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1. Introduction.

In the present paper we study the limiting absorption principle for the
acoustic wave operators in two unbounded media. We assume that the pro-
pagation speed is discontinuous at the interface and the equilibrium density is 1.

Let n=2 and x=(y, z)6é R""'xXR. The following equation describes the
wave propagation here:

1.1 fut, x)—a(x)*Au(t, x)=0, (1, x)eRxXR",

where a(x) is a propagation speed.
We make the assumptions for the interface separating two media and a(x).
Let @o(y)=aly| and ¢(y)= C'(R""'\{0}), where a=0. We assume that o(y)
describes the interface and satisfies

(A.0) l;ﬁllyl"”Ifi‘*((p(y)“soo(y))l=0(lyf’0) (|y] —> o0),
for some >0, and
(A.1) lglsllyl‘“‘!aaso(y)l'—‘O(lyl“’) Iyl —0).
where 0<o<1/2. For ¢(y), we use the following notation:
Q.={x=(y, 2): 2>¢(y},
Q_={x=(y, 2): z<q(y)},
S=1{x=(y, 2): z=¢(y)}.

We denote the unit normal vector at the point x&S by yv=(vi, vs, -, v,)
with v,>0.
The propagation speed a(x)>0 is assumed to satisfy the following: for
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some ¢>1,
(A.2) 1/c<a(x)<c

and there exist a.>0, aj(x) € BY(2.) and as(x) € L*(R") such that a(x) is
decomposed as
a(x)=a.+ai(x)+as(x) (x€2.),
(A.3) IE)ﬂlxl""'la"‘ai(x)l=0(|xl“”) (Jx] —> o0, x€2.),
as(x)=0(x|=%") (x| —> o0)
for some 6>0.

Under (A.0)~(A.3), we show the nonexistence of eigenvalues and the limit-
ing absorption principle of the acoustic operator —a(x)*A for [1.I}.

There are many works dealing with the acoustic wave propagation problem
with the discontinuous propagation speed at the interface separating media.
Eidus proved the limiting absorption and amplitude principle for two un-
bounded media problem with the interface satisfying the following conditions:
for any xS

(12) szc1>0,
(1.3) lx-v| <Cs,
where C;>0, (j=1, 2), are independent of x&S. For example,

sin| y|

|yl

satisfies [1.2) and [1.3), but not satisfies (A.0). We can also deal with the fol-
lowing interface not satisfying [1.2),

p(MNECR), ()= (131>,  @uy)=0

eMN=1y177,  @(3)=0
where, 0<o<<1/2.

The propagation speed considered in Eidus is a piecewise constant
function while we can perturb the propagation speed. Wilcox considered
two stratified fluilds in a half space and established the eigenfunction expansion
theorem. Ben-Artzi [1], Weder [14]~[16] and Dermenjian and Guillot
considered perturbed stratified fluilds problems. They showed the limiting
absorption principle by the approach of Wilcox [17]. Kikuchi and Tamura
also proved the limiting amplitude principle for perturbed stratified fluilds. On
the other hand there are some works dealing with the case where the equili-
brium density is discontinuous at the interface separating media, for example,
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Debiévre and Pravica and Wilcox [17].

In order to show the limiting absorption principle for our operator, we use
Mourre’s method. This method was first developed by Mourre [9] to prove
the limiting absorption principle for 3-body Schrodinger operators (see also
Perry, Sigal and Simon and Tamura [12]). In Froese and Herbst [6],
they showed by Mourre’s method that N-body Schrodinger operators have no
positive eigenvalues. Iwashita [7] and Weder showed the limiting absorp-
tion principle for first order symmetric systems. For the acoustic wave opera-
tors in perturbed stratified fluilds, Debiérve and Pravica obtained the similar

results as in and [13]. Tamura used Mourre’s method in order to
prove the limiting amplitude principle for the acoustic wave operators (see

also Kikuchi and Tamura [8]).

