
TSUKUBA J. MATH.
Vol. 17 No. 2 (1993), 491–496

MINIMAL MODELS OF MINIMAL THEORIES
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1. Introduction

The algebraic closure $\overline{Q}$ of the rationals $Q$ in the complex number field $C$

is small in the following two senses: (i) There is no proper elementary sub-
field $K$ of $\overline{Q}$ , and (ii) every field which is elementarily equivalent to $\overline{Q}$ has a
copy of $\overline{Q}$ in it. In general model theory we have to distinguish these two
notions. The notion expressing the first property is called minimal, and the
other for the the second prime (see Definition 1). The following is an example

of a theory having a minimal non-prime model:

EXAMPLE (Fuhrken [2]). The theory $T_{0}$ is defined as follows: For each
$\nu\in<\omega 2$ we define a function $F_{\nu}$ : $2\rightarrow\omega 2$ by $(F_{\nu}(\eta))(e)=\nu(i)+\eta(i)mod 2$ for $\eta\in^{\omega}2$ ,

$ i<\omega$ . And for $\eta\in^{<\omega}2,$ $P_{\eta}=\{\tau\in\omega 2:\eta\prec\tau\}$ . Let $M=(\omega 2, \{F_{\nu}\}_{v\in}<\omega_{2}\{P_{\eta}\}_{\eta\in}<\omega_{2})$

and $T_{0}=Th(M)$ . Then each model generated by only one element $(\in M)$ is
minimal and non-prime.

Our concern is the number of minimal models of a theory with no prime
model (In fact if a theory has a prime model then it has at most one minimal
model). In [3] Marcus showed that if $T$ is a theory of one unary function
symbol and $T$ has a minimal non-prime model then $T$ has $2^{\aleph_{0}}$ such models.
On the other hand, Shelah proved that for every $\kappa,$

$1\leqq\kappa\leqq\aleph_{0}$ , there is a theory

with exactly $\kappa$ minimal non-prime models (see [4]).

Here we extent Marcus’ result: Theories of one unary function symbol

may have the Lascar rank greater than 1 $(U(T)>1)$ , however if such a theory
$T$ has a minimal model then any element $a$ of the model has the minimum
Lascar rank $(i. e. U(a)\leqq 1)$ . Moreover a theory of one unary function symbol

is trivial (see Definition 3). In this paper we show that if a trivial theory $T$

has a minimal non-prime model and every element of the model has the mini-
mum Lascar rank then $T$ has $2^{\aleph_{0}}$ minimal models. Our result does not depend

on the language.
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T. Baldwin for valuable comments and catching some errors.

2. Definitions and Preliminary results

Our notations and conventions are standard. We fix a complete theory $T$

formulated in a countable language $L$ . We work in a big model $C$ of T. $A$ ,

$B,$ $\cdots$ are used to denote small subsets of C. $\overline{a},\overline{b},$ $\cdots$ are used to denote finite
sequences of elements in C. $\varphi,$

$\psi,$ $\cdots$ are used to denote formulas (with para-
meters). $p,$ $q,$ $\cdots$ are used to denote types (with parameter). The types of $a$

over $A$ is denoted by $tp(a/A)$ . $\varphi^{B}$ denotes the set of realizations of $\varphi$ in a set
$B$ . The [ascar rank of $p$ is denoted by $U(p)$ . We simply write $U(a/A)$ in-
stead of $U(tp(a/A))$ . $U(a)$ means $U(a/\emptyset)$ .

DEFINITION 1. Let $M$ be a model of the theory $T$ .
(1) $M$ is said to be minimal if there is no proper elementary submodel

of $M$ .
(2) $M$ is said to be prime if $M$ can be elementarily embedded in any model

of $T$ .

DEFINITION 2. (1) Let $A$ be a set. Then an $L(A)$-type $\Gamma(x)$ (not neces-
sarily complete) is said to be principal over $A$ if it is generated by one $L(A)-$

formula $\varphi(x)$ ( $\varphi$ need not be a formula in $\Gamma$ ).

(2) A formular $\varphi(x)\in L$ is said to be atomless if there is no formula $\psi(x)$

with the following properties:
(i) $T\vdash\forall x(\psi(x)\rightarrow\varphi(x))$ ;
(ii) $\psi(x)$ is complete $i$ . $e$ . $\psi(x)$ determines a complete type $p(x)$ .

If $S(\emptyset)=\bigcup_{n<\omega}S^{n}(\emptyset)$ is countable, then there is a prime (and atomic) model.
On the other hand, if $S(\emptyset)$ is uncountable then there is an atomless formula.

