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Abstract. We present a generalized degree for maps between

manifolds via framed bordism theory. We study when the degree
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spheres. Finally we apply this tools to prove a result concerning

the generalized Hopf’s invariant.
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1. Introduction and preliminary definitions.

In [G. M. V.] is presented a degree theory in euclidean spaces that gener-

alizes the classical degree of Brouwer. In order to solve the additivity pro.

perty problem, in [R2] we gave an alternative description of the generalized

degree through differentiable methods. This tools are based on the Pontryagin’s

results of framed bordism (see [P]) and moreover can be used to extend the
generalized degree to the contex of normed spaces ([R3]).

The aim of this paper is to extend the classical degree theory in manifolds

for continuous maps $f:M^{n+k}\rightarrow M^{n}$ where $M^{n+k}$ and $M^{n}$ are compact connected
oriented $(n+k)$ and $n$ manifolds respectively. We will apply once again framed
bordism theory.

In this paper, by $M^{n+k}$ and $M^{n}$ we shall mean compact Hausdorff oriented
$C^{\infty}$-manifolds with dimension $n+k$ and $n$ respectively $\partial M^{n+k}=\partial M^{n}=\emptyset,$ $M^{n}$

will be supposed to be connected. All differentiable maps will be $C^{\infty}$-maps.
In order to do this paper as selfcontained as possible we are going to point

out the most important concepts and results that we will need.
A pair $(M^{k}, F)$ is said to be a framed submanifold of $M^{n+k}$ if $M^{k}$ is a

closed k-dimensional submanifold of $M^{n+k}$ and $F=\{u_{1}, u_{2}, \cdots , u_{n}\}$ is a normal

frame for $M^{k},$ $i$ . $e$ . $F$ is a family of independent differentiable sections of the
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normal bundle (trivial) of $M^{k}$ , denoted by $\nu(M^{k})$ .
Let N. F. $k(M ’+k)=$ { $(M^{k},$ $F):(M^{k},$ $F)$ is a framed submanifold of $M^{n+k}$ }.

$(M_{0}^{k}, F_{0}),$ $(M_{1}^{k}, F_{1})\in N$ . F. $k(M^{n+k})$ are said to be homologous, written $(M_{0}^{k}, F_{0})\cong$

$(M_{1}^{k}, F_{1})$ , provided there exists a $k+1$-dimensional closed submanifold $M^{k+1}$ of
$M^{n+k}\times I$ such that $\partial M^{k+1}=(M_{0}^{k}\times\{0\})\cup(M_{1}^{k}\times\{1\}),$ $M^{k+1}\cap(M^{n+k}\times\{t\})=M_{0}^{k}\times\{t\}$

for every $r\in[0,1/3$), $M^{k+1}r\backslash (M^{;\iota+k}\times\{t\})=M_{1}^{k}\times\{l\}$ for every $t\in(2/3,1$ ] and there
exists $G=\{G_{1}, G_{2}, \cdots, G.\}$ normal frame for $M^{k+1}$ verifying

$G|_{M_{0}^{k}\times\{01}=F_{0}$ and $G|_{M_{1}^{k}\times\{1)}=F_{1}$ .

It is easy to see that $\cong$ is a relation of equivalence, then we have the set
$\mathfrak{F}^{k}(M^{n+k})=N$ . F. $ k(M^{n+k})/\cong$ .

Let us consider $S^{n}$ to be the n-dimensional sphere and $p,$ $q$ the South and
North poles of $S^{n}$ respectively.

Now consider $f:M^{n+k}\rightarrow S^{r\iota}$ to be a $C^{\sigma}$-map such that $p$ is a regular value
of $f$ , written $p\in(r. v.)(f)$ , one can assign to $f$ an element $(M_{f}^{k}, F_{\int})\in$

N. F. $k(M^{n+k})$ , where $M_{f}^{k}=f^{-1}(p)\subset M^{n+k}$ and the frame $F_{f}=\{u_{1}, u_{2}, \cdots , u_{n}\}$

satisfies that if $c’=(U, \varphi_{n}^{-1}, R^{n})$ denotes the local coordinates of $S^{n}$ given by
$\varphi_{n}^{-1}$

the projection $p\in U=S^{n}\backslash \{q\}-R_{n}$ , then $T_{x}f(u_{j}(x))=\Theta^{p_{c^{\prime}}}(e_{j})$ for every $j=1,$ $\cdots$ ,
$n$ and every $x\in M^{k}$ . ( $\Theta^{p_{c^{\prime}}}$ denotes the isomorphism between $R^{r\iota}$ and $T_{p}(S^{n})$

induced by $c^{\prime}$ ).

Arguing as in [P] one can prove the following

THEOREM 1.1. Let $M^{n+k}$ be a manifold as above and $\Pi n(M^{n+k})$ the n-th
cohomotopy set (group if $n\geqq k+2$ ) of $M^{n+k}$ . Then, the function $\Pi^{k}$ ; $\Pi^{n}(M^{n+k})$

$\rightarrow \mathfrak{F}^{k}(M^{n+k})$ , defined by $\Pi_{n}^{k}([h])=[(M_{f^{\prime}}^{k}, F_{f})]$ , where $f:M^{n+k}\rightarrow S^{n}$ is a $C^{\sigma}$-map
homotopic to $h$ such that $p\in(r. v.)(f)$ , is bijective ( $isomorph\iota sm$ if $n\geqq k+2$ ).

The structure of the present work is the following: in the remaining part

of this section by using Theorem 1.1 we introduce the generalized degree
definition and prove the main properties. However, this definition poses some
difficulties (of computation for example), then, it is interesting to find out con-
ditions for making this definition easier. Note that when it is possible to identify
$d(f)$ with an element of $\Pi_{n+k}(S^{n})$ , as in the case of the generalized degree in
euclidean and normed spaces, we can use Pontryagin’s theory to determinate
in a reasonable way this degree and the structure of the sets $\Pi n(M^{n+k})$ . We
devote section 2 to this task. Some ideas of section 2 are motivated by the
work of Kervaire [K].

In section 3 we apply the results of section 2 to compute the degree of
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some functions that allows us to prove Theorem 3.1 that improves 6.1 of [K]

and generalizes a classical theorem concerning the Hopf’s invariant.
Applications of this results to the complementing maps theory can be found

in [R4].

The reader is referred to the texts of [H] and [S] for information about

differential and algebraic topology machinery.

DEFINITION 1.1. Let $f:M^{n+k}\rightarrow M^{n}$ be a $C^{\infty}$-map and $x_{0}\in(r. v.)(f)$ . We

define the generalized degree of $f$ at $x_{0}$ , written $d(f, x_{0})$ , by $d(f, x_{0})=$

$[(f^{-1}(x_{0}), fi_{f})]\in \mathfrak{F}^{k}(M^{n+k})$ , where $F_{f}=\{u_{1}, \cdots, u_{n}\}$ is the normal frame for
$f^{-1}(x_{0})$ such that $T_{x}f(u_{1}(x))=\Theta_{c}^{x_{0}}(e_{i})$ for every $\iota=1,$

$\cdots,$ $n$ and every $x\in f^{-1}(x_{0})$ ,

and $c=(U, \varphi, R^{n})$ are local coordinates inducing the orientation of $M^{n},$ $U$ con-
taining $x_{0}$ .

It is easy to check that the above definition is consistent, $i$ . $e$ . $d(f, x_{0})$

depends neither on $c$ nor on the choice of the positive basis of $R^{n}$ .

LEMMA 1.1. Let $H:M^{n+k}\times I\rightarrow M^{n}$ be a $C^{\infty}$-homotopy such that $x_{0}\in(r. v.)$

$(H_{0})\cap(r. v.)(H_{1})$ , then $d(H_{0}, x_{0})=d(H_{1}, x_{0})$ .