We now define the acoustic operator L as
(1.4) L=—a((x)*A

Under the above assumptions, (A.0)~(A.3), L is a symmetric operator in
the Hilbert space L% R"; E(x)dx) with E(x)=a(x)"® and admits a unique self-
adjoint realization. We denote by the same notation L this self-adjoint realiza-
tion. Then L is a positive operator (zero is not an eigenvalue) and the domain
D(L) is given by D(L)=H?*R?), H*(R%) being the Sobolev space of order s over
R%. We also denote by R(z; L) the resolvent (L—z)"! of L for Imz:£0.

We need several notations to describe our results. Let L2 be the usual
L?® space defined on R™, with the inner product

<u, v>=§u<x)5<x—>dx

and the corresponding norm |-|,. For a=R let L2 be the weighted L? space
defined by

Z={u(x): {x>u(x)e LARYY, <x>=1+|x|?)",
with the norm
2= ugo)l2dx
Let A: L?>—-L? be a bounded operator. We denote by |[A| the operator

norm of A.
The main result is

THEOREM 1.1. Assume that (A.0)~(A.3). 1hen
(i) L has no eigenvalues.
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(ii) Let 2,>0 and a>1/2. Then for any compact interval [ C R, containing
Ay, there exists a positive constant C=C(I, a) such that

<x> *R(A+tik; L)YXx> ¢|=C,

for 21, 0<k<1.
(iii) For every 2>0 and a>1/2, following two limits

R(A+140; L)=1i£101 R(Axik; L),

exist in the uniform operator topology of B(LZ, L%,). Moreover R(A£i0; L)
are locally Holder continuous.

Acknowledgement. The author would like to express his sincere gratitute
to Professors M. Matsumura and K. Mochizuki for their generous advice and
kind encouragement.

2. Mourre’s estimate.

In this section we shall show Mourre’s estimate (Lemma 2.4). First, we
prove the following lemma. We need this lemma to estimate an integral on
the interface S.

LEMMA 2.2. Let s>1/2. For ueS(R™) (Schwartz space), we define

(T, w)(y)=u(y, ().

T, has an extension to a bounded operator from H'(R™) to L*(R™™").

ProOoOF. We show that:
(2.1) I ToulLern-=Clulgscrn)
for ueS(R™). Let ueS(R™). Then u(y, ¢(y)) is represented as

+

(2.2) u(y, p)=@m ) e G, Ode,

where §=(n, D)eR;'XR;=R} and . is the Fourier transform in R,. By
Schwartz’s inequality, we have
+

@3 1(Taumirsen | area| T i@, o1t

By integrating both sides of the above inequality over R"~!, we obtain (2.1). =

s

We consider only the case 1=aZ?<a3;?. The other cases can be proved
similarly.
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We define the self-adjoint operator H(A) on L? by
HA)=—A—AE(x)—1),
DHA)=H*R").
Then we have
(L—(Axie) '=(H(A)—AFikE(x)) ' E(x).
We apply Mourre’s commutator method to H(1) on L? (see Tamura or

Kikuchi and Tamura [8]).
By (A.3), we can decompose E(x)=~Ei(x)+Es(x)(x&£,) in such a way that

,Ellxl“”]a“(Ef(x)—agz)l:O([ﬂ—0), (|x]| —> oo, x=R,),

Es(x)=0(lx |79, (|x| —> o).
Let A be the generator of the dilation unitary grup;

1
—Z:(JPV—}—V-JC).

We define the commutator [ H(R), A] as a form on H*R™)N\D(A) as follows;
For u, ve H3(R")ND(A)

GLH(A), Alu, v

=i(KAu, HQv)—<HAQu, Av)).

A=

LEMMA 2.2. The form i[H(R), A] defined on H*(R")ND(A) is extended to
a bounded operator from H(R™) to H '(R"™) which is denoted by i[H(A), AJ°.