We prove a version of Lemma 1.3 of [3].

LEMMA. Let $\Gamma(\overline{x})$ be a non-pirncipal (possibly incomplete) type over a count-
able set A. Suppose that there is an atomless formula $\psi(y)$ over $\emptyset$ such that any
realization $d$ of $\psi$ independent from A. Then there are $2^{\aleph_{0}}$ countable models
$(\supset A)$ omitting $\Gamma$.

PROOF. First we show the following claim:

CLAIM 1. Let $\theta(\overline{x}, y)ana$ $\varphi(y)$ be $L(A)$-formulas. If $\theta(\overline{x}, y)\wedge\varphi(y)$ is
consistent then there is an $L(A)$-formula $\varphi^{*}(y)$ with $\varphi^{*C}\subset\varphi^{C}$ such that $\theta(\overline{x}, d)$

does not generate $\Gamma$ for any realization $d$ of $\varphi^{*}$ .
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PROOF. Since $\Gamma$ is non-principal over $A$ there is a realization $d$ of $\varphi$ such
that $\theta(\overline{x}, d)$ does not generate $\Gamma$ . So we can pick $\gamma\in\Gamma$ such that $\theta(\overline{x}, d)\wedge$

$\urcorner\gamma(\overline{x})$ is consistent. Define $\varphi^{*}(y)=(\exists\overline{x})(\varphi(y)\wedge\theta(\overline{x}, y)\wedge\urcorner\gamma(\overline{x}))$ . Then $\varphi^{*}$ is a
consistent $L(A)$-formula. It is clear that $\Gamma$ is not generated by $\theta(x, d)$ for
any $d\in\varphi^{*C}$

Let $\Gamma(\overline{x})$ have k-variables. Let $\theta_{n}(\overline{x}, y)(n<\omega)$ be an enumeration of all
$L(A)$-formula with $(k+1)$-variables.

CLAIM 2. We can define inductively $L(A)$-formulas $\psi_{\eta}(y)$ and L-formula
$\alpha_{\eta}(y)(\eta\in<\omega 2)$ satisfying the following conditions: for each $\eta\in^{<\omega}2$ ,

(1) $\psi_{<>}(y)=\psi(y)$ ;
(2) $\models(\forall y)(\psi_{\eta-i}(y)\rightarrow\psi_{\eta}(y))(i=0,1)$ ;
(3) there is an L-formula $\alpha_{\eta}(y)$ such that $F(\forall y)(\psi_{\eta\sim 0}(y)\rightarrow\alpha_{\eta}(y))$ and $\models(\forall y)$

$(\psi_{\eta\sim}1(y)\rightarrow\urcorner\alpha_{\eta}(y))$ ;
(4) If $\psi_{\eta}(y)\wedge\theta_{n}(\overline{x}, y)$ is consistent then $\theta_{n}(\overline{x}, a)$ does not generate $\Gamma$ for

any realization $a$ of $\psi_{\eta}$ (the length of $\eta$ is $n+1$ ).

PROOF. Suppose that $\psi_{\eta}\prime s$ (the length of $\eta$ is $\leqq n+1$ ) have been defined.
Fix any $\eta$ with length $n+1$ . First we see that there is an L-formula $\alpha(y)$

such that both $\alpha(y)\wedge\psi_{\eta}(y)$ and $\urcorner\alpha(y)\wedge\psi_{\eta}(y)$ are consistent. If not, $\psi_{\eta}$ generates

some complete L-type $q$ . Since $\psi$ is atomless $q$ is non-principal. On the other
hand, by the assumption, $\psi_{\eta}$ does not fork over $\emptyset$ . So $\psi_{\eta}$ is realized by every
model. This means that $q$ is principal, which is a contradiction. Therefore
we get such an $\alpha(y)$ . Put $\alpha_{\eta}(y)=\alpha(y)$ . Let $\psi_{0}(y)=\alpha_{\eta}(y)\wedge\psi_{\eta}(y)$ and $\psi_{1}(y)=$

$\urcorner\alpha_{\eta}(y)\wedge\psi_{\eta}(y)$ . Suppose that $\psi_{0}(y)\wedge\theta_{n+1}(x, y)$ is consistent. By claim 1 we
obtain an $L(A)$-formula $\psi_{0}^{*}(\psi)$ with $\psi_{0}^{*C}\subset\theta_{0^{C}}$ such that $\theta_{n+1}(\overline{x}, d)$ does not
generate $\Gamma(\overline{x})$ for any realization $d$ of $\psi_{0}^{*}$ . Put $\psi_{\eta-0}=\psi_{0}^{*}$ . Similarly we can
get $\psi_{\eta-1}$ . Then they satisfy our requirement. This completes our construction.