The proof of Lemma 1.1 is straightforward if $x_{0}\in(r. v.)(H)$ , otherwise one
can get another $C^{\infty}$-homotopy $H^{\prime}$ : $M^{n+k}\times I\rightarrow M^{n}$ such that $x_{0}\in(r. v.)(H^{\prime})$ , and
$H_{0}^{\prime}=H_{0}$ and $H_{1}^{\prime}=H_{1}$ .

As a consequence of above lemma we obtain the next useful corollary

COROLLARY 1.1. Let $f:M^{n+k}\rightarrow M^{n}$ be a $C^{r}$ -map and let $x_{0},$ $x_{1}\in(r. v.)(f)$ ,

then $d(f, x_{0})=d(f, x_{1})$ .

PROOF. Take a $C^{\infty}$-isotopy $H:M^{n}\times I\rightarrow M^{n}$ such that $H_{0}=Id$ and $H_{1}(x_{0})=$

$x_{1}$ . Now consider $G=H\circ(f\times Id):M^{n+k}\times I\rightarrow M^{n}$ . Corollary 1.1 implies that
$d(G_{0}, x_{1})=d(G_{1}, x_{1})$ . Since $G_{0}=f$ and $G_{1}=H_{1}\circ f$ , it follows that

$d(f, x_{1})=d(G_{1}, x_{1})=d(H_{1}\circ f, x_{1})=[(H_{1}\circ f)^{-I}(x_{1}), F_{H_{1}.f})]$

$=[(f^{-I}(x_{0}), F_{H_{1}\circ f})]=[(f^{-1}(x_{0}), F_{f})]=d(f, x_{0})$ . $\square $

Corollary 1.1 allows us to state the following definition

DEFINITION 1.2. a) Let $f:M^{n+k}\rightarrow M^{n}$ be a $C^{\infty}$-map. We define the gen-

eralized degree of $f$ , denoted by $d(f)$ , by $d(f)=d(f, x_{0})\in \mathfrak{F}^{k}(M^{n+k})$ , where $x_{0}$

is any regular value of $f$ .
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b) If $f:M^{n+k}\rightarrow M^{n}$ is a continuous map we define the degree of $f$ by
$d(f)=d(g)\in \mathfrak{F}^{k}(M^{n+k})$ , where $g:M^{n+k}\rightarrow M^{n}$ is any $C^{\infty}$-map such that $f$ and $g$ are
homotopic.

In the sequel we shall refer to continuous maps shortly as maps.

REMARK 1. It is obvious that $d(f)=d(f^{\prime})$ if $f,$ $f^{\prime}$ are homotopic maps.

REMARK 2. If $M^{n}=S^{n}$ it follows that $d(f)=\Pi_{n}^{k}([f])$ for every map $f$ :
$Jf^{n+k}\rightarrow S^{n}$ , then $d(f)$ characterizes the homotopy class of $f$ .

From the previous definition one can check easily the following result

PROPOSITION 1.1. Let $f:M^{n+k}\rightarrow M^{n}$ be a map such that $d(f)\neq 0$ , then $f$ is
onto.

2. Conditions for the generalized degree of a map to be an element of
$\Pi_{n+k}(S^{n})$ .

In the above section we have defined the degree of a map $f:M^{n+k}\rightarrow M^{n}$

as an element of $\mathfrak{F}^{k}(M^{n+k})$ . Those sets (groups if $n\geqq k+2$ ) are in general
very difficult to determinate, therefore, it is interesting to find out when it is
possible to identify $d(f)$ with an element of $\Pi_{n+k}(S^{n})$ as in the case of the gene-
ralized degree in euclidean and normed spaces ([G. M. V.], [R3]). Besides, in
this situation $d(f)$ would take values in a common set for every $M^{n+k}$ and $M^{n}$

as in the classical degree theory.

First of all we recall the next lemma

LEMMA 2.1. Let $n\in N$ and $k\in N\cup\{0\}$ . The proJ ection $\varphi_{n+k}$ : $ R^{n+k}\rightarrow$

$S^{n+k}\backslash \{q\}$ induces a $bi_{J}$ ection $\overline{\varphi}_{n+k}$ : $\mathfrak{F}^{k}(R^{n+k})\rightarrow \mathfrak{F}^{k}(S^{n+k})$ given by $\overline{\varphi}_{n+k}([(M^{k}, F)])$

$=[(\varphi_{n+k}(M^{k}), T\varphi_{n+k}(F))]$ , where $T\varphi_{n+k}$ denotes the map induced by $\varphi_{n+k}$ between
the corresponding normal bundles.

Now let us suppose in this section $M^{n+k}$ to be compact, connected, oriented
without boundary and $c=(U, \psi^{-1}, R^{n+k})$ be a chart of the orientation of $M^{n+k}$ .

By applying Lemma 2.1 one has $\mathfrak{F}^{k}(S^{n+k})\equiv \mathfrak{F}^{k}(R^{n+k})\equiv \mathfrak{F}^{k}(B^{n+k}(0)),$ $(B^{n+k}(0)=$

{ $x\in R^{n+k}$ such that $\Vert x\Vert<1$ }) then, we can define $\psi^{*}:$ $\mathfrak{F}^{k}(S^{n+k})\rightarrow \mathfrak{F}^{k}(M^{n+k})$ by
$\psi^{*}([(M^{k}, F)])=[(\psi(M^{k}), \overline{T\psi}(F))]$ , where $\overline{T\psi}:\nu(M^{k})\rightarrow\nu(\psi(M^{k}))$ is the map in-
duced by

$T\psi:T_{Mk}B^{n+k}(0)-T_{\psi^{(Mk)}}M^{n+k}$

$(x, v)-(\psi(x), T_{x}\psi(v))$
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between the normal bundles of $M^{k}$ and $\psi(M^{k})$ . It is clear that $\overline{T\psi}$ is an
isomorphism and $\psi*is$ well defined. On the other hand, since $\psi$ transforms
disjoint sets in disjoint sets, $\psi*is$ a homomorphism if $n\geqq k+2$ .

Now we state the next useful proposition

PROPOSITION 2.1 ([H], pag. 185). Let $\psi^{\prime},$ $\psi:\overline{B}^{n+k}(0)\rightarrow M^{n+k}$ be orientation
preserving diffeomorphisms onto its images, then there exists a $C^{\infty}$-isotopy $H$ :
$M^{n+k}\times I\rightarrow M^{n+k}$ such that $H_{0}=Id$ and $H_{1}|_{U}=\psi^{\prime}\circ\psi^{-1}$ , where $U=\psi(B^{n+k}(0))$ .

As a consequence of Proposition 2.1 we have

PROPOSITION 2.2. If $c=(U, \psi^{-1}, R^{n+k})$ and $c^{\prime}=(U^{\prime}, \psi^{\prime-1}, R^{n+k})$ are charts

inducing the orientation of $M^{n+k}$ it follows that $\psi^{*}=\psi^{\prime*}$ .