In order to prove we need the following lemma.
LEMMA 2.3 (Sobolev’s Theorem). Suppose that
1/2—1/m=1/q, 2<q<oo.
Then we have the embedding
HY R™)—_, LYR™).
PROOF OF LEMMA 2.2. Let u=S(R"). Then we have
(2.4) GL—A, AJu, uy=2u, Vu),
(2.5) G[E—1, AJu, uw)
={x-Vu, Equd+<{Eu, x-Vu)+nlE u, u),
+<x-Vu, Esud+<{Esu, x-Vu>+nlEsu, u),
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where E.=Fi(x)(xcQ.).
We calculate the first and the second terms of right side of [2.5]) We set
~=2—¢(y) and w;=y;(j=1, 2, ---, n—1). Then we have D(y, z)/D(w’, w,)
=1, where w'=(w,, w,, ---, w,-;). Integrating by parts, we have

(2.6) {x-Vu, Efudre,,+<Eiu, x-Vu)r2,)
=<w Vi, Et@)remn +<Etfl, w-Vuddremn
— (W' Vo (W) —p(W))3 s, &, EF8>12cam,
—CE1a, (W V(W) — (W' )3 D L2cRT)
=—(w-VoED)a, @yr2rm—n<Ezfl, @)racn,
+{(w Vo p(w")— (W) (0w, £, @) L2cr™)
{0 Tupw) =g B, 0 aw, 0)*dw’
=—{(x-VERu, udre,,—n{Eiu, udraq,,

| o T —PONELD, eIy, eI,
where Ei=Ex(w’, w,+e(w)) and d=u(w’, w,+e(w’)). implies
2.7 <{x-Vu, Egud>+<{Eru, x-Vud+nl{Eru, u)
= —{xVEDu, W+ (59,0 —p(NEL— B u(y, ¢(a)I*dy,

where Ei*=FE#(y, ¢(y)) and (x-VE;)=x-VEj(x=L,). By and (2.7),
we have

(2.8) GLHQA), AJu, udp=2{Vu, Vu>+A{(x-VE )u, u>
=2 (V)= Ei — E) [ u(3, ¢(y)I*dy
—nAEsu, up—AKEsu, x-Vud>—Ax-Vu, Esu).
Ror any »>0, we have
2.9) A 0 VN ER—E) u(y, o()|%dy
=XKTHy-Vyo— ) ELP'—EL)T yu, u>
=ALT5X1y1<r (¥ Vyo—@NEL’— EL°)NT pu, u>

HTEX y1>e(¥ Vo= X ET'— ETNT u, u))

We define an operator R, as
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Riu=X1y1<-(3)(5-Vyp(3)—@(yN"*T yu .

We show that R} is a bounded operator from H'(R") to L*(R"™*).
If 0<o<1/2, there exist some s>1/2 and p>n—1 such that

n—1

2p
By (2.3) and Hélder inequality, we have

(2.11) +s=1.

212) [ Rjulboan-n=C " A+ 13-,0—0l @)y, OI%dydC

1y
§C1’("’l_am/pgi:(1+cz)s | (&), C)]zzzz/(p-—l)mn—l)dc ’

where C>0 is independent of 7.
Lemma 2.3 implies that

(2-13) |%zu(°, C)ILZF/(P“l)(Rn—l)écI%}zu('; C)Iy(n—l)/zl’mn—n-
It follows from (2.12) and that
(2.14) | R;u|L2<Rn—1)§_cr(n'1—ap”2p | % | g1crny ,

where C is independent of 7.

It follows from Lemma 2.1 that T} is a bounded operator from L*WR"")
to H Y(R"). Moreover, since Egx-V is a bounded operator from H'(R") to
L?*(R™), the adjoint operator (V)*-xEs is a bounded operator from L*R") to
H-Y(R™).

Hence, from and [2.13), the form i[H(A), A] on S(R") has an
extension to a bounded operator :[H(A), A]° on from H(R") to H '(R").

