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ON DILATION THEOREMS OF OPERATOR ALGEBRAS
Il Bong JunG* and Bok Ja Kim**

1. Introduction.

Let 4 be a separable, complex Hilbert space and let .£(4) be the algebra
of all bounded linear operators on .%. For a linear manifold A in L(4), a
form on A is a linear functional on 4. For x, ye4, x®Qy denotes the form
on L(4) defined by xQy(S)=(Sx, y), for any S .£(H) (cf. [2]). An elementary
form on a linear manifold A in .£(4) is the restriction x@y|A to A for x, ye
g0 (cf. ). It is well-known that there are several Hausdroff locally convex
topologies on £(4) (cf. [9]). In particular, a dual algebra is a subalgebra of
L(4) that contains the identity operator [4 and is closed in the weak*-topology
on .L(4). The theory of dual algebra is closely related to the study of simul-
taneous equations of weak*-continuous elementary forms (cf. [1], [3], [7], and
[1I0]). Recently several functional analysists have been studied systems of
simultaneous equations of weak*-continuous elementary forms on a singly gen-
erated dual algebra (cf. [5]). This study has been applied to invariant sub-
spaces, dilation theory, and reflexivity for contraction operators (cf. [5]). In
particular, Bercovici-Foias-Pearcy (cf. [4]) obtained several dilation theorems of
contraction operators. As a sequel study, Jung-Jo (cf. [12]) studied universal
dilation theorems of a contraction operator with some properties. Moreover,
M. Marsalli (cf. [13]) studied the dilation theory of general dual algebras with
applications to the reflexivity.

This paper is a sequel study of those in [13]. In section 2, we introduce
properties (tn,,) Which are concerned with the system of simultaneous equations
of vector forms and obtain some related fundamental structure theorems. In
section 3, we obtain some new dilation theorems of operator algebras with
properties (.., ,), which are applied to singly generated dual algebras. In sec-
tion 4, we characterize properties (z;, ,) to dilations of operator algebras. Finally,
in section 5, using these results, we obtain a dilation theorem of a contraction
operator in the class A, , which will be defined below and appeared frequently
in the theory of dual algebras.
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2. Simultaneous equations of vector forms.

Throughout this paper A denotes a unital subalgebra of .£(4) (note that
the closedness of .4 is not considered). N denotes the set of natural numbers
and C the complex plane. We write Lat 4 for the set of all invariant sub-
spaces for any operators in A. Without confusion, a subspace of a Hilbert
space means a norm-closed subspace. For x4, [Ax] denotes the subspace
of 4 generated by a set Ax={Ax|AsA}. We write
2.1) AM={AM=AP --- PA|Ac A}

e

which is called the n-th ampliation of A. A subspace .£ of 4 is said to be
semi-invariant for A if P, APBP,=P,ABP,, for any A, B, where P, is
the orthogonal projection onto .. Note that a subspace £ of 4 is semi-
invariant for A if and only if there exist subspaces ¥ and 77 in Lat A such
that "C M and £ = HOTJ (i.e. MNAN*). Let A and B be subalgebras of
L(4%). Then A is said to be a dilation of # (and @B is a compression of A) if
there exists a semi-invariant subspace .£ of 4 for 4 such that P, AP, (=
{P;:AP;: A A})=9, where P, is the orthogonal projection from % onto .L.
If TeLr(4) and LC 4 is a semi-invariant subspace for {T}, we write T for
the compression of {T} to L.

If there is no confusion, throughout this paper the topology t is one of the
following topologies ; weak operator topology, operator-normed topology, strong
operator topology, weak*-topology (or equivalently, ultra-weak operator topology),
or ultra-strong operator topology on £(4%). In particular, we write w for the
weak operator topology and w* for the weak*-topology on _£(.90).

The following definition should be compared with [5, Definition 2.017.

DEFINITION 2.1. Suppose m and n are any cardinal numbers with 1<m, n
<¥,. A subalgebra A of _£(4) has property (t. .) if for any system
{@is}osi<m.osj<n Of T-continuous forms on A, there exist {x;}osi<cm and {y;}osj<a
in 4 such that for 0</<m, 0<;<n, ¢;;=x,Qy; on .

We recall from [5, Definition 2.01] that a dual algebra A has property
(An, ) if it has property (w%. .). Recall from [5, Definition 9.13] that a dual
algebra A has property (B, ,) if it has property (@ ).

The following statements come from some fundamental theorems in the
theory of dual algebras.