PROOF. Consider $H:M^{n+k}\times I\rightarrow M^{n+k}$ as in Prop. 2.1 and let $\alpha:I\rightarrow I$ be

a $C^{r}$-map such that $\alpha|_{\ddagger 0,1/3)}=0,$ $\alpha|_{(2/3.1j}=1$ and $\alpha^{\prime}(t)>0$ for $t\in(1/3,2/3)$ . Let

us define $\tilde{H}:M^{n+k}\times I\rightarrow M^{n+k}\times I$ by $\tilde{H}(x, t)=(H(x, \alpha(t)),$ $t$). Hence $\tilde{H}$ is a
diffeomorphism. For every $[(M^{k}, F)]\in \mathfrak{F}^{k}(S^{n+k}),\tilde{H}(\psi(M^{k})\times I)$ is a compact

submanifold of $M^{n+k}\times I$, such that $\tilde{H}(\psi(M^{k})\times I)\cap(M^{n+k}\times\{t\})=\psi(M^{k})\times\{l\}$ if

$t\in[0,1/3)$ and $\tilde{H}(\psi(M^{k})\times I)\cap(M^{n+k}\times\{t\})=\psi^{\prime}(M^{k})\times\{t\}$ if $l\in(2/3,1$ ]. It is

clear that $\overline{T\psi}(F)$ is a normal frame for $\psi(M^{k})\times I$ , therefore if $\overline{T\tilde{H}}:\nu(\psi(M^{k})\times I)$

$\rightarrow\nu(\tilde{H}(\psi(M^{k})\times I))$ is the isomorphism induced by $T\tilde{H}$ it follows that the pair
$(\tilde{H}(\psi(M^{k})\times I),\overline{T\tilde{H}}(T\psi(F))$ achieves a homology between $(\psi(M^{k}),\overline{T\psi}(l^{i}))$ and
$(\psi^{\prime}(M^{k}),\overline{T\psi^{\prime}}(F))$ . This completes the proof of the proposition. $\square $

In order to look into the main properties of $\psi*we$ need the following

PROPOSITION 2.3 ([H], pag. 183). Let $M^{n+k}$ be as above. Assume that $M^{n+k}$

is k-connected and $n\geqq k+2$ . Let $M^{k}$ and $\Lambda I_{*}^{k}$ be two k-dimensional diffeomorphic

compact submanifolds of $M^{n+k}$ . Then there exists a $C^{\infty}$-isotopy $ H:M^{n+k}\times I\rightarrow$

$M^{n+k}$ such that $H_{0}=Id$ and $H_{1}(1^{}1I_{*}^{k})=M^{k}$ .

Now we are in a position of proving the following useful consequence

PROPOSITION 2.4. If $n\geqq k+2$ and $M^{n+k}$ is as in Prop. 2.3, then $\psi*is$ onto.

PROOF. Let $[(M^{k}, F)]\in \mathfrak{F}^{k}(M^{n+k})$ and let $f:M^{n+k}\rightarrow S^{n}$ be a $C^{\infty}$-map such
that $p\in(r. v.)(f)$ and $\Pi_{n}^{k}([f])=[(M^{k}, F)]$ . Since $n\geqq k+2,$ $M^{k}$ can be embedded
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in $U$ , where [ $\mathfrak{s}$ is the domain of a chart $c=(U, \psi^{-1}, R^{\prime\iota+k})$ inducing the orienta-
tion of $M^{n+k}$ . Let $M_{*}^{k}$ be the image of a such embedding. From Prop. 2.3
there exists a $ c\propto$-isotopy $H:1lI^{n+k}\times I\rightarrow_{1}|/f^{n+k}$ such that $H_{0}=Id$ and $H_{1}(1\iota/1_{*}^{k})=$

$M^{k}$ . Now the map $f\circ H$ gives us a homotopy between $f$ and $f\circ H_{1}=f^{\prime}$ .
Therefore $[(M^{k}F)]=\Pi_{n}^{k}([f])=\Pi_{n}^{k}([f^{\prime}])=[(f^{J-1}(p), F_{f^{\prime}})]$ . Since $f^{\prime-1}(p)=\Lambda f_{*}^{k}$

we have $\psi^{*}([(\psi^{-1}(M_{*}^{k}), \overline{T\psi}^{-1}(F_{f^{\prime}}))])=[(M^{k}, F)]$ and $\psi*is$ onto. $\square $

A manifold $M$ is said to be a $\pi$-manifold provided there exist $m\in N$ and
an embedding $f:M\rightarrow R^{m}$ such that $\nu(f(M))$ is trivial. If $M$ is a n-dimensional
$\pi$-manifold there is $U=\{u_{1}, \cdots , u_{m-n}\}$ family of linearly independent sections of
$\nu(f(M))$ . By using $f$ and $U,$ $M$ can be oriented following a standard way. In
the sequel when we refer to a $\pi$-manifold $M$ , as above, it will be supposed to
have the orientation induced by $f$ and $U$ .

Now let.$|\parallel n+k$ be a $\pi$-manifold, $f:M^{n+k}\rightarrow R^{n+k+s}$ be an embedding and let
$U=\{u_{1}, \cdots, u_{s}\}$ a normal frame for $f(1lf^{n+k})$ . Let us define a function (homo-

$\overline{\varphi}_{n+k+\theta}$

morphism if $n\geqq k+2$ ) $U_{f}^{*}:$ $\mathfrak{F}^{k}(M^{\iota+k})\rightarrow \mathfrak{F}^{k}(R^{n+k+s})$ $\equiv$ $\mathfrak{F}^{k}(S^{7l+k+s})$ by $U_{f}^{*}([M^{k}, F)])$

$=[(f(\wedge/|f^{k}), (\overline{Tf}(F), U))]$ where $\overline{Tf}:\nu(\Lambda f^{k}))\rightarrow\nu(f(M^{k}))$ is the map induced by
$Tfi$ . $e$ . $\overline{Tf}(x, [v])=(f(x), [T_{x}f(v)])(\nu(f(M^{k}))$ denotes the normal bundle of
$f(M^{k})$ in $f(M^{n+k}))$ . Obviously $U_{f}^{*}$ is well defined.

If $M^{n+k}$ is a $\pi$-manifold and $g:M^{n+k}\rightarrow M^{n}$ is a map one can consider the
generalized degree of $g,$ $d(g)\in \mathfrak{F}^{k}(M^{n+k})$ , as $((\Pi_{n+s}^{k})^{-1_{\circ}}U_{f}^{*})(d(g))\in\Pi_{n+k+s}(S^{n+s})$ .
$r\Gamma his$ resultant alternative definition of the degree of a map presents the disad-
vantadge of depending on $f$ and $U$ and besides we may lose information because
$U_{f}^{*}$ is not bijective. In order to eliminate this gaps we are going to prove some
propositions that moreover will determinate the relation between $\psi*andU_{f}^{*}$ .

PROPOSITION 2.5. Let $\wedge 1I^{n+k}$ be a k-connected $\pi$-manifold, $n\geqq k+2$ . Let
$f:11f^{n+k}\rightarrow R^{n+k+s}$ be $a$ embedding such that $\nu(f(Ilf^{n+k}))$ is trivial and $U=\{u_{1},$ $\cdots$ ,
$u_{s}\},$ $V=\{v_{1}, \cdots , t)s\}$ be two normal frames for $f(M^{n+k})$ inducing the same orien-
tation of $M^{n+k}$ . Then $U_{f}^{*}=V_{f}^{*}:$ $\mathfrak{F}^{k}(M^{n+k})\rightarrow \mathfrak{F}^{k}(R^{n+k+s})\equiv \mathfrak{F}^{k}(S^{n+k+s})$

PROOF. Let [ $(\Lambda t^{k}, F)[\in \mathfrak{F}^{k}(\Lambda f^{n+k})$ and for every $j\in\{1, \cdots , s\}$ we write
$u_{j}(x)=\Sigma_{i=1}^{t}a_{ij}(x)v_{j}(x)(x\in f(\lrcorner lf^{n+k}))$ . Define $G:f(M^{n+k})\rightarrow GL_{+}(R^{\ell})$ by $G(x)=$

$G_{x}=(a_{ij}(x))_{i.j=1}^{s}$ . Now consider

$i$ $G$

$G|_{f(Mk)}$ : $f(A|f^{k})=f(M^{n+k})-GL_{+}(R^{s})$ ,
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$G|_{f(Mk)}$ is homotopic to a constant map, then there exists a $C^{\infty}$-map $H:f(\Lambda l^{k})$

$\times I\rightarrow GL_{+}(R^{\theta})$ such that $H_{0}=G|_{f(Mk)}$ and $H_{1}=ct_{Id}$ (the map of constant value
the identity matrix).