Let ue H3(R")N\D(A). Repeating the argument in the proof of Lemma 2.1
of Weder [13], we can show that u satisfies [2.8) =

LEMMA 2.4. Let 2,>0 and 0<d< min (1, A4,/4) and take fip)eCHR), 0=
fs=1 such that fs; has support in (Ay—30, A,+30) and fs=1 on [A,—20, A+20].
Then, there exist a positive constant a and a compact operator K on L? which
depend on only A, such that

(2.15) Fo(H(A))LH(A), A1 f+(H(A))
Zafs(H(A))+ fs(H(A)K (A f:(H(A)
for A=(A,—0, A,+0), in the form sence.
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PROOF. We simply write f; instead of f3;(H(A)). By Lemma 2.2, we have
for us L?,
(2.16) {fstlLH(R), A" fsu, u
=2{—Afsu, fou>+A(x-VEL)—nEs)fsu, fsu>
—<x-Nfsu, Esfouy—<Esfou, x-N fsu)
—LT ) Kiyi>r(¥-Vyop—NEL —EL)T , fou, fouy
—UARMEL—EL )R fou, fsu)).

Let 0<r«1. By there exists a positive number C independent of r
such that,

[ A(ROMEL' —EL )R, fou, fouyl
=|A(EL —EL )R fou, Ry fsudr2crn-1)
SCr1mePIP(IN fou |3+ f618).
Let Ey(x)=ai¥(x2,). Then we have
(2.17) 2{—Afsu, foud—A(RO¥NEL'—EL )R, fou, fou>
2(2—Cr=t=oPn) H(A) fou, fouy—Crt 1=oPIP| fu |}
+2—=Cr-1=omIPV(E—E,) fsu, fsu)
+@—Cr1moPIP(E—1) fou, fou)

2 (G crnermanin) | fyuls

+@E—=Cr1IPIP(E—E) fou, fsuy.

Take heCH(R), 0<h<1 such that h=1 on (4,/4, 74,/4). Using h, we define
an operator K(4) as

K= 33 K,W
where,
K (D)=2h(H))((x-VEL)—nEs+(2—Cr17oPIPYE—E,)h(H(2)),
Ky (AD)=—Ah(HA)Esx -VNh(H(A)),
Ky(A)=—Ah(H(D)V*: x Esh(H (1)),
K (A)=—Ah(H)THEL'—EL W, yi>+(3-No—)T ,h(H(4)).
For each A€(1,—90, 4,+0), we show that K,(A) (j=1,2,3,4) is a compact
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operator on L2

Noting that A(H(2)) is a bounded operator from L*R") to H*R"), by
Rellich’s theorem and (A.3), we have that K;(2) (j=1, 2, 3) is a compact opera-
tor on L? Let usL®: Noting that

VT oh(HD)u=T Ny h(HD)u+N yp(y)T ,0.h(H(D)u,

we have that T ,h(H(A)) is a bounded operator from L*R") to H'(|y|>nr).
Thus, Rellich’s theorem and (A.0) imply that K,(4) is also a compact on L.
Thus we obtain [2.15) by [2.16) and [2.17). m

REMARK. Assuming that 0<¢<1, we can also prove that and
2.3. But, we need the condition 0<¢<1/2 to prove the limiting absorption
principle (see Appendix).

3. The limiting absorption principle.

SKETCH OF THE PROOF OF THEOREM 1.1 (1): Assume that ues H*R") is
the eigenfunction associated with eigenvalue 4,>0 i.e. Lu=A4,u, then we can

consider u as the eigenfuncton of H(4,) associated with eigenvalue 4,. Using
Lemma 2.1 and we can prove

exp(al{xD)ue L*(Va=0)

in the same way as in Froese and Herbst [6]. Moreover, we can also prove
that ¥=0 in the same way as in Appendix I of Tamura [11]. =

If [pl>1, (A+ip)™* sends H*(R") into H*(R") and as an operator on
H*(R")(k=0, =1, +2)

3.1) s— lim ip(A+ip =1

| g0

is valid (see Lemma 2.3 of Weder [13]). Put A(w)=ipA(A+ip)™*. It follows
from A(p) =ip+p*(A+ip)~t that HADA(w—A(wH(A) is a bounded operator
from HYR" to H '(R"). Using [3.I), we can prove the following lemma in
the same way as the proof of of Weder [13].