On dilation theorems of operator algebras 365

PROPOSITION 2.2. Suppose A is a subalgebra of L(IL).

(@) Assume that the adjoint operation D(A)=A* from A onto A¥={A* Ac
A}) is continuous under the given topology t in L(K). Suppose m and n are any
cardinal numbers such that 1<m, n<&,. Then A has property (tm..) if and only
if A* has property (tn, m).

(b) If M is a t-closed subalgebra with property (tm. .) for some cardinal
numbers m and n with 1<m, n<8, and T is a t-closed subalgebra of M, then
91 has property (Tm,n)-

(¢) If A has property (t,.,), then an ampliation A™ has property (t,,,) for
any cardinal number n with 1<n<¥,.

(d) If A has property (r,,,) for some cardinal number n with 1l <n<¥,, then
A™ has property (Tpn,n)-

() If A has property (t,,1), then A™® has property (t,..) for any cardinal
number n with 1<n<R,.

PROOF. (a) Let {&;i}osi<m.0sj<n D& @ system of z-continuous forms on A*.
Set @;;=¢ P, 0<i<m, 0=<j<n, where ¢;,(A)=¢;(A) for AcA*. Theng ,;isa
r-continuous form on 4, so that there exist sequences {x,}osi<m and {¥;}osj<n
in 4 such that ¢;;=x,KQy;. Moreover, itis easy to show that ¢;;=y,&Qx;, on
A*, 0= 5<n, 0i<m.

(b) Let {@i;}osism,0s;<n be a system of z-continuous forms on JI. Since A
is a locally convex space under the given topology 7, by [6, Proposition 14.13],
there exists a system {¢;;}osi<m.0s;<n Of 7-continuous forms on # such that
il N=¢;, 0=i<m, 0=j<n. Hence there exist x;, y,€ I, 0<i<m, 0=5<n
such that ¢;;=x,&Qy; on M. So it follows trivially that ¢;;=x;X@y; on 7.

(¢) Let {@:}osi<n be a system of z-continuous forms on A™. Define ¢,(A4)
=¢,(A™), for Aed, 0=i<n. In fact, it is not difficult to show that A—-A™
is a r-continuous linear map from 4 onto A‘”. Hence ¢; is a r-continuous
form on A. So there exist sequences {x;}osi<n and {y;}osicn in A such that
¢i=x,;Qy; on A. Now we set

(2.2a) }z(xo, xl’ --.)
(n)
and
(n) ‘
(2'2b) 371':(0, Tty 0: yi) 0; )’ 0§i<n .

)

Then it is easy to show that ¢,=X®7#; on 4™, 0<i<n.
(d) Let {¢i;}osi,j<n be a system of r-continuous forms on A™. Define
i (A)y=0;,(A™) for A4, 0<i, j<n. Then ¢, is a r-continuous form on .
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By hypothesis, for fixed i with 0<i<n, there exist x,€.% and {y;;}ysjcn in &
such that ¢,;=x;Qy;;, Now we set

(n)

(2.33) £i:(0'y '“—’ Oy xi; OT'“>) 0§1<n,
(1)
and
(n)
(Z'Bb) 37j:(y0j; ylj; ”')7 O§]<n'

Then it is easy to show that ¢,;=%,Q5; on A™, 07, j<n.
(e) Since (A™)™ js identified with A*®, by (c) and (d) this statement is
proved.

3. Properties (7, ,) and dilation theorems.

Suppose meN. For a set {x;} /%, in 4, we denote [Ax;]7, by the smallest
subspace containing \U,{Ax;|A€ 4}, i.e.,

(3.1) [Ax ] = {2 Aix [Aied} .

LEMMA 3.1. Let x;, yv,€4, 1<i<m, 1<j7<n, m, n€N and let P denote the
orthogonal projection onto [ Ax;]i% © ([AX;17L © [A*y,;]3=1). Then we have

(@) P9 is semi-invariant for A,

(b) (PAPu, v)=(APu, v)=(Au, v), where Ac A, us[Ax, 1%, velA*y;]7,,

(c) PAPx;=PAx; for Aed, i=1, ---, m,

(d) if (PAPx;, v)=0 for A€, vePXA, i=1, ---, m, then v=0, and

(e) (P, PAPx;|A;,e A} is dense in PJIl.

PrROOF. (a) It is obvious that
(3.2) P =[x ]7O([Ax JEO[A*Y ;13=1)

is semi-invariant for .