It is clear that $(f(M^{k})\times I, (\overline{Tf}(F), H(v_{1}, \cdots, v_{s}))$ achieves a homology be-
tween $(f(M^{k}), (\overline{Tf}(F), U))$ and $(f(\Lambda f^{k}), (\overline{Tf}(F), V))$ . $\square $

PROPOSITION 2.6. Let $M^{n+k}$ be a $\pi$-manifold. Let $g,$ $f;1\mathfrak{h}l^{n+k}\rightarrow R^{n+k+s}$ be
two embeddings such that $\nu(f(i\backslash /l^{n+k}))$ and $\nu(g(M^{n+k}))$ are trivial. Let $U$ and $U^{\prime}$

be normal frames for $f(M^{n+k})$ and $g(M^{n+k})$ respectively and $c=(W, \psi^{-1}, R^{n+k})$

be a chart of $M^{n+k}$ where $\psi:\overline{B}^{n+k}(0)\rightarrow\overline{W}$ . If $n\geqq k+2$ and $s\geqq n+k+2$ it follows
that $U_{g^{*}}^{\prime}|_{{\rm Im}\psi*}=U_{f}^{*}|_{{\rm Im}\psi*}:$ ${\rm Im}\psi^{*}\rightarrow \mathfrak{F}^{k}(S^{n+k+s})$ .

PROOF. Let $[(M^{k}, F)]\in \mathfrak{F}^{k}(M^{n+k})$ . We apply Prop. 2.3 to get a $C^{\infty}$-isotopy
$H:R^{n+k+s}\times I\rightarrow R^{n+k+s}$ such that $H_{t}=Id$ for every $t\in[0,1/3$), $H_{t}=H_{1}$ if $ t\in$

$(2/3,1]$ and $H_{1}|_{f(Mn+k)}=g\circ f^{-1}$ .
Define $\tilde{H}:R^{n+k+s}\times I\rightarrow R^{n+k+s}\times I$ by $\tilde{H}(x, t)=(H(x, t),$ $t$).

Since $U$ can be considered as a frame normal frame for $f(M^{n+k})\times I$, we
have that $U^{\prime\prime}=T\tilde{H}(U)$ is a frame for $\tilde{H}(f(M^{n+k})\times I)$ . Then $(H_{(}f(M^{k})XI)$ ,
$(\overline{T\tilde{H}}(Tf(F)), U^{\prime\prime}))$ achieves a homology between $(f(\Lambda I^{k}), (\overline{Tf}(F), U))$ and
$(g(M^{k}), (\overline{Tg}(F), U^{\prime\prime}|_{g(Mn+k)}))$ , therefore $U_{f}^{*}([(M^{k}, F)])=(U^{\prime\prime}|_{g(Mn+k)})_{g}^{*}([(Atl^{k}, F)])$ .

If $[(M^{k}, F)]\in{\rm Im}\psi^{*}$ , there exists $[(N^{k}, G)]\in \mathfrak{F}^{k}(S^{n+k})$ such that $\psi^{*}([(N^{k}, G)])$

$=[(M^{k}, F)]$ . Hence it suffices to prove that $(U_{g}^{\prime*}\circ\psi^{*})([(N^{k}, G)])=$

$((U^{\prime\prime}|_{g(Mn+k)})_{9}^{*}\circ\psi^{*})([(N^{k}, G)])$ . On the other hand

$(U_{g}^{\prime*}\circ\psi^{*})([(N^{k}, G)])=U_{g}^{\prime*}([(\psi(N^{k}),\overline{T\psi}(G)])$

and
$((U^{\prime\prime}|_{g(Mn+k)})_{g}^{*}\circ\psi^{*})([(N^{k}, G)])=(U^{\prime\prime}|_{g(Mn+k)})_{g}^{*}([(\psi(N^{k}), \overline{T\psi}(G))])$ .

Now, since $\psi(N^{k})\subset W$ and $W$ is contractible arguing as in Prop. 2.5 we obtain
$(U^{\prime\prime}|_{g(Mn+k)})_{g}^{*}([(\psi(N^{k}), \overline{T\psi}(G))])=U_{g^{*}}^{\prime}([(\psi(N^{k}),\overline{T\psi}(G))])$ . This completes the
proof. $\square $

Now we state the next lemma, the proof is not difficult and we will omit it.

LEMMA 2.2. Let $f:M^{n}\rightarrow R^{n+s}$ be a diffeomorphic embedding and $a\in_{\lrcorner}lf^{n}$ .
Then there exist a diffeomorphic embedding $g:M^{n}\rightarrow R^{n+s}$ and an open set $U$ of
$M^{n}$ containing $a$ such that $g(a)=0$ and $g(\overline{U})=\overline{B}_{(0)}^{n}\times\{0\}$ .

COROLLARY 2.1. Let $M^{n+k}$ be a $\pi$-manifold, $n\geqq k+2$ . Let $f:M^{n+k}\rightarrow R^{n+k+s}$

be an embedding such that $\nu(f(M^{n+k}))$ trivial and let $U=\{u_{1}, \cdots, u_{s}\}$ be a normal
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frame for $f(M^{n+k})$ . Let $c=(U, \psi^{-1}, R^{n+k})$ be a chart inducing the orientation

of $M^{n+k}$ and $\psi(\overline{B}^{n+k}(0))=\overline{U}$ . Then the following composition of homomorphisms

$\Pi_{n+k}(S^{n})\mathfrak{F}^{k}(S^{n+k})\mathfrak{F}^{k}(M^{n+k})-\rightarrow \mathfrak{F}^{k}(S^{n+k+s})^{(\Pi_{n+l}^{k})^{-1}}\Pi_{n+k+s}(S^{n+s})\underline{\Pi_{n}^{k}}\underline{\psi^{*}}U_{f}^{*}$

and $\Sigma^{\epsilon}$ coincide.

( $\Sigma;\Pi_{n+k}(S^{n})-\Pi_{n+k+1}(S^{n+1})$ denotes the suspension homomorphism).

PROOF. Let $r>s$ such that $r\geqq n+k+2$ .
It is clear that $\Sigma^{r-\epsilon}\circ U_{f}^{*}=U_{f}^{J*}$ , where $U^{\prime}=\{U, e_{n+k+t+1}, \cdots, e_{n+k+r}\}([P])$ .

In order to compute $U_{f}^{J*}|_{{\rm Im}\psi*}$ we can assume $f$ to be an embedding as in Lemma

2.2. Thus there exists an open set $U$ such that $f(U)=B^{n+k}(0)\times\{0\}$ . On the

other hand since $\psi$ does not depend on the chart, we can assume that $\psi^{-1}=f^{-1}|_{U}$ .

Now take $[(M^{k}, F)]\in \mathfrak{F}^{k}(S^{n+k})$ ,

$(U_{f^{*}}^{\prime}\circ\psi^{*})([(M^{k}, F)])=U_{f}^{J*}([(\psi(M^{k}),\overline{T\psi}(F))])$

$=[(M^{k}, (F, e_{n+k+\$+1}, \cdots, e_{n+k+r}))]$ .