LnMMA 3.1.

iLH ), A(p)1=ip(A+ig) il H(A), ALip(A+ip)™
and
s—lim(—A+1)"V%[H(A), A(@)J(—A+1)"2

H—o0

=(—A+D)YU[H(A), AI(—A+1)"12
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for all 2(2,—0, A,+0), as an operator on L°.

Using Lemma 3.1, we can also prove the following lemma in the same
way as the proof of Lemma 2.5 of Weder [13].

LEMMA 3.3. Let feCYR"). Then

(i) f(H(A) sends D(A) into D(A)

(ii) [f(H), A] defined as operator on D(A) is extended to a bounded
operator on L* which is denoted by [ f(H(A)), AJ°.

_ Following Tamura [12], we consider cut off functions, X,(x)e C(R") such
that X,(x) has support in {xeR"; |x|<2} and X,=1 for |x|=<1. For >0
small enough, we define

Ep o x)=Eo(x)+X(ex)(EL(x)—E(x)),
ES,s(x):xn(Ex)ES(x)’
and
VI =Xy>e(3Xn-1(e )Y -Vy0(3)— ().
We further define an operator B(e; A) as
B(e; )=—20+A(x-VE, —nEgs +V* xEs . —Es x-V
—TeVIINEL—EDT ,—(RONETI—EDRS).
Note that by the proof of we can consider B(e; A) to be a bounded
operator from H'(R") to H (R").

LEMMA 3.3. Let M(e; A) = fs(H(A) B(e; A)fs(H(A). Then [M(e; ), A]
defined as a form on D(A) is extended to a bounded operator on L* which is
denoted by [M(e; A), A]°.

PROOF. We again write fs for f;(H(A)). Noting that M(e; 1) is a bounded
operator on L? we can see that [M(e; 4), A(p)] is also a bounded operator on
L*. Let usL® Since A(p) sends H*R") into H* R"), we have

3.2) CA(pu, M(e; DHup—<M(e; Du, A(p)*u)
={A(p) fou, B(e; Dfsu>—<B(e; Dfsu, A(w)*fsu>
+<[fs, A()]u, B(e; Dfsu>+<{B(e; A fsu, [A(w*, fslud
implies that
(3.3) [(M(e; 4), A(w)]
=/fs[B(e; A, Aw]fs+feB(e; Dlfs, Aw]+[fs, A()]B(e; Dfs.
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For ue H*R")"\D(A) satisfing Au € H'(R"), we define the commutator
[B(e; 4), A] as follows

GLB(e; 2, Alu, wy= 3 GLB/(e; 2), Alu, u>

= SViAu, Bj(e; Dup—<By(e; du, Au),
J=1

where
Bie; H)=—2A+Ax-VEL .),

By(e; A)=—A(Es, x-N)*+Es x-VN+nEg,.)
=—ANV*xEs . +Es .x-N+nEg,.),

By(e; )=—ATFVI(EL"—ELOT,,

By(e; H=—ARYE—EL")R;.