(b) In the p1oof of [13, Lemma 9], let us change [ Ax] to [Ax; 1%, [A*y]
to [A*y;1%., x to x;, 1<i<m, and y to y,;, 1=<7<n. And if we follow the
same way with [13, Lemma 9], we can prove (b).

(c) and (d). The proofs can be found in that of [13, Lemma 9 (c)].

(e) Let veP«. Then v=v,Pv, for v,ie[PAPx, 1", and v,e([PAPx;]T ).
By (d) we have ve[PAPx;]{,. Hence P4 C[PAPx;}I,. So (3.1) proves (e).

We denote KX a separable, complex Hilbert space and 8 a unital subalgebra
of £(X). For a (bounded) linear operator X, 9(X) will denote the domain of
X and R(X) the range of X.
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THEOREM 3.2. Assume that a unital subalgebra AC .L(H) has property (T, )
where m, n&N. Let B be a unital subalgebra of .L(X). Suppose that @ : (A, 1)
—(B, ) is a continuous, surjective, homomorphism. Then for any sets {u:}isism
and {vj}i1sjsn tn X, there exist M, JicLat A with NIC M and a closed, injective
linear transformation X : D(X)— MSN such that

(a) the linear manifold D(X) is dense in [ Bu, 7L Bu; 7L O[B*v;]1}=1),

(b) R(X) is dense in MO,

(¢) PAPXz=XQ@®(A)Qz, for Acd, ze D(X), where P is the orthogonal
projection onto MOI and Q is the orthogonal projection onto [ Bu; 7, O([Bu; 1T,
O[B*v;]%-1), and

(d) {vj}j=:CRXH).

PROOF. The first idea of the proof comes from [4, Theorem 3.4]. If we
define

3.3) 0 ;(A)=(DP(A)u,, vy), for Aed, 1<i<m, 1<j<n,

then @,; is a r-continuous form on A. (Indeed, Aa;A implies that @(A,,)—w—»@(A).
Hence (D(Anu;, v;)—(P(A)u;, v;), 1<i<m, 1=<j=<n). Since A has property (tm, ),
there exist {x;}isism and {y;}:sjsn in 4 such that

(3.4) ¢ij<A):(Axi, y]) for Aed.

Let M=[Ax,1%, and F1=[Ax;]7%, © [A*y;]17=;. Then by Lemma 3.1(a) we
obtain two orthogonal projections P and @ such that P4 = MO is semi-in-
variant for 4 and

(3.5) QA=[Bu;1L, © ([Bu;]% © [B*v;17=1)
is semi-invariant for #. Let us consider the correspondence
(3.6) Xo: 2 QO(A)NQu; —> 27, PA;Px;

for any A;eU4, 1<i<m. We shall show that X, is well-defined, one to one,
linear transformation. Let A,=J, 1<:<m, and let

3.7 I QQ(Ai)Qui:O-
For any B, 43, 1<j<n, by Lemma 3.1 (b) we have
(3.8) (2 P(A)Qu;, 2= B¥vy)=0,

i.e., EﬁlE?ﬂ(B’;@(Ai)Qui, Uj):-o .

Since @ is surjective homomorphism, this is equivalent to that for any S;=.4,
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(3.9) >3k = D(SHP(A)Qu;, v,)=0,
e, 2L XD7-1(D(S;4)Qu;, v;)=0,
ie., 3 2%, (D(S;A4:)u;, v;)=0 by Lemma 3.1(b),
i.e., 2= (S;A:x,, ¥,)=0 by [3.3)] and [3.4),
ie, 3 X%=i(S;4:Px;, y;)=0, by Lemma 3.1(b),
e, (X, APx;, 37.,S%y;)=0.

This means that 3%, PA;Px;=0. Thus X, is well-defined, one-to-one, linear
transformation.

We now show X, is closable and its closure X is injective. To do so, it
suffices to show that if

(3.10a) ik QDPAM)Qu; —> u’'(k—>c0)
and
(3.10b) ik PA® Px; —> x/(k—o0),

then we have u’=0 if and only if x’=0. To show this, a similar method with
the above proof is used. So we schetch only the proof. Indeed, u’=0 if and
only if for any S;e4, 1<7<n,

(3.11) (u’, 331 9(S)*v;)=0,
ie., llm(Z EQO(AM)Qu,, S%-, D(S)*v,;)=0,
i.e., llm(Zﬂ'l PA® Px;, 33421 S*y,)=0,
e, (x/, 27-1S¥y;)=0.