Since $M^{k}\subset B^{n+k}(0)$ and $U^{\prime}$ is defined for every $x\in B^{n+k}(0)$ , arguing as in

Prop. 2.5 we have

$[(M^{k}, (F, U, e_{n+k+S+1}, \cdots, e_{n+k+r}))]$

$=[(M^{k}, (F, e_{n+k+1}, \cdots, e_{n+h+r}))]=\Sigma^{r}([(M^{k}, F)])$ .

Therefore $U_{f}^{\prime*}\circ\psi^{*}=\Sigma^{r}$ and $U_{f}^{*}\circ\psi^{*}=\Sigma^{\iota}$ . $\square $

COROLLARY 2.2. Let $M^{n+k}$ be the same one as in Corollary 2.1. We have the

following consequences
a) $U_{f}^{*}$ is onto and $\psi*is$ injective.
b) If $M^{n+k}$ is k-connected then from a) and Prop. 2.4 we obtain that $\psi*is$

an isomorphism and $U_{f}^{*}=\Sigma^{s_{o}}\psi^{*- 1}$ , thus $U_{f}^{*}$ is an isomorphism which depends

neither on $U$ nor on $f$ .

Let $k\in N\cup\{0\}$ . It is well known that the suspension homomorphism $\Sigma_{n}$ :
$\Pi_{n+k}(S^{n})\rightarrow\Pi_{n+k+1}(S^{n+1})$ is an isomorphism provided $n\geqq k+2$ . One can consider

the directed set $N$, with the usual order $\leqq$ , and the sequence of groups
$\{\Pi_{k+n}(S^{n})\}_{n\in N}$ . For $i\leqq j$ there is a homomorphism $\Sigma_{i.j}$ : $\Pi_{k+i}(S^{i})\rightarrow\Pi_{k+j}(S^{j})$

defined by $\Sigma_{i.j}=\Sigma_{j-1}\circ\Sigma_{j-2}\circ\cdots\circ\Sigma_{i}$ . It follows that $\Sigma_{i.i}=1d$ , and for every $ i\leqq$

$j\leqq l$ one has $\Sigma_{i.l}=\Sigma_{j.l}\circ\Sigma_{i.j}$ . Then, $\{\Pi_{k+n}(S^{n}), \Sigma_{i.j}i, j\in N, \leqq\}_{n\in N}$ is the direct

system of groups.
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Denote by $(\Pi_{k}, \alpha_{i}),$
$\alpha_{i}$ : $\Pi_{k+i}(S^{i})\rightarrow\Pi_{k}$ , the direct limit of the above system.

Therefore the diagram

is commutative for every $i\leqq j$ .
The previous results allow us to state next theorem

THEOREM 2.1. Let $M^{n+k}$ be a k-connected $\pi$-manifold, $n\geqq k+2$ Let $g$ :
$M^{n+k}\rightarrow M^{n}$ be a map. Thus the generalized degree of $g$ , $d(g)\in \mathfrak{F}^{k}(M^{n+k})$ of
Def. 1.2 can be identify with the element $(\alpha_{n+\$}\circ(\Pi_{n+i}k)^{-1}\circ U_{f}^{*})(d(g))\in\Pi_{k}$ , where
$f:M^{n+k}\rightarrow R^{n+k+s}$ is an embedding such that $\nu(f(M^{n+k}))$ is trivial, $U=\{u_{1},$ $\cdots$ ,
$u_{s}\}$ is a normal frame for $f(M^{n+k})$ and $\alpha_{n+s}$ ; $\Pi_{n+k+\$}(S^{n+s})\rightarrow\Pi_{k}$ . Besides
$(\alpha_{n+s}\circ(\Pi_{n+\$}k)^{-1}\circ U_{f}^{*})(d(g))=0$ if and only if $d(g)=0$ and in particular if $M^{n}=S^{n}$ ,
$(\alpha_{n+s^{Q}}(\Pi_{n+s}k)^{-1}\circ U_{f}^{*})(d(g))$ characterizes the homotopy class of $g$ .

PROPOSITION 2.7. Let $M^{n+k}$ and $M^{\prime n+k}$ be k-connected manifolds contained
in $R^{n+k+s},$ $n\geqq k+2$ . Let $F$ and $F^{\prime}$ be normal frames for $M^{n+k}$ and $M^{\prime n+i}$ respec-
tively. If $(M^{n+k}, F)$ and $(M^{\prime n+k}, F ‘)$ are homologous through $(M^{n+i+1}, G)$ and
$g:M^{n+k+1}\rightarrow M^{n}$ is a map, it follows that $d(g|_{Mn+k})=d(g|_{M^{\prime}n+k})$ .

PROOF. There is no loss of generality in assuming $g:M^{n+k+1}\rightarrow M^{n}$ to be
a $C^{\infty}$-map. Let $r\in M^{n}$ be a regular value for $g,$ $g|_{Mn+k}$ and $g|_{M^{\prime}n+k}$ . Thus

$d(g|_{Mn+k})\equiv(\alpha_{n+s}\circ(\Pi_{n+S}^{k})^{-1}\circ F_{i}^{*})([((g|_{Mn+k})^{-1}(r), F_{g1_{M^{n+k}}})])$ ,

$d(g|_{M^{\prime}n+k})\equiv(\alpha_{n+s}\circ(\Pi_{n+\$}^{k})^{-1}\circ F_{i}^{\prime*})([((g|_{M^{\prime}n+k})^{-1}(r), F_{gn+k}|_{M^{\prime}})])$ ,

( $i$ denotes the inclusion).

Since $(g^{-1}(r), (F_{g}, G))$ achieves a homology between $((g|_{Mn+k})^{-1}(r),$ $(F_{g1_{M^{n+k}}}$ ,
$F))$ and $((g|_{M^{\prime}n+k})^{-1}(r), (F_{g1_{M^{n+k}}^{\prime}}, F^{\prime}))$ it follows that $F_{i}^{*}([(g|_{Mn+k})^{-1}(r), F_{g1}M^{n+k})])$

$=F_{i}^{J*}([(g|_{Mn+k})^{-1}(r), F_{g1_{M^{n+k}}^{\prime}})])$ therefore $d(g|_{Mn+k})=d(g|_{Mn+k})$ . $\square $

Even though $M^{n+k}$ fails to be a k-connected $\pi$-manifold we have the fol-
lowing proposition.

PROPOSITION 2.8 [R1]. Let $M^{n+k+1}$ be a compact manifold and $M^{n+k}=$

$\partial M^{n+k+1}$ . Let us suppose that $\delta:\Pi^{n}(\partial M^{n+i+1})\rightarrow\Pi^{n+I}(M^{n+k+1}, \partial M^{n+k+1})$ is in-
jective. If $f:M^{n+k}\rightarrow M^{n}$ is a map admiting an extension to map $ f:M^{n+k+1}\rightarrow$
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$M^{n}thend(f)=0$ .