Then the /[B(e; 4), A] has an extension [B(e; 4), AJ]° to be a bounded operator
from H%R") to H *R") (see Appendix). Let u & L? Again, noting that
A(wH*R"CH*R")k=+1, +2), we have

(3.4) CA(p) fsu, B(e; Afsud—<{B(e; Afsu, A(p)*fsu>
=’ (KB(e; N(A+ip) " fou, four—<fsu, B(e; D(A—ip)™'fsuy)
=p*((B(e; D(A+iw) fou, A(A—ig)™ fsu)
—<AA+ip) fou, B(e; D(A—ip)™ fsu)).
implies that
(8.5)  filB(e; A, AWIfe=/rap(A+i) ' [B(e; ), AIp(A+ip) ™" fs
as an operator on L2 and (3.5) imply that
(3.6) s— lim f3[B(e; A, A(W]1fs=/fs[B(e; ), Al fs,

PIERS

for all A=(4,—8, A,+9), as an operator on L% Using Lemma 3.1, by the same
way as in the proof of of Weder [13], we can prove that
3.7) s— lim (—A+DY[ f5, A(p)](—A+1)v2

1100

=(—=A+1)?[ f5, A (—A+D)V?
for all 2A=(4,—90, 4,+08), as an operator on L2, Hence by and [3.7),

we have
(3.8) s—‘lﬁi‘m [M(e; 2), A(p)]

=/fslB(e; 2, AL fo+foB(e; D Sfs, AI+[f5 AI'B(e; Dfs
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for all A&(4,—0, A,+0), as an operator on L?. We define [M(¢; 4), A]° by the

right side of (3.8).
Finally, for u, v&eD(A), we have

([M(e; 4, Alu, v>= ,};if?v«A(”)u’ M(e; Hvo—<{M(e; Du, A(pw)v))
=<{Au, M(e; Dv>—<M(e; Du, Av)>. R

We can prove the following lemma by a straightforward calculation.

LEMMA 3.4. Let 2,—0<A<A,+0, 0<e<]. There exists a positive constant
C independent of A and e such that

(i) I(—=A4+1)""*(B(A)—B(e; DX—A+1)*=Ce’,
(i1) I(—A+1)"V*d/de)B(e; A(—A+1) V3 =Ce’t,
(iii) I(=A+1)'[B(e; A, AI(—A+D)H=Ce’ Y,

where B(A)=[H(4), AJ".
Let 2,>0. By Theorem 1.1(i), for the compact operator K(4,) on L% we
have
Il fs(H (A))K (o) f5(H (A =0(1) (6 —> 0).
We can also show that
I fo(H(A)— fo(HANI=C3,

where C >0 depends on only 4,. Thus by Lemma 2.4, we can take ¢ so small

that
(3.9) MA)=fs(H(A)N[H(A), AL’ fs(H(A))
=(a/2)fo(H(A))?

in the form sense.
Moreover, (3.9) together with Lemma 3.4(i) implies that

(3.10) M(e; Dz /f(H(A)

for ¢>0 small enough, where 7>0.
It follows from (3.10) that M(e; A) is non-negative and hence we define an

operator, G.(¢; A), on L* by
Gle; D=(HA)—A—ikE(x)—1eM(g; AN!
for 0<k<1 and 0<ekl.
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LEMMA 3.5. Let 0< k<1, 23—0 < A< A+0 and 0<e<L1l. There exists a
positive constant C independent of k, 2 and ¢ such that
[Gee; DII=Ce™.

For a proof of Lemma 3.5, see that of Lemma 5.3 of Kikuchi and Tamura
or Lemma 3.2 of Tamura [11].

For 1/2<a<1, we write

Fle; D=Ax(e)G(e; HAa(e),
where
Aa(e)=1+ 1AL+l A>T,

Differentiating F,(e; 2) in ¢, we have

(3.11)  (d/de)Fe; H=((d/de)A(e)GAa(e)—1A(e)GM(e; HGLAa(E)
—1eA(e)G((d/de)M (e ; )G Aale)
+Aa(e)G((d/de)Ax(e)).

Repeating the argument in the proof of Lemma 2.9 of Weder [13], we can show
from Lemma 3.2 and 3.3

(3.12) Ge; ADA)CDA)NH*R™).

Let go(p)=1—fs(p). We write in brief f; and g; for f;(H(A)) and gs(H(R))
respectively.

