xeQrx,Qrx)Rpn®)=(%,Qr x)Qp(x:n)* for xeQrx:Qrx.
e ARQr AQr A and neM. Then since 1Qr1)QpmteCA4(M?), we have

0=xe(0)=xe(2i (Ri®/'Li®F1)®PmA—Ei (1®1‘Ri®1‘Li)®PmA)
=2 (Ri®1‘Li)®P(5m)A‘—Zi (1®PRiELi)®PmA ’

that is, 3} UQrR.EL)Rprmd & BAT(M?) holds. Therefore @-¥;r =1 holds.
For any meM4/N4 r(M), we have

Uar-®(m)=2; rdmly=3; rllm=m—3; RELm=m—3,; R,(Em)L,=m,

that is, ¥z}r-@=1 holds. Thus ¥;}r is an isomorphism. Hence (i) holds.

Let M be a left P-module. Put Ngyx(M)={2; ; Rirjmi;L;imeM} and
Np,K(JVI):{E,-r,-mlemEIVI}. Let N4yr(M) be the same as in the proof of
Theorem 7.1. Then by Theorems and we have

THEOREM 7.2. The following conditions are equivalent :

W) Tyr:HA, I, MY —H"""YA, I, M) is an isomorphism for any left P-
module M and any reZ.

(i) MA/Ngyx(M)=Nr,x(M)/N 1 x(M)BN 4,r(M)/N 1, x(M) holds for any left
P-module M.

(iiiy MA=Nrp x(M)+N4r(M) holds for any left P-module M.

(iv) AA/NA/K(A)=NI‘/K(/T)/NA/zf(A)@NA/P(A)/NA/K(A) holds.
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ProoOF. (i)=(ii). By [Theorem 6.3 (iii), H°(A, K, M) =Im ¥ ix-Inf_, P
Ker Def® holds. And we have HA, K, M) = M4/N 4 x(M), In ¥} xoInf_; =
Nr x(M)/N4 (M) and Ker Def®=Im Cor®= N r{M)/Nax(M) by (4), Propositions
B.2, Lemma 4.4 and [8, Propositions 1.2 and 2.2]. Hence (ii) holds.

(i1)=(iii). This is trivial.

(iii)=(i). Put M=A4. Then (iii) holds. So (i) holds.

(ii)=(v). Put M=A. Then (iv) holds.

(iv)=(i). If (iv) holds, (iii) holds. So (i) holds.

Appendix of section 7.

Let M and N be left A-modules. In [3], by using complete (4, I")-projec-
tive resolutions of M, the complete cohomology group H{, r,(M, N) is defined
for all r=Z. Similarly, when M is a right /4-module, the complete homology
group H¢UD(M, N) is defined for all »r=Z. For a left A-module M,
Hom (¢ M, xK) is regarded as a right 4-module with the usual way, which we
denote by M*. Let N° be the module N with a different structure as a left
A-module such that 2-n=V(A)n for A& 4 and nN. Then for the left P-module
M*QxN, we have H(A, I,  M*QxNM)=HAD(M*, N° by the simple argu-
ment. Similarly H"(A, I, Hom (gM, xN)=H?4 r,(M, N) holds. Hence if Ty, r
is an isomorphism and M*®xgN=Hom (xM, xN) holds as left P-modules, we
have HAD(M*, N)=Hi75(M, N). For the case of /'=K, this means that we
obtain the same result as [7, Satz 2] and [9, Theorem 10]. When we return
to general cases, we have

THEOREM 7.3. Let M be a left A-module. Assume that ¥y, is an isomor-
phism for any left P-modules and any r&Z. Then if M is finitely generated
and projective as a K-module, we have

HAD(M*, NO)Y=H (M, N)
for any left A-module N and any reZ.

PROOF. Let ky: M*QxN—Hom (xM, xN) be a left P-homomorphism such
that ky(g@xn)=[m—g(m)n]. If M is finitely generated and projective as a K-
module, it is easy to see that ky is an isomorphism. Hence H(M*, N
Hi7hA(M, N) holds for any left 4-module N and any r=Z.
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8. The necessary and sufficient conditions for
HT(G) K’ "—)gH.—T_l(G’ K: —)'

Let G be a group and K a subgroup of finite index in G. Then in [6,
section 4], from complete (ZG, ZK)-resolutions of Z the complete relative
homology group H,(G, K, M) and cohomology group H7"(G, K, M) are defined
for —co<r<oo where M is a left G-module. In this section we treat the case
where G is a finite group.

For a subgroup K, let G=\U}%, g:K be a left coset decomposition and
H: ZG—ZK a two-sided ZK-homomorphism such that for g&G

0 g€k,
H(g) =

g g<K.
Then for x€ZG x=31, g;H(g7'x)=>27., H(xg;)g7' holds. So the ring exten-
sion ZG/ZK is a Frobenius extension. Let 1 be the unit element of G, and
h: ZK—Z a Z-homomorphism such that for kK

0 k+1,

h(k):{
1 k=1.

Then for x&€ZK x=ex Ph(k7'x)=sex h(xk)k™! holds. So ZK is a Fro-
benius Z-algebra. Hence ZG is a Frobenius Z-algebra. Therefore we have
the Nakayama automorphism A: ZG—ZG. By the definition in section 1 A is
the identity homomorphism of ZG. We put P=ZGR(ZG)°, and let Q and S
be the images of the natural homomorphisms ZK®(ZG)’—P and ZKQQzZK)°
— P respectively as in the previous sections.