For $\tau\in\omega 2$ , define $\Sigma_{\tau}(y)=\{\psi_{\tau}(y)=\{\psi_{\tau 1n}(y):n<\omega\}$ . It is easy to see that
$\Sigma_{\tau}s$ are $L(A)$ -types which satisfy that i) $\tau\neq\lambda$ implies $tp(d_{\tau})\neq tp(d_{\lambda})$ for any
realization $d_{\tau}$ of $\Sigma_{\tau}$ and $d_{\lambda}$ of $\Sigma_{\lambda}$ , and ii) if $d_{\tau}$ is a realization of $\Sigma_{\tau}$ then $\Gamma$

is non-principal over $A\cup d_{\tau}$ . By ii), for every $\tau\in\omega 2$ there is a countable model
$M_{\tau}(\supset A\cup d_{\tau})$ omitting $\Gamma$. By i), for any $M_{\tau}$ there are at most countably many
$M_{\lambda}\prime s$ isomorphic to $M_{\gamma}$ . Thus there is an $X\subset\omega 2$ with $|X|=2^{\aleph_{0}}$ such that
$M_{\tau}(\tau\in X)$ are pairwise non-isomorphic. Hence we obtain $2^{\aleph_{0}}$ countable models
omitting $\Gamma$ . This completes the proof of the lemma. $\blacksquare$
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DEFINITION 3 (see, e.g., [1]). $T$ is said to be trivial it has the following
property: for any three elements $a,$ $b,$ $c\in C$ and any set $A\subset C$ , if $a,$

$b$ and $c$

are pairwise independent over $A$ then they are independent over $A$ .

3. Theorem and Proof

THEOREM. Let $T$ be stable and trivial. Suppose that $T$ has a model $M$

such that
(1) $M$ is minimal and non-prime;
(2) $U(a)\leqq 1$ , for all $a\in M$ .
Then $T$ has $2^{\aleph_{0}}$ minimal models.

PROOF. First we show the following claim:

CLAIM 1. $7here$ are an element $a$ of $M$ and a finite subset $F$ of $M$ such
that $tp(a/\Gamma)$ is non-principal.

PROOF. $M$ is a non-prime model. So it is not atomic, hence there is a
minimal finite subset $E$ of $M$ such that $tp(E)$ is non-principal. Pick any element
$a$ of $E$ . Let $F=E-\{a\}$ . By the minimality of $Etp(F)$ is principal, so $tp(a/F)$

is non-principal.

Here we say that a set $D(\subset C)$ is $s$ minimal component if $d$ and $d^{\prime}$ are
interalgebralc for any $d,$ $d^{\prime}\in D$ . Let $C=acl(a)-acl(\emptyset)$ and $A=M-C$ . Then
$C$ is a minimal component since $U(a)=1$ .

CLAIM 2. $7here$ are a finite subset $F^{\prime}$ of $A$ and an atomless formula $\psi(y)$

over $F^{\prime}$ such that any realization $d$ of $\psi$ is independent from $A$ over $F^{\prime}$ .

PROOF. Since $M$ is a minimal model, by the Tarski-Vaught test, we can
easily find an $L(A)$ -formula $\psi(y,\overline{a})$ such that $\psi^{M}cC$ . Let $F^{\prime}=F\cup\overline{a}$ . We notice
that under the assumption (2), in $M$ the general notion of independence coincides
algebraic independence. So $C$ and $A$ are independent by using the triviality
of $T$ . First we will show that $\psi$ is atomless over $F^{\prime}$ . If not, there is a
complete formula $\psi^{\prime}(y)$ over $F^{\prime}$ such that $\psi^{;C}\subset\psi^{C}$ . Then $\psi^{\prime}$ is realized by
some element $e$ of $C$ . On the other hand, by claim 1, $typ(e/F)$ is non-principal.
Thus using the Open Map Theorem we obtain that $tp(e/F^{\prime})$ is non-principal,
which contradicts that $\psi^{\prime}$ is complete. Hence $\psi$ is atomless over $F^{\prime}$ . Next
we show that any realization $d$ of $\psi$ is independent from $A$ over $F^{\prime}$ . Let $d$

be any realizatoin of $\psi$ . Take any formula $\theta(y)\in tp(d/A)$ . Then $\psi(y)\wedge\theta(y)$
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is consistent. Notice that $\psi^{M}\subset C$ . So we can pick a realization d’ of $\theta$ in $C$ .
Now $tp(d^{\prime}/A)$ does not fork over $F^{\prime}$ since $C$ and $A$ are independent. Hence
$\theta$ does not fork over $F^{\prime}$ . It follows that $tp(d/A)$ does not fork over $F^{\prime}$ .