Using (3.11), [3.12) and [Lemma 3.3, we can decompose (d/de&)F.s; A) as a
form on LZ

(3.13) (d/de)Fe; D=2 Vi D,
where
Yi(e; D=iAa(e)GfsB(e; D)gsGeAale),
Yi(e; D=iAa(e)G,gsB(e; A)fsGAu(e),
Yi(e; A=1Aa(e)G.gsB(e; A)gsGeAale),
Yi(e; A=—1A(e)G(B(e; A)—B(A)GAule)
Yi(e; A=—1Ax(e)GLH(A)—A—ikE(x)—ieM(e; 2), A1G Aa(e),
Yi(e; A=rA(e)G[E(x), AIG Aqe),
Yile; D=eAx(e)G[M(e; 1), AIG,Ad(e),
Vi(e; A=—ieAa(e)G((d/de)M(e; A))GAu(e),
Yi(e; A=((d/de)Aa(e))GAL(e)+Aa(e)G(d/de)Au(E)).
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We need the following lemmas to estimate each term of right side of [3.13).

LEMMA 3.6. Let 0 < k<1, 3,—0 < A<4+0, and 0<e<k1l. There exists a

positive constant independent of k, A and ¢ such that

(i) I(—A+1)2fsGu(e; DAL(I=Ce™ 2| FeV2,
(ii) (—A+1)"2g;G(e; DAL=C,
(iii) I(—A+1)'2G(e; DAL SCr™V2|F[V2.

For a proof of Lemma 3.6 see that of Lemma 5.5 of Kikuchi and Tamura [8].

LEMMA 3.7. Let 4,—0<A<A,+0 and 0<eL1l. There exists a positive con-
stant independent of A and e such that

ITM(e; 2), AT <Cel-t.
PROOF. By the definition of [M(e; 1), A]°, we estimate each term of right

side of (3.8).
Lemma 3.4 (iii) implies that

I fs[B(e; A), AL fsl| <Ce®-.
Noting the definition of B(e; 2) and [3.7), we also have that
| faB(e; D fs, AL, I[fs, A1B(e; DSfsl=C,
where C>0 is independent of ¢. Thus, the proof of is now com-

plete. =

Using lemma 3.6 and 3.7, we can evaluate the norm of }7 1<;7<9, and
obtain the following differential inequality (see Tamura [12])

(3.14) 1(d/de)Fe; DISC(e* e 2| F V2 Y Eel).
Let &, 0<e,«1. Then by Lemma 3.5, we have
(3.15) | Fu(go; DI=Ceil.

By and (3.11), we immediately obtain
(3.16) [Fe(e; DI=C,

where C>0 independent of 0<x<1, 0<e<e, and 4,—0<A<4,+0.
In order to prove (ii) and (iii) of theorem 1.1, we need the following lemma

(see Weder [13].

LEMMA 3.8. Let 2,—0<A<A,+0 and 0<e<«1. There exists a positive constant



The 1imiting absorption principle 359

C independent of A and e such that

HAH(E)_lfaXa(E)H § C
where
Xo(&)=(L+ x| /(1 +e*| x |20,

PROOF. By the same argument as in Weder [13], we can show that
(14+¢elA|)fs(1+€® x|?)"¥2 is a bounded operator on L? and

(3.17) IA+elADfs(L+e x| =C,

where C indepedent of ¢ and 2 (0<e<k1, 2,—0<A<2,+0).
Take ¢=1, then we also have

(3.18) IA+1AD L+ 121D <C

we obtain .
|An(e)  fsXa(EC

by interpolation between [3.17) and [3.18) =

PrOOF oF THEOREM 1.1(ID), (IlI): Using and we have
(3.19) [ Xa(e)f3Gele; DfeXa(=C.

Moreover, since
lgsGule; DI, |Gule; Dgll=C,

we have

(3.20) 1 Xa(e)gsGele; DfsXa(=C,
(3.21) 1 XoGi(e; AgsXa(|=C.