This is equivalent to x’=0. Therefore X, is closable and its closure X is
one-to-one. Furthermore, it follows from Lemma 3.1(e) that 9(X,) is dense in
QK. Hence 9(X) is dense in QK. Since

(3.12) R(X)={Zi PA;Px; | A€, l=i=m}

is dense in MO, by Lemma 3.1(e) R(X) is dense in HOJl. For A, S;e,
1<:<m, we have A

PAPX (274 QP(S)Qu;)=>7, PAPS,;Px,
=37 PAS;Px;
(3.13) =X, QP(ASHQu,)
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=X, QP(A)Q(DL QO(S)Qu;).
This proves that

(3.14) PAPX,z=X,Q0(A)Qz for A= and ze9(X,).

To show (c), we now suppose zeD(X). Then there exists a sequence {z,} =1
in 9(X,) such that z,—z and Xz,—Xz. Let A= 4. Then QO®(A)Qz,—QP(A)Qz
and PAPXz, — PAPXz. Since {z,}5-1 C 92(X,), by we have PAPXz,=
PAPX,z, = X,Q@(A)Qz,. Because {QOP(A)Qz,}5%-1 C D(X,), we have that
RO(A)Qz,—QP(A)Qz and XQDP(A)Qz,—PAPXz. Since X is closed, @?(A)Qz<
D(X) and XQP(A)Qz=PAPXz.

Finally, we show (d). To do so, it suffices to show that for any A;,€U4,
1<iSm, 1<7<n,
(3.15) (XD QP(A)NQuy), yj>-_—(2%n=1Q@(Ai)Qui, V).
But by Lemma 3.1(b), we have

(XS QOP(ANQuy), V) =271 PAPx;, y;)
(3.16) =2 Aixs, vy)
=(2n, O(A)u,, v;) by [3:3) and [3.4)

=(27%, Q@(Az)Quz, Uj) .

Hence the proof is complete.

Recall that a set {e;},<;<» Of vectors in a Hilbert space KX is an n-cyclic set
for an operator A in £(X) if X is the smallest invariant subspace for A
containing {e;},<;sx. For Te.L(X), (Ar, T) denotes a unital r-closed subalgebra
of L(K) generated by T under the given topology .

The following is a generalization of [11, Theorem 2.1] which was the
main tool of the work [11]. Indeed, if = is a weak*-topology on .£(4), the
following gives immediately [11, Theorem 2.1]. We shall recall some defini-
tions about the theory of dual algebras in section 5.

COROLLARY 3.3. Let Te L(H). Suppose that (Ar, ) has property (tm. ),
where m, n€N. Suppose A= L(K). Assume that @ : (Ar, t)—(A4, @) is a con-
tinuous, surjective, homomorphism. If the operator A possesses an m-cyclic set
{ey, -+, en} of vectors in KX and its adjoint operator A* has an n-cyclic set
{f1, ==, fa} of vectors in K, then there exist invariant subspaces M, T with
MDOT and a closed, one-to-one, linear transformation X : D(X)— MOJ such that

(a) the linear manifold D(X) is dense in K and contains {es, -+, en},



370 Il Bong JUNG and Bok Ja Kim

(b) the range R(X) of X is dense MSII,
() T qouXz=XO(T),, for all zeD(X), and
(d) {f}7=1CRX™).

Proor. It follows from Theorem 3.2 that there exist invariant subspaces
M, I with MHDO7 and a closed, one-to-one, linear transformation X: 9(X)—
MOI1 such that (a), (b), (¢) and (d) in Theorem 3.3. In particular, note from
the proof of Theorem 3.2 that

(3.17) @(X): [JAei]?21@([&}11431']?:1@[&1?](1‘]’}=1) .

But since A possesses an m-cyclic set {e;, -, en} and A* possesses an n-cyclic
set {f,, -+, fa}, we have

(3.18 JCZ[JAei]?}—-xz[qufj]?m-

Hence according to and (3.18) we have 9(X)= X and RX)= KO J.
Furthermore, since PTPXz=XQ®(T)Qz for ze& #(X), where P and Q are pro-
jections in Theorem 3.2, it is easy to show that T yeuXz=X®(T)z for all z&
9D(X). Hence the proof is complete.

4. Properties (7, ,) and dilation theorems.

The following theorem is a generalization of [13, Theorem 11].