Define $\Gamma(x, y)=$ { $x$ and $y$ are not $interalgebraic$ } $U\{x\neq c:c\in A\}\cup\{y\neq c$ :
$c\in A\}$ . $\Gamma$ is non-principal over $F^{\prime}$ because our model $M(\supset F^{\prime})$ omits it. From
claim 2 it follows that $\Gamma$ and $\psi$ satisfy the assumptions of the lemma. So we
get the followmg claim (Note that $F^{\prime}$ is finite):

CLAIM 3. There are pairwise non-isomorphic countable models $M_{\tau}(\tau<2^{\aleph_{0}})$

omitting $\Gamma$.

CLAIM 4. Each $M_{\tau}$ is a minimal model.

PROOF. Since $M_{\tau}$ omits $\Gamma$ and contains $A$ , there is a minimal component
$D$ such that $M_{\tau}=D\cup A$ . Suppose that $M_{\tau}$ is not minimal. Then there is a
proper sucset $B$ of $A$ such that $D\cup B$ is an elementary submodel of $M_{\tau}$ . So
we can pick a minimal component $E\subset A-B$ . First, by the minimality of $M$

there is an $L(M-E)$-formula $\psi(x,\overline{b})$ such that $\psi^{M}$ is contained in $E$ . Hence
$\psi^{B}=\emptyset$ . By the triviality of $T,$ $E$ and $\overline{b}$ are independent, so $\psi$ does not fork
over $\emptyset$ . Thus $\psi$ is realized by the model $D\cup B$ . We have therefore $\psi^{D}\neq\emptyset$ .
Next, by the minimality of $M$, there is an $L(A)$ -formula $\varphi(x,\overline{a})$ such that $\varphi^{M}$

is contained in $C$ . So $\varphi^{M_{\tau}}$ is contained in $D$ . Hence $\varphi^{D}\neq\emptyset$ . Note that any
two elements of $D$ are interalgebraic. Hence we can assume that there is an
element $d\in C$ which realizes both $\varphi$ and $\psi$ . In particular we have $MF(\exists x)$

$(\varphi(x,\overline{a})\wedge\psi(x,\overline{b}))$ . This contradicts that $C$ and $E$ are disjoint. Hence $M_{\tau}$ is
minimal.

By claim 3, 4, we obtain $2^{\aleph_{0}}$ minimal models. This completes the proof of
the theorem. $\blacksquare$

REMARKS. (1) It is known that a theory of one unary function symbol $f$

is stable and trivial (see $e$ . $g$ . $[5]$ ). Moreover a minimal model of ouch a theory

has minimum Lascar rank. This can be shown as follows: Pick any element
$a$ of a minimal model of the theory. Let $tp(a/B)$ be a forking extension of
$tp(a)$ . Then by Lemma 1 in [5], there is an element $b$ of $B$ which is contained
in the connected component $C(a)$ of $a$ , where $C(a)=\{x:\exists n, m<\omega[f^{n}(a)=f^{m}(x)]\}$ .
On the other hand we see that each connected component in a minimal model
is a minimal component in our language (see Lamma 3.1 in [3]). Therefore
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$C(a)$ is a minimal component, so $a$ and $b$ are interalgebraic. Thus $tp(a/B)$ is
algebraic. Hence $U(a)\leqq 1$ . It follows that our theorem is a generalization of
Marcus’ one.

(2) The theory $T_{0}$ (see Introduction) satisfies the assumption of our theorem,
$i$ . $e$ . it is stable and trivial, and has a minimal non-prime model with minimum
Lascar rank.

(3) In [4] Shelah has shown that any $\kappa$ with $1\leqq\kappa\leqq\aleph_{0}^{\tau}$ there is a complete

theory, with no prime model, and exactly $\kappa$ minimal models. Theories he
gave are stable, trivial and have a minimal non-prime model. But all minimal
models of them have the Lascar rank 2. This shows that the condition (2) of
our theorem is essential.
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