By and [3.21), we obtain

(3.22) 1 Xo(e)G(e; DXa(e)=C.

We write

Fie; A=Xa(e)Gi(e; DXa(e).
We can prove [(3.14) for F.(¢; A) defined above. Thus using (3.22), we have
(3.23) I(d/de)F(e; DI<Cef

where 0<g<1.
Finally, by (3.22) and [3.23), we obtain Theorem 1.1(ii), (iii). m

4. Appendix.

In this section we show that the commutator i[B,(e; 4), AJ(j=1, 2, 3, 4) is
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extended to a bounded operator from H?* R") to H *(R"). We write i[B,(¢; ),
Al (j=1, 2, 3, 4) for the extended operators.
We define an operator P as

Pou=Xy1s: (M- Vyp(3)— (N yN'?T u,
for ueS(R™).
LEMMA 4.1. PJ is extended to a bounded operator from HY(R"™) to L*(R"™).
PrOOF. If 0<o<1/2, there exist some s'>1/2 and p’>n—1 such that
n—1—2e¢p’>0 and (n—1)/2p’+s’=1. Then we can prove that
| Poulrecra-1, S Cr®1720P0 R 4] yy g,
in the same way as in the proof of [2.14) m
By a straightforward calculation, the form [ B,(e; 2), AJ(j=1, 2) is extended
to a bounded operator from H*R") to H *R"). Moreover, we have that
i[Bi(e; A), AP=—4A4+A(x-VEL )(x-V)+(V*-x)(x -VEp )+n(x-VE. ),
i[By(e; A), AI'=—AEs, (x-V)(x-VN)F(Es, (x - V)(x -V)N)*+2(V*- x)Eg, (x-V)
+2nEs (x-N+2n(N*-x)Es +n’Es,.).
Let ue HXR*)ND(A) satisfying Auc H'(R"). Then we have that
(4.1)  <[Bs(e; A), AJu, up=—AKy - T ,Nyu, VIAEL—E)T judr2rn-1)
+p(NT 0.u, VI(EL—EL)T judrern-1)
HVIEP—EDT o, 3TV yudrern-1)
HVIHEDL—ELT ju, o(3)T 0,udr2crn-1)
+nVIEL—E)T ;u, T jupr2rn-1)),
(4.2)  <G[Bu(e; A, Adu ‘up=—2AKy RV u, (EI*—ET°)RGuUD12(Rn-1)
+<{Ps0.u, (E"—EL )P udrarn-1)
+U{ET—EL)RGu, y- RGN udr2pn-1)
+EL—EL)Pju, Pio.u>r2rn-1)
+ndEL"—EL)Rsu, R{udpscrn-1)).

Lemma 2.1 and (4.1) imply that [Bs(e; 2), A] is extended to a bounded
operator from H*R") to H *R"). Lemma 4.1, [2.14) and (4.2) imply that
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i[Bi(e; A), A] is extended to a bounded operator from H2R™) to H*R"). We
also have that

i[Ba(e; 2), A]":—X(T’;(E}t”-—E?)V{y-Tq,Vy—f—(Tg,Vy)*-y(EI°~Ez°)V§T¢

+THEL —EL )NV IT ,0,+(T 05 EF—Er)e(y)VIT,
+nTHEY—EVIT,),

i[Bu(e; A, AY=—2(RP*EP’"—EL)y- RV, +(RZV)*- y(Ef*—E1) R},

+H(POHEL — BP0, +(P o) B —EP;
+ (R EL—EL)R).

We define an operator :[B(e; 1), A7° as

i[B(e; D), A= 3i[By(e; D), AT,

Thus, the form i[B(e; 4), A] is extended to a bounded operator from HR™)
to H *R™).

REMARK. We can consider that 7[B,(e; 4); A]° belongs to B(H*!, H ') and

i[Bs(e; 4), A]° belongs to B(H'**, H™'"*), where s>1/2.
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