We have the augmentation map ¢: ZG—Z with ¢(g)=1 for gG. Let M
be a left G-module. Then by putting (x,@zx,)-m=x,me(x,) for x,Qzx, =P and
meM, M can be regarded as a left P-module, and then we shall denote M by
M,. As in the previous sections, we have the Z-homomorphism ¥}/ zx:
H(ZG, ZK, M,) > H " NZG, ZK, M,) for —co<r<oo. Since H(ZG, ZK, M,)
~H/(G, K, M) and H"(ZG, ZK, M,)=H"(G, K, M) hold, we have a Z-homo-
morphism for all reZ:

w&/K: HT(G) K’ M) - H-r—l(G, K: M) .

Let M be a left G-module. ZGX®RzxM and Hom (zxZG, zxM) are left ZG-
modules with the usual way. Then there are (P, Q)-exact sequences

0— (Ker§). —> (ZGQzxM). —$—> M. —0,
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T
0 — M. — (Hom (;xZG, zxM)); —> (Coker 7). —> 0,

where &(xQ®zxm) = xm and z(m)=[x — xm] for xZG and meM. Since
(ZGRzxM)=ZGCQRzxM:=PRXoM. and so (Hom (zxZG, zxM)).=Z(ZGQRQzxM) =
PRoM. holds, (ZGRzxM). and (Hom (zxZG, zxM)). are (P, Q)-projective. There-
fore by using [Proposition 2.1] for these exact sequences, since the connecting
homomorphisms are isomorphisms by Uieizx: H(ZG, ZK, M,) —
H""YZG, ZK, M,) is an isomorphism for any »r&Z and any left G-module M
if and only if it is an isomorphism for some » and any left G-module M.

Z is regarded as a left G-module by ¢ with the usual way. Then Z; is a
left P-module. We defined Z. as {z€Z.|(1Qzx1)Rpz= C2¢/2K(Z )} in section 7.
Z. is an ideal of the ring Z, and we have

LEMMA 8.1. Let |K| be the order of K and (G: K) the index of K in G.
Then Z. contains |K| and (G: K).

PROOF. Let G=\{E; % g,K be a left coset decomposition. Then by Pro-
position 1.1 we have BZ{/?X(Z.)={Z:(g:RQzx8:")QrzlzE Z:} ={(1Qzx1)Qp
(G: K)zlzeZ.}. Since BZ¢/ZK(Z ) CZ812K(Z,) holds, Z. contains (G: K). In
(ZGQRzxkZGQRzx ZG)YRpZ., we have X; (8:R2zx87' Rzx DRl K| — 2 (1Q2x8:Rzk
Z2iNQrIKI=3: (1Qzxk87'Rzx)QpI K| — 2 (1Q2zx8:QRzx1)Qp| K| =20 Zikex (1Qzx
k787" Qzx1)Qpl — 30 Zrex 1Qzxg:1kQzx1)Q Pl =3 e (1Q2x8Q 2k 1) pl — 2 se6
(1RzxgRzx1)Rpl=0. Thus |K|<Z. holds by [Proposition 1.1].

THEOREM 8.2. The following conditions are equivalent:

i) Tge: H(G, K, M\)-=H-""YG, K, M) is an isomorphism for any left G-
module M and any reZ.

(i) TLx: H(G, K, M)-»H"""YG, K, M) is an epimorphism for any left G-
module M and any reZ.

(i) K is a Hall subgroup of G, that is, theve are t, z&Z such that 1=
|K|t4+(G: K)z.

PROOF. The proof is similar to the proof of [Theorem 7.1.

(i)=(ii). This is obvious.

(ii)=(iii). Let M be a left G-module. For the P-module M,, in the
proof of is

U326:2x(1Q2zx1)Qpm)=2]1ex kme(k™")=2rex km
for (1Qzx1)RpmesCZ512X(M,). Regard Z as a left G-module by & with the
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usual way and put M=Z. Then ¥zL/zx is a homomorphism from CZ§{/2X(Z.)/
BZ512K5(Z.) into (Z.)?°/Nzgizx(Z.). (Z)?C is Z., and Nygzx(Z.) is (G: K)Z..
Therefore since (ii) holds, there is te Z. such that I=¥34,zx(IRzx1)Xrt), that
is, I=3),cx kt=|K]|t holds. Hence there is z& Z such that 1=|K|t+(G : K)z.

(iii)=(i). By the argument before Lemma 8.1, (iii)=(i) holds if ¥z4,zx:
CZ8128(M.)/BZS/2K (M, )—(M.)?¢/Nzc,zx(M,) is an isomorphism for any left G-
module M. If (iii) holds, since Z. is an ideal of Z, by we have
leZ., and so t=t-1=Z. holds. Therefore when we define a Z-homomorphism
¢ (M)?¢—=CZ7/2K(M,) such that o(m)=(1QRzx1)Qptm, it can be shown by the
same procedure as the proof of that ¢ is well-defined, ¢ induces
the Z-homomorphism @ : (M.)?°/Nzg,zxk(M)—CZ2¢/25K(M.)/BZ¢'2K(M,), and @ is
the inverse isomorphism of ¥zk,zx. Hence (i) holds.
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