THEOREM 4.1. Suppose that A is a unital subalgebra of L£(9). Then A has
property (@, w) for m& N if and only if for every ne N and every pair %, j,
Hmm 1< p<m, there exist M, Jl<LatA with NIC M and a linear transformation
X: DX) > MO such that

(@) PAPXQx=XQA™™QZX, for any A€, where Q is the orthogonal pro-
jection onto [A™ME]JO([A™ME]OLA™™*F,15-1), and P is the orthogonal projec-
tion onto MO,

(b) D(X) is dense in [ATME]S([A™MEIO[A™M*F,]5 ),

(¢) R(X) is dense in MO, and

(d) {¥p}p=1CR(XH).

PROOF. Suppose that A C £(4) has property (w, »). If we define @:
(A, @)—(A™™ @) by @(T)=T™", then it is easy to show that @ is a home-
omorphic algebra isomorphism. Then @ satisfies the hypothesis in Theoroem
3.2. Hence we can use Theorem 3.2. Since @ preserves the identity operator,
applying (3.13) we have that PAPXQX=XQ®(A)QZ for A= 4. And (b), (c)
and (d) are obvious by Theorem 3.2 (b), (c) and (d).
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Conversely, given a system of weakly continuous forms {@,},<pzn On A,

by [5, Proposition 1.7] there exist x{, x{¥, ---, x¢» and y@, ¥, -, 5 in
4 such that
4.1) Op(A) =12 (AxEP, yiP), for all Aed.
Let us set
(4.22) F=(x®, o, X e XD x @ x0 2 D x )
and
(4.2b) Jo=0, -, 0, y5°, 35, -+, 35", 0, -+, 0)
n{(p-1)
in £™™, Then we have
(4.3) Pp(A)=(AT™ME, §7p).

By the hypothesis, note that there exists a linear transformation X satisfying
(a), (b), (c) and (d). Let x’=XQ% and choose yj, such that j,=X*yp, 1<p=m.
Then it follows from Lemma 3.1 and that for 1<p<m we have
(4.4) Sp(A)=(A™™%, §,) by

=(QA™™QZX, 7,) by Lemma 3.1

=(XQA™MQX, )

=(PAPXQZ, 5,)

=(PAPx’, yp)

=(APx’, Pyp).

Hence 4 has property (w, .,) and the proof is complete.

For a unital subalgebra AC £(4), we write H=3IP7., 4 ; and A=3P7.A;,
where %, =4 and A;=Ac 4, 1<i<o. And we denote j:{;l: Aed}.

THEOREM 4.2. Assume that A is a unital subalgebra of L(4). Suppose
meN. Then A has property (k) if and only if for every %, &A™, 1<
P=m, there exist M, N<Lat A with NIC M and a linear transformation X : D(X)
— MO such that

(a) PAPXQJNC:XQXNW"’Q%, for A=, where Q is the orthogonal projection
onto [J‘m’f]@([j‘m’f]@[jm)*jip]221) and P is the orthogonal projection onto
MO,

(b) D(X) is dense in [A™ZIO([A™ F,]O[A™*F,10),
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(¢) R(X) is dense in MSOJ, and
(d)  {Fp} =i TR(X™).

ProoF. Suppose that . has property (wf¥ ,). Note that @ : (A, o*)—(A, @)
defined by (D(A)z/Nl is a homeomorphic algebra isomorphism. Since @ satisfies
the hypothesis in Theroem 3.2, it holds.

Conversely, given a system of weak*-continuous forms {@,}ispsm, there

exist x{P, x, -~ and yy°, yP, -+ in K such that

(4.5a) Op(A)=22,(Ax P, y§), for Aed
with '

(4.5b) SEllxPii<eo and Ty P < oo,

We now set

(4.63) .i:(xfl), e x%)’ x{2), TEIN x%)’ ...)

and

(46b) )717:(0, Ty O; yfv”, O: Ty 07 ngZ)y O! ) O’ y(PS)r 07 )
(p—1) (m-1) (m-1)

for 1< p<m. Then it is not difficult to show that ¢,(A)=(A%, 7,) for 1< p<m.
Hence it follows from the hypothesis that for ¥ and 7, 1< p<m, there exists
a linear transformation X satisfying (a), (b), (¢) and (d). Let x’'=XQ@% and
choose y;, such that §,=X*yy, 1<p<m. Then by the method of (4.4) we can
prove that ¢,(A)=(APx’, Py},) for 1=p=<m, A= A. Hence A has property
(w*, ,) and the proof is complete.