3. A result concerning the generalized Hopf’s invariant.

In [P] is presented a differentiable version of the Hopf’s homomorphism

$\gamma:\Pi_{2k+1}(S^{k+1})\rightarrow Z$ and it was pointed out that for every $C^{\infty}$-map $f:S^{2k+1}\rightarrow S^{k+1}$ ,

$\gamma(f)$ depends only on the position of $f^{-1}(a_{0})$ and $f^{-1}(a_{1})$ in $R^{2k+1}$ where $a_{0},$ $ a_{1}\in$

$(r. v.)(f)$ . Several generalizations have been described, in particuiar those

established by G. W. Whitehead [W] and M. A. Kervaire [K]. Kervaire’s one
extends Whitehead’s one therefore and we wiil refer to the generalized Hopf’s

invariant as that of Kervaire.
Let $f:S^{n+d+1}\rightarrow S^{n+1}$ be a $C^{\infty}$-map, $d\geqq n$ . Let $a_{0},$ $a_{1}\in(r. v.)(f)$ such that

$M^{d}=f^{-1}(a_{0})$ and $M^{\prime d}=f^{-1}(a_{1})$ are contained in $S^{n+d+1}\backslash \{q\}$ . Let $F_{0}$ and $F_{1}$ the

normal frames associated to $M^{d}$ and $M^{\prime d}$ by $f$ . Then one can assume that
$M^{d}\cup M^{\prime d}\subset R^{n+d+1}$ and the map $\varphi:M^{d}\times M^{;d}\rightarrow S^{n+d}\varphi(x, y)=(y-x/\Vert y-x\Vert)$ is

well defined. On the other hand $\{F_{0}\times\{0\}, \{0\}\times F_{1}\}$ is a normal frame for
$M^{d}\times M^{\prime d}$ , as a submanifold of $R^{n+d+1}\times R^{n+d+1}$ . It is defined the generalized

Hopf’s invariant of $f,$ $h(f)$ , by

$h(f)=((\Pi_{3n+d+2}^{a-n})^{-1_{O}}(F_{0}\times\{0\}, \{0\}\times F_{1})_{ixi}^{*}\circ\Pi_{2n+d}^{d-n})([\varphi])$ ,

where $i:M^{d}\leftarrow R^{n+d+1}$ is the inclusion, then $h$ defines a homomorphism $h$ :
$\Pi_{d+n+1}(S^{n+1})\rightarrow\Pi_{2d+2n+2}(S^{3n+d+2})$ .

Let $[f]\in\Pi_{d+n+1}(S^{n+1})$ and $\Pi_{n+1}^{a}([f])=[(N^{d}, F)],$ $[(N^{d}, F)]\in \mathfrak{F}^{d}(S^{n+d+1})\equiv$

$\mathfrak{F}^{d}(R^{n+d+1})$ . There is no loss of generality in assuming $N^{d}$ to be connected

and $F$ to be an orthonormal frame [P] (pags. 56 and 77).

We are going to limit ourselves to the case of $N^{d}$ to be $(d-n)$-connected

and $2n-2\geqq d\geqq n\geqq 1$ . Let us note that $h(f)$ can be considered the degree of

$\varphi,$
$d(\varphi)$ . Write $F=\{v_{1}, \cdots , v_{n+1}\}$ and for every $\overline{c}=(c_{1}, \cdots, c_{n+1})\in R^{n+1}$ , such

that $\Vert\overline{c}\Vert$ is small enough we define $\overline{C}$ : $N^{d}\rightarrow R^{n+d+1}$ by $\overline{C}(x)=x+c_{1}\iota)_{1}(x)+\cdots+$

$c_{n+1}v_{n+1}(x)$ . From Prop. 2.7 it follows that $h(f)=d(L)$ , where $ L:N^{d}\times N^{d}\rightarrow$

$S^{n+d}$ is the $C^{\sigma}$-map defined by $L(y, x)=(x-\overline{C}(y)/\Vert x-\overline{C}(y)\Vert)$ (see [P] for the

classical case).

In order to obtain the most important theorem of this section we state

LEMMA 3.1. Let $[(M^{k}, F)]\in \mathfrak{F}^{k}(S^{n+k})$ where $F=\{v_{1}, \cdots , v_{n}\}$ . Let $\sigma$ be an
arbitrary permutation of the set $\{1, \cdots, n\}$ . Let $\epsilon_{i}\in\{-1,1\}$ for each $i\in\{1, \cdots, n\}$ .
Consider the frame $F^{\prime}=\{\epsilon_{1}v_{\sigma(1)}, \cdots, \epsilon_{n}v_{\sigma(n)}\}$ . It follows that $[(M^{k}, F)]=\pm$

$[(M^{k}, F^{\prime})]$ .
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The proof of the Lemma 3.1 is standard and we omit it.

LEMMA 3.2 ([S], pag. 405). Let $f:X\rightarrow Y$ be a n-equivalence $([S]pag. 404)$ .
For every CW-complex $P$ such that $dimP\leqq n$ (resp. $dimP\leqq n-1$ ) it follows that
the map $f_{*}:$ $[P, X]\rightarrow[P, Y]$ is onto (resp. $f_{*}$ is injective).

LEMMA 3.3 [F. R.], pag. 438-439). The map

$i:SO(n+d)-SO(n+d+1)$ defined by $i(A)=[\ldots.A0$ $.\cdot 10.]$

is a $(n+d-1)$-equivalence.

Now we are in a position of proving the next result. Notice that the next

theorem involves the tools developped in section 2. Theorem 3.1 generalizes a
useful result of the classical theory case and improves 6.1 of [K].

THEOREM 3.1. Let $[f]\in\Pi_{n+d+1}(S^{n+1})$ . Let us suppose that $2n-2\geqq d\geqq n\geqq 1$

and $\Pi_{n+1}^{d}([f])=[(M^{d}, F)]$ such that $M^{d}$ is connected and $F=\{v_{1}, \cdots , v_{n+1}\}$ is a
$C^{\infty}$ orthonormal frame for $M^{d}$ . Let us also assume that $M^{d}$ is a $(d-n)$-connected

manifold contained in $R^{n+d}(q\not\in M^{d}, R^{n+d}\subset R^{n+d+1})$ . Consider $\overline{t}=e_{n+d+1}\in R^{n+d+1}$

and let us write for every $x\in M^{d}e_{n+d+1}=\alpha_{1}(x)v_{1}(x)+\cdots+\alpha_{n+1}(x)v_{n+1}(x)$ . Then
the map $\psi:M^{a}\rightarrow S^{n}$ defined by $\psi(x)=(\alpha_{1}(x), \cdots, \alpha_{n+1}(x))$ satisfies that $h(f)=$

$\pm d(\psi)$ .

PROOF. Let $\delta$ be a small enough positive number and $L:M^{d}\times M^{d}\rightarrow S^{n+d}$

be the map defined by $L(y, x)=(x-y-\delta_{t)_{n+1}}(y)/\Vert x-y-\delta v_{n+1}(y))|)$ .
It is sufficient to prove that

$((F\times\{0\}, \{0\}\times F)_{i\times i}^{*}\circ\Pi_{n+d}^{d-n})([L])=(\Sigma^{n+d+1}\circ F_{i}^{*}\circ\Pi_{n}^{d-n})([\psi])$

$=((Fe_{n+d+2}, \cdots, e_{2n+2d+2})_{i}^{*}\circ\Pi_{n}^{a-n})([\psi])\in\Pi_{2n+2d+2}(S^{3n+d+2})$

up to sign.
One can assume $e_{n+1}\in S^{n}$ to be a regular value of $\psi$ . Let $V^{d-n}=\psi^{-1}(e_{n+1})$ ,

submanifold of $M^{d}$ , contained in the open subset $\psi^{-1}(E_{+}^{n})(E_{+}^{n}=\{(x_{1}, \cdots, x_{n+1})\in$

$S^{n}$ : $x>0$}). Using the same arguments discussed in [P] (page 71) we have
$L^{-1}(e_{n+d+1})=\Delta(V^{d-n})$ , where $\Delta:M^{d}\rightarrow M^{d}\times M^{d}$ is the diagonal map, $\Delta(x)=(x, x)$ .