5. Applications to dual operator algebras.

Let D be the open unit disc in the complex plane C and let T be the
boundary of D. The space L?=LP?(T), 1<p=<co, is the usual Lebesgue func-
tion space relative to normalized Lebesgue measure on 7. In particular, we
denote by H?=H?(T), 1<p=<oo, the Hardy space. Throughout this section %
is an infinite dimensional separable, complex Hilbert space. A contration 7'
L(H) (e, ITI<1) is absolutely continuous if in the canonical decomposition
T=T,PT,, where T, is a unitary operator and 7, is a completely nonunitary
contraction, T, is either absolutely continuous or acts on the space (0) (cf. [14]).

Let T be an absolutely continuous contration in .£(4) and let (Ar, *) be
the dual algebra generated by 7. Then it follows from Foias-Sz.-Nagy func-
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tional calculus [5, Theorem 4.1] that there is an algebra homomorphism @ :
H>—( Ay, o*) defined by @(f)=f(T) for every f in H*. The mapping @ is
norm-decreasing weak*-continuous and the range of @ is weak*-dense in Ar.
Recall that A=A(4) is the class of all absolutely continuous contractions 7T
in £(49) for which @ is an isometry. If m and n are any cardinal numbers
such that 1<m, n<R,, we write A, ,=A,, .(9) for the set of all T in A(4)
such that the singly generated dual algebra (Ar, @*) has property (@¥, »)(cf. [5]).
For T A and any nonnegative integer n, we define a linear functional

(5.1a) C§™ : (Ap, @) —> C
by
(5.1b) CSh(T)=h(n)  for every he H>,

where A(n) is the n-th Fourier coefficient of A (cf. 8.

LEMMA 5.1. If T€A, then C{™ is a w*-continuous form on (Ar, *) with
|C¥ =1 for any nonnegative integer n.

PROOF. Note that Ar={h(T)|heH>=}. Let ho(T) be a net in A, converg-
ing to hA(T) under the w*-topology on .£(4). Since T A, it is obvious that
lhoa—hlle— 0. Hence we have that [ﬁ,,(n)——ﬁ(n)l — 0 for any nonnegative
integer n.

Moreover, by the definition of the Fourier coefficient of he H>, it follows
easily that ||C{|=1.

THEOREM 5.2. Suppose that T A, (), 1n<8,, and T has a cyclic vector
in 9. Then there exist semi-invariant subspaces X and Kx for T and T* (res-

pectively) with dim X=n and a closed, one-to-one, linear transformation X : 9(X)
— X such that

(a) DX) is dense in X,
(b) R(X) is dense in Ky, and
(¢) T%Xz=XT xz for any z= 9(X).

PrOOF. If we define @: Ap,— Ay by h(T*)— h(T) for any he H>, then
O=0r-Dri is a weak*-continuous isometric isomorphism. Note that T*= A, ,.
And consider w*-continuous linear form C§{2, 0</<n (see Lemma 5.1). Then
there exist z, {;, 0=<7<mn, in 4 such that

(5.2) CH=zRt, on .
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Let K=[Ar«z] and let x be a cyclic vector for 7. Then X =[Arx1O([Arx]1O
[Ar«z]) is a semi-invariant subspace for 7. Moreover, we have

(5.3) (T*kz, 1,)=(T**z, Pxl,) for £=0,1, -, 0<5<n

which implies that

(5.4) 2R ;=2QPxt; on Ars«.

For a simple notation, let us set {;=Pxl,. Then by and (5.4) we have

~

(55) C%Q:Z® j on Aps.
Hence by (5.5) and we have
(5.6) (T*¥*1z, [)=C{(T*** =0  for k=0, 1, --.

So (f(T*)z, (T1X)i,)=0 for all feH=. Since {f(T*)z|f=H>=} is dense in X,
(T K)i,=0. Also

(5.7) (TH*mz, (T | K)i)=(T*™*'z, { )=CFAT*™+1)
{ 1, if j=m+1

0, otherwise.

So (T|X){,#0. Continuing this process, we obtain a strictly increasing set-
sequence {Ker(7T'| X)*}%_, of subsets in X. Hence it implies that dimX>n.

To use Theorem 4.1, consider x, z=.%. Then there exist H#, JieLat (T)
with JIC M and a closed, one-to-one, linear transformation X: 9(X)— MO <
such that 9(X) is dense in [Arnz]=K and R(X) is dense in HOJ. Put MO
Ji1=Kx. Then by Theorem 4.1 it is obvious that T% Xz=XT 4z for any z<
D(X). Hence the proof is complete.

REMARK. Applying Theorem 4.2, we can obtain a characterization of
memberships for the classes A4, ,.
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