Let $x\in\psi^{-1}(E_{+}^{n})$ , then $\alpha_{n+1}(x)>0$ and

$v_{n+1}(x)=\frac{\overline{t}}{\alpha_{n+1}(x)}-\frac{\alpha_{1}(x)}{\alpha_{n+1}(x)}v_{1}(x)-\cdots\cdots-\frac{\alpha_{n}(x)}{\alpha_{n+I}(x)}v_{n}(x)$ .
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Consequently $\{\iota)_{1}(x), \cdots , v_{n}(x),\overline{t}\}$ is a basis of the normal space at $x$ to $M^{d}$ in
$R^{n+d+1}$ for every $x\in\psi^{-1}(E_{+}^{n})$ . Let $p:R^{n+d+1}\rightarrow R^{n+d}$ be the natural projection.
For each $j\in\{1,2, \cdots , n\}$ denote $w_{j}=p(v_{j})$ . Then $\{w_{1}(x), \cdots , w_{n}(x)\}$ is a basis
of the normal space at $x$ to $M^{d}$ in $R^{n+d}$ for every $x\in\psi^{-1}(E_{+}^{n})$ .

Since $M^{d}$ is $(d-n)$-connected, there exists a chart $c=(U, \varphi, R^{d})$ , of $M^{d}$ ,

such that $U$ is a contractible open subset of $M^{d}$ containing $V^{d-n}$ . Let us
denote $V=U\cap\psi^{-1}(E_{+}^{n})$ .

Define a $C^{\infty}$-map $E=B^{n}(0)\times V\rightarrow R^{n+d}$ by $ E((\lambda_{1}, \cdots, \lambda_{n}), x)=x+\delta(\lambda_{1}w_{1}(x)+\cdots$

$+\lambda_{n}w_{n}(x))$ . It is obvious that for a small enough $\delta,$ $E$ is a diffeomorphism

onto its image.
For each $x\in V^{d-n}$ we have that $\alpha_{1}(x)=0$ for every $i\in\{1, \cdots , n\}$ and $\alpha_{n+1}(x)$

$=1$ . Then if we write $\psi$ and $L$ using local coordinates, and keep the same
notation, $\psi:V\rightarrow R^{n}$ will be given by $\psi(x)=(\alpha_{1}(x), \cdots , \alpha_{n}(x))$ and $ L:V\times V\rightarrow$

$R^{n+d}$ by

$L(y, x)=x-y-\delta(-\frac{\alpha_{1}(y)}{\alpha_{n+1}(y)}w_{1}(y)-\cdots\cdots-\frac{\alpha_{n}(y)}{\alpha_{n+1}(y)}w_{n}(y))$ ,

then $L$ can be expressed as the following composition:

$L:V\times V(B_{1}^{n}(0)\times V)\times(B_{1}^{n}(0)\times V)R^{n+d}\times R^{n+d}R^{n+d}\underline{N}\underline{L^{\neg}\times E}\underline{M}$

where

$N(y, x)=((-\frac{\alpha_{1}(y)}{\alpha_{n+1}(y)},$ $\cdots\cdots,$
$-\frac{\alpha_{n}(y)}{\alpha_{n+1}(y)},$ $y),$ $(0,0, \cdots, 0, x))$

and $M(a, b)=a-b$ .
Therefore for every $x\in V^{a-n}$ ,

$D\psi(x)=(\frac{\frac{}{1}\partial\alpha_{n}^{:}\partial x\partial\alpha_{1}:}{\partial x_{1}}\cdots\cdots\cdots\cdot\cdot\frac{\frac{\partial\alpha_{1}}{\partial x_{d}}\partial\alpha_{n}^{:}:}{\partial x_{d}}|$

and for every $(x, x)\in\Delta(V^{d-n})$

$DL(x, x)=DL(0, x)(-1.....1D\psi(.x)\ldots\cdot.\cdot....\cdot...\cdots\ldots..0-1$

1

$|_{|d}^{1n}$

, up to sign

$\overline{d}$ $\overline{d}$
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in each column (Lemma 3.1 implies that there is no problem in changing the
sign all columns).

For every $x\in V^{d-n}$ we will denote by $A_{x}$

$D\psi(x)$
$::$

:
$0$

:
:

$A_{x}=$ ................:................
$-1$ : 1. :. . :.

$.-1$ :: 1

Let $\{z_{1}, \cdots, z_{n}\}$ be the normal frame for $V^{a- n}$ in $R^{d}$ , such that $D\psi(x)(z_{j}(x)$

$=e_{j}$ for every $j\in\{1, \cdots , n\}$ . Then $\{\Theta_{c}^{x}(z_{1}(x)), \cdots, \Theta_{C}^{x}(z_{n}(x))\}$ is the normal
frame associated to $\psi,$ $F_{\psi}$ , at $x\in V(I-n$ .

For all $j\in\{1, \cdots , n\}$ and $x\in V^{d-n}$ we define $S_{j}(x, x)=(z_{j}(x), z_{j}(x))\in R^{2d}$

and $S_{n+i}(x, x)=(-e_{i}, e_{i})\in R^{2d}$ for each $i\in\{1, \cdots, d\}$ . It is clear that $A_{x}(S_{j}(x$ ,

$x))=e_{j}$ for $x\in V^{d-n}$ and $j\in\{1, \cdots , n\}$ and

$A_{x}(S_{n+i}(x, x))=\ovalbox{\tt\small REJECT}^{-\frac{\partial\alpha_{1}}{\partial x_{i}}}-\frac{\partial\alpha_{n}}{\partial x_{i},00}$

$($
$\dot{0}\dot{2}$

$(n+i)$-th line

$\Theta_{c\times\dot{c}}^{(xx)}(\{S_{1}(x, x), \cdots , S_{n}(x, x), S_{n+1}(x, x), \cdots, S_{n+d}(x, x)\})$ is a basis of the
normal space at $(x, x)$ to $\Delta(V^{d-n})$ in $M^{d}\times M^{d}$ satisfying $A_{x}(S_{1}(x, x),$ $\cdots$ ,

$S_{n+d}(x, x))=$

$=[1\ldots.0$

$1\ldots..\cdot..\cdot....\cdot..\cdot\cdot..\cdot...-\frac{\partial\alpha_{n}}{\partial x_{1}}$

$\frac{\partial\alpha_{n}}{\partial x_{d}}-\frac{\partial\alpha_{1}}{\partial x_{1}}-\frac{\partial\alpha_{1}}{\partial x_{d}}22\ovalbox{\tt\small REJECT}=B_{x}=$
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$=B_{x}(e_{1}, \cdots, e_{\iota+d})$ .

Consequently, $DL(x, x)((S_{1}(x, x),$ $\cdots,$ $S_{n+d}(x, x))B_{x}^{-1}DL^{\tau}(0, x)^{-1})=(e_{1}, \cdots, e_{n+d})$

and $\Theta_{c\times c}^{(x,x)}((S_{1}(x, x),$
$\cdots,$

$S_{n+d}(x, x))B_{x}^{-1}DE(0, x)^{-1})$ is the normal frame associated
to $\Delta(V^{d-n})$ at $(x, x)$ . We will show at the end of the proof that the map $\epsilon$ :
$V^{d-n}\rightarrow GL(R^{n+d})$ defined by $\epsilon(x)=B_{x}^{-1}DE(0, x)^{-1}$ is either homotopic to the
constant identity map or to the constant map

$-1$ :.: $0$

$|$ :
$I^{\prime}=|$

:
$|_{1}$

$0$

$:..:$

: Id
$1$

Then $[(\Delta(V^{d-\prime\iota}), (\Theta_{c}.c(S_{1}), \cdots, \Theta_{c\times c}(S_{n+d}), F\times\{0\}, \{O\}\times F))]=\pm[(\Delta(V^{d-n})$ ,

$((\Theta_{c\times c}(S_{1}), \cdots, \Theta_{c}.C(S_{n+d}))B^{-1}DE(0, \cdot)^{-1}, F\times\{0\}, \{O\}\times F))]$ and therefore $(F\times\{0\}$ ,

$\{0\}\times F)_{i\times i}^{*}(\Pi_{n+d}^{d-n}([L]))=[(\Delta(V^{d-n}), (\Theta_{c\times c}(S_{1}), \cdots, \Theta_{c\times c}(S_{n+d}), F’\times\{0\}, \{O\}\times F))]$ .
On the other hand, since $(E^{n+d+1}\circ F_{i}^{*}\circ\Pi_{n}^{a-\iota})([\psi])$ depends neither on the

embedding nor on the frame $F$, one can choose the embedding $\Delta:M^{d}\rightarrow M^{d}\times$

$i\times i$

$M^{d}-R^{n+d+1}\times R^{n+d+1}$ . Let $H$ be the normal frame obtained (using an $i\infty tooy$

for example) carrying $(F, e_{n+d+1}, \cdots, e_{2n+2d+2})$ to $\Delta(M^{d})$ .
Then one has that $(E^{n+d+1}\circ F_{i}^{*}\circ\Pi_{n}^{a-n})([\psi])=(H_{\Delta}^{*}\circ\Pi_{n}^{a-n})([\psi])=[(\Delta(V^{d-n})$ ,

$(\Delta(\Theta_{c}(z_{1})), \cdots, \Delta(\Theta_{c}(z_{n})), H))]$ .
Observe that $\Delta(\Theta_{c}^{x}(z_{j}(x)))=\Theta_{C^{x}}^{(x_{\dot{C}}x)}(S_{j}(x, x))$ for every $x\in V^{d- n}$ and $j\in\{1,$ $\cdots$ ,

$n\}$ . Now, since $(\Theta^{(x.x)}(S_{n+1}(x, x),$ $\cdots,$ $S_{n+d}(x, x)),$ $F\times\{0\},$ $\{O\}\times F$ ) and $H|_{\Delta tU)}$

are defined for every $x\in U$ , and $U$ is contractible it follows that $((F\times\{0\}$ ,
$\{0\}\times F)_{i\times i}^{*}\circ\Pi_{n+d}^{a-n})([L])=(H_{\Delta}^{*}\circ\Pi_{n}^{d-n})([\psi])$ up to sign and then $h(f)=\pm d(\psi)$ .

In order to complete the proof we only have to show that $\epsilon;V^{d-n}\rightarrow$

$GL(R^{n+d})$ is homotopic to a constant map. It is clear that the map $x\leftrightarrow B_{x}$ is
homotopic to a constant map. Then it suffices to work with the map $\epsilon^{\prime}$ :
$V^{d-n}\rightarrow GL(R^{n+d})$ defined by $\epsilon^{\prime}(x)=DE(O, x)$ . Let us define $\mathcal{H}:B^{n}(0)\times M^{d}\times$

$(-1,1)\rightarrow R^{n+d+1}$ by $\mathcal{H}(\lambda_{1}, \cdots , \lambda_{n}, x, \lambda_{n+1})=x+\delta(\lambda_{1}v_{1}(x)+\cdots+\lambda_{n+1}\iota J_{n+1}(x))$ . $\mathcal{H}$ is
a diffeomorphism onto its image then $\mathcal{H}|_{B^{n}t0)xUx(-1.1)}$ : $ B^{n}(0)\times U\times(-1,1)\rightarrow$

$R^{n+d+1}$ so is. One can assume that $|D\mathcal{H}(y)|>0$ for every $y\in B^{n}(0)\times U\times(-1,1)$ .
Consider $x\in U$ .
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$\delta v_{1}^{1}(x):.::.$ $\cdots\cdots\delta v_{:}^{1}n(x):.:.\cdot$

$:.:..:$

$:_{:}:$

.

$\delta v_{n,.+1}^{1}(x):_{:}:.\cdot$

:

$|$

$D\mathcal{H}(0, x, 0)=$ ::
$:_{:}:$.

:
$Q_{x}$

$:.:.$

:

:
:
:

$\delta v_{1}^{n+d+I}(x)\cdots\cdots\delta v_{n}^{:_{n+d+1}}(x)$

:
$0\cdots\cdots\cdots 0$

$\delta\nu_{n}^{n}\ddagger^{d+1}1(x):$:

where $v^{j_{i}}(x)$ denotes the j-th coordinate of $v_{i}(x)$ .

Since $U$ is contractible, the following composition $Vd- n^{i}\rightarrow U^{D\ovalbox{\tt\small REJECT}(0.\cdot.0)}GL(R^{n+d+1})$

is homotopic to the constant identity map. Now for each $x\in V^{d-n}$ one has that

because $v_{j}^{n+d+1}(x)=(v_{j}(x),\overline{t})=(v_{j}(x), v_{7\iota+1}(x))=0$ .

Then $D\mathcal{H}(O, x. 0)=[\ldots D.E(0.’..x.)\ldots.\cdot...\cdot..\cdot.\cdot 00\dot{\delta}$ applying a simple homotopy one can

suppose that $\delta=1$ . Therefore one has the following commutative diagram

$Ddl(0, \cdot,\prime^{GL_{+}(R^{n+d+1})}0)\rightarrow^{\gamma}SO(n+d+1)$

$DE(0V^{d-n})\backslash GL_{+}(R^{n+d})\rightarrow^{r}SO(n+d)|i$
, where $r$ is the canonical

homotopy equivalence and $i:SO(n+d)\rightarrow SO(n+d+1)$ has been given in

Lemma 3.2.
The map $\eta$ : $V^{d-n}\rightarrow SO(n+d+1)$ defined by $\eta(x)=r(D\mathcal{H}(O, x, 0))$ is homotopic

to a constant map. Then it is enough to prove that

$\eta^{\prime}$ : $V^{d- n}-SO(n+d)$

$x\mapsto r(DE(0, x))$

also is nulhomotopic.

Lemma 3.2 asserts that $i$ is a $(n+d-1)$-equivalence and using Lemma 3.3

one has that $i_{*}:$ $[V^{d-n}, SO(n+d)]\rightarrow[V^{d-n}, SO(n+d+1)]$ is injective if $ d-n\leqq$

$(n+d+1)-1$ . Since $d-n\leqq n+d-2$ iff $2n-2\geqq 0$ it follows that $i_{*}$ is injective.
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Since $i_{*}([\eta^{\prime}])=[i\circ\eta^{\prime}]=[\eta]=0$ then $[\eta^{\prime}]=0$ and the proof is complete. $\square $

Let $\Sigma;\Pi_{n+d}(S^{n})\rightarrow\Pi_{n+d+1}(S^{n+1})$ be the suspension homomorphism. It is
well known that $/\iota(f)=0$ for every $[f]\in{\rm Im}\Sigma$ ( $[W]$ pag 192). However the
converse is much more difficult to solve. One can use the above theorem to
obtain the next corollary.

COROLLARY 3.1. Let $[f]\in\Pi_{n+d+1}(S^{n+1})$ . Assume that $2n-2\geqq d\geqq n\geqq 1$ and
$\Pi_{n+1}^{d}([f])=[(M^{d}, F)]$ , where $M^{d}$ is a $(d-n)$-connected manifold contained in $R^{n+d}$

and $F=\{t^{\prime_{1}}, \cdots b_{\iota+1}^{1}\}$ is an orthonormal frame for $M^{d}$ . Then if $h(f)=0$ one
has that $[f]\in{\rm Im}\Sigma$ .

PROOF. Since $d(\psi)=/l(f)=0$ , it follows that $\psi$ is homotopic to a constant
map. Now [P] implies that $[f]\in{\rm Im}\Sigma$ . $\square $

The author wants to express his gratitude to E. Outerelo for his comments
and all of his valuable time he dedicated to the author, while the thesis pre-
paration.
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